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Abstract 
We describe how specialized database technology and data 
analysis methods were applied by the Swedish defense to 
help deal with the violation of Swedish marine territory by 
foreign submarine intruders during the Eighties and early 
Nineties. Among several approaches tried some yielded 
interesting information, although most of the key questions 
remain unanswered. We conclude with a survey of belief- 
function- and genetic-aIgorithm-based methods which were 
proposed to support interpretation of intelligence reports and 
prediction of future submarine positions, respectively. 

Introduction 
In 1980, for a period of several weeks the Swedish navy 
hunted what it later judged to be two foreign submarines 
operating in the country’s inner territorial waters, near Swe- 
den’s largest naval base. 

This event commenced a more than decade-long period 
of political uneasiness and increasing military, as well as 
public, vigilance. The period was characterized by an 
inflow of final event intelligence reports to the Swedish 
military headquarters, which during the years of 1986-88 
reached a peak of about 1000 per year. 

Until the Submarine Commission report (Ubitsfrlgan 
1981-1994 1995) was published, very little was known to 
the public about the size and character of the intelligence 
material that had been gathered.The work to be described 
below started in 1986, then considered a top secret activity 
whose mere existence could not be revealed. 

The report of the 1995 Submarine 
Commission 

In February 1995, the Swedish government formed an inde- 
pendent commission “with the task of assessing and analyz- 
ing the underwater violations and indications of these that 
have existed since the beginning of the 198O’s...” (ibid). 

Most of the collected reports, roughly SO%, are of human -L ̂ _...._ *:--- I\I?LL--- nnm -_._-_ ---l- Le. -:-.:I:--- ll,:*L oostxvawns. VI mese, mu0 were mdue oy C~V~I~M~S. WILII 

regard to these reports, the commission states that “in our 
opinion, credible observations of foreign submarine activity 
have been made”. The more than 6000 reports were classi- 
fied by the defense authorities in four quality categories, 
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plus the categories “No submarine activity” and “Not 
decidable”. More than 1500 reports claim a target distance 
of less than 100 m. Of these, about 400 had been classified 
as belonging to the categories l-3, and 40 to category 1. 

The Commission report declares that “in our opinion, it 
is not possible to state the number of credible observations, 
and, by doing so, to draw a line between these and other 
observations”. In the classification scheme used by the mil- 
itary, the top category “Confirmed activity” was intended to 
include only such observations that were provably true in a 
legal sense. As the above citation shows, the relevance of 
thir rl~.&fir4nn rrroo r&w-t~A hrr the rnmmirrinn UllY YIGu.7uIII”u~I”II I. CA.7 n”Jv”rvu “J UIV YYIIIIAIIUYIVII. 

The Database and its Toolset 
Late in 1986, the naval intelligence analysts had tried a reg- 
ular C31 system but found it too inflexible for their purpose. 
By coincidence, our group was able to offer theh unique 
new technology, a system called Cantor (Svensson and Nei- 
der 1991, Andersson 1992, Karasalo and Svensson 1986). 

Cantor is designed to efficiently manage, analyze, trans- 
form, and visualize large sets of data, including spatially 
and spatio-temporally distributed point observations. It has 
many properties which make it easier to use for a small 
group of analysts than a mainstream relational DBMS, such 
as simple and logical means to define, populate, and display 
object types and values. It also possesses a more powerful 
data model and query language (called SAL) than the SQL 
standard of the late 1980’s, allowing, e.g., scalar, tuple, and 
set-valued objects, parameterized views, and view material- 
ization. 

The database input was organized as a collection of mea- 
surement tables, containing general observation metadata, 
such as time, area, position, observation quality, id number 
etc., observation type data, such as submarine, diver, 
waves, etc., and detailed observation features, such as size, 
speed, and heading, shapes, colors, sound character, light- 
ing character, and bottom track characteristics. 

Groping for the Right Questions 
The submarine intrusion problem represents a class of data 
analysis problems where observations form a complex 
structure, in relation to which it is unknown where and how 
to find useful information. 

On the lowest level of aggregation one faces, e. g., prob- 
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lems of constructing possible paths from uncertain point 
data, of “counting” the number of targets using only indi- 
rect evidence such as time and distance in relation to proba- 
ble speed, and of finding indirect support for target 
detection from coincident, more easily observable pro- 
cesses such as radio signals from non-submarine sources. 
On a more aggregated level, one wants to find spatio-tem- 
poral patterns that might be used to predict future behavior. 

n-1-.-. __.^ -.:,I t..:-n-. I___.LL - DGIWW, WC. WI11 orlally UeSLrloe ieciiiiiques for impping 
both point data and aggregate spatial information, for visu- 
alizing and analyzing statistically the temporal pattern of 
observations, and for discovering and analyzing clusters in 
space and time. 

One of our first tasks was to show how various observa- 
tion categories were distributed along the Swedish coast- 
line. Fig 1 depicts the coastline curvilinear distribution of 
all observations made during a certain time period. The 
highest peak corresponds to observations in the Stockholm 
archipelago. In general, the peaks in Fig 1 seem to corre- 
spond to areas of naval interest rather than major popula- 
tion centers. 

Next, the two-dimensional distribution of observations 
was mapped as shown in Fig 2. To highlight “hot spots” 
non-linear pixel coloring was chosen. Stationary acoustical 
and magnetic sensors are scarce resources which were often 
installed to guard passages into areas of particular defense 
interest, commonly giving rise to such hot spots. Since 
these sensors were more or less on constant alert, they may 
provide a measure of the temporal distribution of visits to 
such areas. 

A key question when analyzing data from suspected 

Fig 1 Observation density as a function of 
arclength along Sweden’s coastlline 

128 

Fig 3 Number and type (originally color I 
ceded) of observations per day during 
one year D 
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intrusions is whether the observations form a non-random 
distribution over time (see next section). To begin investi- 
gating such questions, the graph of Fig 3 was produced. 

Each of these diagrams represent a large family of possi- 
ble visualizations since the data being displayed can be 
selected at will, e.g., to show only high-quality civilian 
sightings of submarine type, or reports from stationary sen- 
sor installations. 

Statistical Analysis of the Database 
A shallow statistical analysis of the database was per- 
formed. It was based on human observations of the catego- 
ries l-3 in the period 1986-1991. This set includes roughly 
800 reports. The purpose of the statistical analysis was to 
examine whether the observations occur randomly in time 
and space. Even if they do not, other explanation factors 
have to be eliminated before we are able to draw the con- 
clusion that the set of observations arises from foreign sub- 
marine intruders. 

Cluster formations in the time dimension may arise dur- 
ing summer holidays and weekends because more people 
are then visiting the archipelago, possibly leading to an 
increase in the number of observations (whether true or 
false). Clusters in the spatial dimension may arise in areas 
with many observers. A mass media effect may also be 
present, i.e. individuals may show a greater tendency to 
observe and report phenomena in the sea when mass media 
have announced an ongoing suspected submarine activity. 

To examine if the observations fall randomly in time two 
kinds of tests were performed. The first test was based on 

Fig 2 Map of the two-dimensional distri- 
I%..+:-.. ^C -c ,.l---....r:--- .-.:rL:- &LA _-_.r,. “ULl”ll UI “I U”stxYal~“llb WllIllll LUG S”lluI- 
em archipelago of Stockholm 



the exact time the observation was made and provided the 
strongest test results. The second test considers instead the 
time between successive observations. Jointly, the two tests 
provide additional information. 

For each seasonal period considered, the result stated that 
the hypothesis of randomness should be rejected. 

After having established that the observations do not rep- 
resent a random distribution, it remains to find out which 
factors may have caused the non-randomness. 

To determine the influence of the number of observers in 
the archipelago the hypothesis “observations occur with the 
same frequency workdays and weekends” was tested and 
consistently accepted. 

Another task was to examine, if, when, and where there 
are clusters in time or space. For this purpose the cluster 
analysis program CLUSTAN (Wishart 1987) was used. To 
take into account the fact that several intrusions may be 
going on simultaneously, and that the same area may be vis- 
:,-A -^..^ AL-., ^-^^ A..,:,, ^--. ,: -.*- *:-,. ,,“:,A +I.,. llcjU lll”lti Llliul “UGG uullrlg imy g,lvc;1r LIIIIC; p”““u, LUG 
observation set was visualized in two different ways: 

1. The observations were clustered with respect to space 
and the observations within each cluster were shown on a 
time scale. 

2. Similarly, clustering first with respect to time, then to 
space was studied. 

The cluster analyses show that well supported conclu- 
sions regarding simultaneous clustering in time and space 
require a very large and reliable data set. Even if that 
requirement is not met, however, such studies may provide 
valuable indications and input to further analysis. 

Using Evidential Analysis to Associate 
Intelligence Reports 

When several similar submarines are operating concur- 
rently, reports never tell which submarine they refer to. 
Therefore, methods are needed which enable an analyst to 
separate the intelligence reports into subsets according to 
which submarine they are referring to (Schubert 1993). 
Having applied this method, one can then analyze the 
reports for each submarine separately, e.g., using methods 
described in (Bergsten and Schubert i993j. 

To treat this problem, we use the concept of conflict in 
Dempster-Shafer theory (Shafer 1976) between the propo- 
sitions of two intelligence reports as a measure of the prob- 
ability that the two reports are referring to different 
submarines. 

In Fig 4 these subsets are denoted by Xi and the conflict 
when all pieces of evidence in Xi are combined by Demp- 
ster’s rule is denoted by cj. When the number of subsets is 
uncertain there will also be a “domain conflict” CO which is 
s rnnflirt hPtwP,=n the rlwrpnt hvnnthrvir ahnnt the mnnhm . I”I.YIW. YIL..VW.I u-1 WYIIW.lL. “J y .,...“.,I” ..““I. ..A” IIII-LYII 

of subsets and our prior belief. 
The cause of the conflict can be non-firing sensors placed 

between the positions of the two reports, the required veloc- 
ity to travel between the positions of the two reports at their 
respective times in relation to the assumed velocity of the 

Metacon$ict 

A 

Fig 4 The conflict in each subset of the partition 
becomes a piece of evidence at the metalevel 

submarines, etc. 
We use the minimizing of a criterion function of overall 

conflict (the metacon$ict function) as the method of parti- 
tioning the evidence into subsets representing the events. 

The method of finding the best partitioning is based on 
an iterative minimization of the metaconflict function. In 
each step the consequence of transferring a piece of evi- 
dence from one subset to another is investigated. After this, 
each subset of intelligence reports refers to a different target 
anrl thn r~acnn;nm rsn talrp nlarp with parh taropt twstd U1.U L&IV ‘VUY”S’LU6 1ca1n LUL.” yAuY” ..ICLI “WV.. CU’b”L LL”U&V.. 

separately. 
We may also specify each piece of nonspecific evidence 

by observing changes in cluster and domain conflicts when 
moving a piece of evidence from one subset to another 
(Schubert 1996). Without this extension the most plausible 
subset would take this piece of evidence as certainly 
belonging to the subset. 

Finally, we established a posterior probability distribu- 
tion regarding the number of subsets (Schubert 1995). 

We developed a machine-learning system for making short- 
term predictions, based on methods which recognize an 
incoming sequence of intelligence reports as belonging to a 
certain category of sequences. Having found such a cate- 
gory we obtain probabilities for different future develop- 
ments given the current situation. 

By use of a genetic algorithm, our system learns the cate- 
gories of sequences of (simulated) intelligence reports. 
When we receive a new scenario it is analyzed using the 
I^^--^ A ^^4. ̂-^- :-n TE‘L,. ^-.^*^- *:-A- ^ . . ..e....-.-.. ,c ,GDl,lGU LnLczg”llGs. II LUG sysrlzu, 1111uo 51 LaLGg”‘y “I 
sequences with a beginning similar to the current sequence, 
the remainder of the historical sequences are used to give a 
prediction about the future. 

We show in Fig 5 a sequence of three intelligence 
reports. The latest report from area E5 is placed to the right 
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on the time scale at TO, and the two earlier reports from 
area 14 and F4 are placed in their respective time intervals, 
T5 and T3. 

In learning we will now try to predict the next event. 
Suppose it will happen in area E7 two time intervals into 
the future, Fig 6. Our aim is to find a rule that predicts this 
event based on the earlier information. Such a rule can be 
highly specific in both precedent and prediction: 

If [I4 & T5] [F4 & T3] [E5 & TO] then [E7 & T-21, 
or it may throw a much wider net, e.g.: 
If [HIJ345 & T456] [EF34 & T1234] [DEF456 & TO] then 
rmmx7 2, T_ i -91 c; n 7 LbYYL “I cx, r-1-*,, I ‘E, I. 

Both alternatives and all other combinations with a cer- 
tain specificity in the precedent, or parts of it, and another 
specificity in the prediction are possible and automatically 
tested during the learning phase. The disadvantage of a spe- 
cific prediction is that the prediction rule tends to become a 
special case and may also get a low probability. A less spe- 
cific rule has a higher probability but is not as useful in the 
individual case. The learning mechanism uses a scoring 
method that takes this into account and finds a suitable bal- 
ance. 

A statistical analysis based on a simulation of the method 
showed that the probability of a correct prediction was at 
best 54%, with an accuracy in predicted position of 5 kilo- 
meters and in predicted time of 48 minutes. Prediction rules 
with a probability and an accuracy such as these should be 
very useful if they can be approached in practice. 

Conclusions 
The submarine intelligence database contains a huge 
amount of information of varying credibility. Even if a 
large part of the data is of low credibility, this part comple- 
m,an+c th- n;c+mw~ nhtaknrt f,mrn thn -A..- ..-1:~1.1~ A-t- .nnVI.IY &‘A” pIu~uIY ““LLIIII~U II”lll Llllj 11I”lG IcjllcuJIG uara. 

The specialized knowledge and software technology 
needed for state-of-the-art data mining and analysis needs 
to be mastered by the analyst group itself rather than by 
their consultants, in particular when dealing with top-secret 
information. To be able to exploit these complex techniques 
fully, analysts need to be fully in charge of their work and 
its tools. 

Much of the power of data analysis lies in the opportu- 

nity to explore, more or less immediately, any promising 
idea that is generated by the mind of the analyst. In the 
absence of such dedicated, full-time access, the work 
reported here has only scratched the surface of a veritable 
mountain of information. 
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Fig 5 Representation 
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Fig 6 Find a rule to predict the next 
report 
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Fig 7 A prediction rule makes a 
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