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Abstract 

This paper addresses large-scale regression tasks 
using a novel combination of greedy input se- 
lection and asymmetric cost. Our primary goal 
is learning envelope functions suitable for au- 
tomated detection of anomalies in future sen- 
sor data. We argue that this new approach 
can be more effective than traditional techniques, 
such as static red-line limits, variance-based error 
bars, and general probability density estimation. 

Introduction 1 
This paper explores the combination of a specific fea- 
ture selection technique and an asymmetric regression 
cost function which appears promising for efficient, in- 
cremental data-mining of large multivariate data. 

Motivating this work is our primary target appli- 
cation of automated detection of novel behavior, such 
as spacecraft anomalies, based on expectations learned 
by data-mining large data bases of historic perfor- 
mance. In common practice, anomaly detection re- 
lies heavily on two approaches: limit-checking (check- 
ing sensed values against typically-constant, manually- 
predetermined “red-line” high and low limits) and 
discrepancy-checking (comparing the difference be- 
tween predicted values and sensed values). Whereas 
red-lines tend to be cheap but imprecise (i.e. missed 
alarms), prediction approaches tend to be expensive 
and overly precise (i.e. false alarms). 

The framework developed in this paper provides 
a means to move incrementally from (loose) red-line 
quality to (tight) prediction-quality expectation mod- 
els, given suitable volumes of representative historic 
training data. We independently learn two function 
nn..rrw;mnt:r\no - rr\nwnonm+;nm thn hmt orrrrmd not;- o,~pl”*rnrau”uo - ~r;p’~ucx~“‘~‘F, UIIG l.JcsJ” bUIJ.GII” cxl”I- 
mates of the high and low input-conditional bounds on 
the sensor’s value. In the extreme initial case where the 
only input to these functions is a constant bias term, 
the learned bounds will simply reflect expected max- 
imum and minimum values. As additional input fea- 
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tures (e.g. sensors or transforms such as lags or means) 
are seiected, these iimit functions converge inwards. 

A key underlying motivation is that a fault typi- 
cally manifests in multiple ways over multiple times. 
Thus, especially in sensor-rich domains common to 
data-mining, some predictive precision can often be 
sacrificed to achieve low false alarm rates and efficiency 
(e.g. small input/weight sets). 

The following section presents a simple formulation 
for learning envelopes. The next two selections intro- 
duce our feature selection method and asymmetric cost 
function, respectively. We then present performance 
nn 3 rml wnrlrl NASA a-amnlo "LA u ruru&-.rv--u &.&_ uaA y'.cy.-~y- ". 

Bounds Estimation 
We define the bounds estimation problem as follows: 
Definition 1 (Bounds estimation) Given a set of 
patterns P, each SpeCifying VdUeS for inpUtS xl, . . . . xd 

and target y generated from the true underlying func- 
tion y = f(zl, . . . . Xg) + E, learn high and low ap- 
proximate bounds yy~ = fL(x:1, . . ..xl) and yH = 
fH(xl, .-., xh), such that ye 5 y 5 yH generally holds 
for each pattern, according to given cost functions. 
We allow any 1 5 1 5 d, 1 5 h 5 d, d 2 1, D 2 0, 
making explicit both our expectatron that some criti- 
cal inputs of the generator may be completely missing 
from our patterns and our expectation that some pat- 
tern inputs may be irrelevant or useful in determining 
only one of the bounds. 2 We also make the standard 
assumption that the inputs are noiseless whereas the 
target has Gaussian noise defined by E. 

To simplify discussion, we will usually discuss learn- 
ing only high bounds ye; the low bounds case is es- 
sentially symmetric. An alarm occurs when output yH 
is beiow the target y, and i3, non-alarm occurs when 
yH 2 y. We will call these alarm and non-alarm pat- 
terns, denoted by sets P, and P, respectively, where 
N = IPI = I’p,l+ IP,l. 

‘We assume ~1 is a constant bias input of 1 which is 
always provided. For meaningful comparisons, other in- 
puts with effective weight of zero are not counted in these 
dimensionality numbers D,d,h, and 1. 
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This paper focusses on linear regression to perform 
bounds estimation, both for simplicity and because our 
larger work stresses heuristics for identifying promising 
explicit nonlinear input features, such as product terms 
(e.g. (SM91)). N evertheless, the concepts discussed 
here should be useful for nonlinear regression as well. 

Let X be a n/-row by d-column matrix 3 of (sensor) 
inputs where each column represents a 

(7 
articular input 

x; and the p-th row is a row-vector X P specifying the 
values of each input for pattern p. Similarly, let Z be a 
h/-row by z-column design matrix, where each column 
i represents a particular basis function 4 gi(xi, . . . . xd) 
and each row is the corresponding row-vector Z(P). For 
each function approximation, such as f~, there is a 
corresponding design matrix ZH of zh columns and 
containing row-vectors ZH (‘). Let WH represent a zh- 
row column-vector of weights and yH represent a N- 
row column-vector of outputs such that ye = ZHWH, 
and similarly for others (i.e. for f~ and f~). 

The simplest and perhaps most popular way to es- 
timate bounds is to use variance-based error bars. 
This requires estimating the input-conditional means 
yM = fM(xl,..., 2,) (i 5 m 5 d) and the input- 
mn&t.innnl varianroa fr Thp hmlnrlq fnr enrh nat.- Y...-..-Y.Y..w. vuA--*““Y Y . A>.” YUUI-UY &.,I/ VWVAI y-Y 

tern can then be computed as yH = yM + k * IS 
and YL = YM - k * C, with k=2 yielding 95% confi- 
dence intervals under ideal statistical conditions. Stan- 
dard linear regression via singular value decomposi- 
tion (SVD) can find least-squared estimates yM = 
ZMWM and variance can be estimated as follows 
(Bis95): A = a1 + fi Cpep ZM(~)(ZM(~))~ and 

(cT~)(~) = $ + ZE)A-l(Z$$)T, where ,8 reflects intrin- 
sic noise and a is a small factor ensuring the Hessian 
A is positive definite. 

However, as the following artificial examples will il- 
lUSi%k, estimating ye and yH by estimating yM Using 

all d inputs and standard sum of squares cost functions 
is problematic for large high-dimensional data sets. 

Artificial Example 

For simple illustration, we will discuss our techniques 
in terms of the following simple example. We gener- 
ated N=lOO patterns for d = 10 inputs: bias input 
xi = 1 and 9 other inputs x2, . . . . ~10 randomly from 
[O,l]. As in all later examples, we normalized each col- 
umn of ZM (except the first (bias) column) to have 
mean 0 and variance 1. First consider the case where 
ZM = XM - i.pwh@e no feature selection is used. 
~i”.w.n 1 orrmm.-:,nn ,..L-in +.,-.I+~ ..dwrr cwn &LUG I DUlllllla*LlLlGJ cncuuy,r? IchYUllrO uulug u YU on 
all inputs. Note that this can yield significant weight 

3We use the convention of upper-case bold (X) for ma 
trices, lower-case bold (x) for column-vectors, and normal 
(E) for scalars and other variables. We use XC’) to refer to 
the r-th row-vector of X. 

4By convention, gr is the constant bias input 21 = 1. 

to irrelevant terms (e.g. ~ii), when attempting to fit 
nonlinear terms (e.g. ~3 * ~5) in the target. 5 

RUN: Pn=1,Pa=1,Rn=2,Ra=2,d=1O,N=lOO,SVD.fit,useAllInputs 
target = 5 + x4 + 2*x7 + x9 + x3*x5 
RESULT = 5*x1+0.076*x2+0.081*x3+1*x4+0.06*x5-0.012*x6+ 

2*x7+0.028*x8+1.1*x9-0.024*x10-0.11*x11 
non-alarms: 47, error: n-hz0.02, mean=0.85, max=2.4 

alarms: 53, error: min=-2, mean=-0.75, max=-0.048 

Figure 1: No feature selection. 

Feature Selection 
We are concerned with regression tasks for which the 
potential design matrix dimensionality is typically in 
the hundreds or more, due to large numbers of raw sen- 
sors and basis function transforms (e.g. time-lagged 
values and time-windowed mins and maxs). Despite 
the relative cheapness of linear regression, its complex- 
ity is still quadratic in the number of input features 
O(n/ * .z~). Therefore, we desire a design matrix Z 
much smaller than the potential size, and even much 
smaller than the input matrix X of raw sensors. Stan- 
dard dimensionality-reduction methods, such as princi- 
pal component analysis, are often insufficient. Sensors 
are often too expensive to be redundant in all contexts. 

crementally add hidden units to neural networks (e.g. 
(FL90)) similar attention to incremental selection of 
inputs per se is relatively rare. The statistical method 
of forward subset selection (Orr96) is one option. How- 
ever, efficient formulations are based on orthogonal 
least squares, which is incompatible with the asym- 
metric cost function we will soon present. 

Instead, we adopt the greedy methods for incremen- 
tal hidden unit addition to the problem of input selec- 
tion. Since input units have no incoming weights to 
train, this amounts to using the same score function as 
those methods, without the need for any optimization. 
The basic idea is that each iteration selects the candi- 
date unit (or basis function, in our case) U whose out- 
puts u covary the most with the current error residuals 
e. Falhman (FL90) proposed using the standard co- 
variance definition, to give a simple sum over patterns, 
with mean error E and mean (hidden) unit output ti: 
Sl = 1 CPEp(e(p) - G) (u(P) - ti)]. Kwok recently pro- 
posed a normalized refinement (KY94) S2 = $$$. 
Like Kwok, we have found score S2 to work somewhat 

‘better than Sl. We note that Kwok’s score is very sim- 
ilar to that of forward subset selection based on orthog- 
onal least squares: S3=((y~)Tti)z, where the 0 terms 
represent outputs of U maie&thogonal to the exist- 
ing columns in the current design matrix. Although 
Kwok did not note this relation, it appears that S2’s 
scoring via covariance with the error residual provides 
essentially the same sort of orthogonality. 

5For SVD fits, we report “alarm” statistics as if YH=YM, 
to illustrate the degree of error symmetry. Actual alarms 
would be based on error bars. 
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We start with a small design matrix ZM that con- 
tains at least the bias term (gl), plus any arbitrary ba- 
sis functions suggested by knowiedge engineers (none 
for examples in this paper). At each iteration round, 
we compute the column-vector of current error resid- 
uals e = y&I - y for all patterns and add to ZM the 
input U with the highest 52 score. 

Artificial Example Using Feature Selection 
The result of our feature selection method on our ar- 
tificial example is summarized in Figure 2. Note that 
while the most relevant inputs are properly selected 
first, the nonlinear term in the target causes ~3 to be 
selected - even though its resuiting weight does not 
(and cannot, using linear estimation alone) reflect the 
true significance of ~3. 

RUN: Pn=l,Pa=l,Rn=2,Ra~2,d=lO,N=lOO,SVD.fit 
target = 5 + x4 + 2*x7 + x9 + x3*x5 

- Selection cycle 1: avg train errc7.9, alarms=47, non=53: 
fit = 5*x1 
validation errors: avg err=7.35503, alarms=51, non=49: 
8core8: x7:67 x4:32 x9:25 x11:8.6 x5:4.3 x3:4.0 x8:1.1 x10:0.8 

- Selection cycle 2: avg train errz3.3, alarms=51, non=49: 
fit = 5*x1+2.2*x7 
validation errors: avg err=2.8254, alarms=53, non=47: 
““̂ ..^“. .xl.El .,“.A’) .,l.c. 1 “ll.3 c. .,P., d .,,fl.7 n .7.x., cl u6.l 1 mb”LTm* c.U.“U .%T.TY _“.U.L .%A.L.Y.” nY.l.7 A*“.“.- A.,....” --.A... 

- Selection cycle 3: avg train err=2, alarms=57, non=43: 
fit = 5*x1+2.1*x7+1.2*x9 
validation errors: avg errz1.70093, alarms=50, non=50: 
scores: x4:67 x8:3.9 x2:2.8 x3:2.2 x6:2.0 x1:1.3 x11:0.9 x5:0.3 

- Selection cycle 4: avg train err=l, alarms=55, non=45: 
At = 5*x1+2*x7+1.1*x9+1*x4 
validation errors: avg err=0.975131, alarms=51, non=49: 
scores: x3:3.4 x11:2.9 x5:1.3 x2:0.8 x1:0.6 x9:0.5 x6:0.1 x4:0.06 

- Selection cycle 5: avg train err=l, alarms=55, non=45: 
fit = 5*x1+2*x7+1.1*x9+1*x4+0.092*x3 
validation errors: avg err=0.956103, alarms=51, non=49: 
scores: x5:2.2 x11:1.9 x9:0.7 x1:0.7 x6:0.7 x2:0.6 x3:0.3 x7:0.3 

- Selection cycle 6: avg train err=l, alarms=53, non=47: 
fit = 5*x1+2*x7+1.1*x9+1*x4+0.093*x3+0.054*x5 
validation errors: avg err=0.965555, alarms=51, non=49: 

-ii-- S 1 UY: vaiidation error worse ,., retract iast cyciei 
me, 
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Figure 2: Feature selection: nonlinear target 
Error bars for ol=l.Oe-20 and /3=10; target in bold. 

Asymmetric Cost Function 
Probability density estimation (PDE) approaches 
(e.g. ,pyw~ are more general than error bars 
(e.g. TT-------.- nnl7 :- -,-- _^_^ ^__ (” VVY3)). nowever, run IS mau IIIUL~ a- 
pensive, in terms of both computation and amounts 
of training data required to properly estimate the 
input-conditional probabilities across the entire out- 
put range. For example, consider learning worst and 
best case complexity bounds for quicksort (i.e. 0(N2) 
and !I(NEgiV)). The variances between the expected 
case and the worst and best cases are not symmetric, 
making error bars inappropriate. Whereas PDE would 
learn more than is required for the bounds estimation 
task per se. 

Our basic intuition is that the cost function should 
discourage outputs below (above) the target for learn- 
ing high (low) bounds. l!L LL- L--1- 

To do this, ;iiie SpllX bIlt: LLMK 

of bounds estimation into two independent regressions 
over the same set of patterns P - one to learn the 
expected high bound f~ and one to learn the expected 
low bound f~. Figure 3 defines respective asymmetric 
cost functions for errors EH and EL over P. 

1 
PH,(YH - y) RHn ifyH>y eH= 

RHa eL= 
{ 

PL, (YL - Y) RL 72 ifyL$Y 

PH, (YH - Y) if yH < y pL,(YL-Y) RL a ifyL>y 

EH=~C~~~~X~E~H~=~C~~~I~HI~EL=~C~~~~L~ 

Figure 3: Asymmetric high/low cost functions. 
ParameterS:PH,,P~,,P~,, PL,ZO; RH,, Rx,, RL,,RL,'L~. 

We can favor non-alarms (i.e. looseness) over alarms 
(incorrectness) by making PH, > PH,, . This is analo- 
gous to the use of nonstandard loss functions to per- 
form risk minimization in classification tasks (Bis95). 

The special symmetric case of PH, = PH, = PL, = 
PL,=~ and RH,,=RH,=RL,,=RL,=~ gives standard 
least-squares regression. Thus, in the limit of suffi- 
cient inputs and training patterns, both bounds can 
converge to the standard means estimation (i.e. f~). 
Efficient Training 

Our asymmetric cost function is incompatible with 
standard linear regression methods based on SVD. In- 
stead, we batch optimization via Newton’s method 
(Bis95): w-~(t) = w~(t - 1) - A-lg for each epoch 
t, where g is the z-row vector gradient of elements 
g and A is the z x z Hessian matrix of elements 
&. Fo 

= 1,: 
r each pattern p E P: yH = crCl wizi, 

ZH ‘r’ = [zl, . . . . zzjT, and wH = [wl, . . . . wZjT. 
For our specific cost function EH, the elements of the 

gradient at each epoch can be computed by averaging 
over alarm and non-alarm patterns, as follows : 
@g 6w; = ti[ PH,RH, &pn IYH - YIRH"-'% - 

PH,~~H,&,~P~IYH -Y\RHa-lzil 
With ep = IyH - yI for each pattern p, 

the elements of A are partial derivatives of g: 
& = ~~[PH,RH,, Cp~p~[(RH,l)epRH,-2ZiZj]+ 

P R T _ I(R -1le RH~:2zi~j]] - Ha--H, uptpa L\ II, , r” 
For RH,, = RH, = 2, A simplifies to: .-i&L= swi hJj 
&PHn[&PnZiZjl + $-pH,[&&'a z&l* 

We start with initial weights w(0) given by SVD. 
Those initial weights are particularly useful for learn- 
ing tighter low bounds with PH,, =O, where initial zero 
weights would immediately satisfy our asymmetric cost 
function. We run Newton until convergence (i.e. all el- 
ements in gradient g near zero) or 100 epochs reached 
(rare even for large multi-dimensional data). 
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Spot-Checking for R and P Parameters 
Instead of attempting to find optimal values for R,P 
parameters, we currently spot-check generally use- 
ful combinations, such as: RH, E {1,2}, RHO E 
{2,10,20}, P& E {l,o.l, .ol, .ool, 1+5, ldo,1d5}, 
PH, E { 1, 1000). We train to obtain weight vectors for 
each combination and then select the weights giving 
smallest cost (using common set of reference parame- 
ters, such as &.f, = 2, .&I, = 2, PH, = 0.0001, &I, = 
1) on validation data. For large data sets, training first 
with various R and P on small random subsets often 
quickly identifies good values for the whole set. 
Feature Selection With Asymmetric Cost 
Our earlier definition of feature selection score S2 as- 
sumed a symmetric cost function. ‘We want to prefer 
features likely to reduce the most costly errors, while 
still measuring covariance with respect to the true er- 
ror residuals e = ye - y, not the asymmetric errors. 
This leads to our following weighted form of S2: 

s2, = -qHnl Cp& (e(p)u(p92 +-@a\ &pa @p)u(p92 
-%4 Cp& (u(p))2 Em cp#a (UW ’ 

Artificial Example Using Asymmetric Cost 
Figure 4 summarizes results using both selection and 
asymmetric cost, for the best spot-checked R,P values. 
The high bound here is much tighter than in Figure 2. 

RUN: Pn=O.O1,Pa=1,Rn=2,Ra=2,d=lO,~=lOO,HI.bound 
target= 5 +x4+2*x7+x9+x3*x5 

- Selection cvcle 1: aw train errz0.34. alarms=5. non=95: 
fit = 9.6*x1” - 
validation errors: avg errz0.352449, alarmsz3, non=97: 
scores: x7:134 x9:49 x4:48 x11:11 x3:3.8 x6:3.3 x8:2.1 x2:2.0 

- Selection cycle 2: avg train errz0.15, alarms=5, non=95: 
fit = 7.8%1+2.2*x7 
validation errors: avg err=0.145489, alarms=5, non=95: 
scores: x9:77 x4:63 x8:7.6 x3:5.1 x10:3.8 x6:3.0 x11:3.0 x5:1.2 

- Selection cycle 3: avg train err=0.093, alarms=5, non=95: 
fit = 7.2*x1+2.5*x7+1.2*x9 
-.-I. 1-A!- viLuaamon &rors: avg err=O.i38962, aiWms=5, iiOiiz95: 
scores: x4:79 x7:16 x2:5.4 x8:4.6 x3:2.1 x6:0.7 x11:0.6 x1:0.3 

- Selection cycle 4: avg train err=0.038, alarms=9, non=91: 
fit = 6.6*x1+1.9*x7+1.1*x9+1*x4 
validation errors: avg err=0.0541614, alarms=5, non=95: 
scores: x1:4.8 x11:2.2 x7:1.7 x9:1.7 x6:0.9 x4:0.8 x2:0.5 x10:0.4 

- Selection cycle 5: avg train err=0.037, aIarms=lO, non=90: 
fit = 6.5*x1+1.9*x7+1*x9+1*x4-0.14*x11 
validation errors: avg err=0.0549278, alarms=7, non=93: 

cYiY3P~ ,.,&-j&iQp* errcr w2rg y-y.. ... r&r& l=& I-“Pl.=l _~ -_-. 

Figure 4: Feature selection and asymmetric cost. 

Real-World Example: TOPEX 
Figure 5 summarizes learning a high bound for high- 
dimensional time-series data. This data set consists 
A 1 nnn ~~~~~~~~~~~~ na++nv~n rrf F;G cpnlpnvcI nf thp N A ,q A "I A""" UUb~~D"I"~ J+w""III" "4 "V UU&I""L" "a "I&" AIL*vIA 

TOPEX spacecraft. This result was obtained for the 
predictive target being the value of $19 in the next 
pattern and with cost parameters PH, =le-15, PH, =l, 

RH, =2, R~,=10. The first selected non-bias input 
was, quite reasonably, the target sensor itself. Note 
that the weight of the bias (L-Q) tends to drop as ad- 
ditional features are selected to take over its early role 
in minimizing the alarm error. 

- Selection cycle 1: avg train err=8.4e-15, alarmsz7, non=992: 
fit = 2.6*x1 
scores: x19:2929 x51:560 x43:541 x56:468 x47:435 x41:384 x42:293 

- Seiection cycie 2: avg train err=6.6e-i5, aiarms=i, 1~~893: 
fit = 2.3*x1+0.16*x19 
scores: x19:2995 x43:585 x51:578 x56:500 x47:449 x41:409 x42:322 

- Selection cycle 3: avg train err=5.9e-15, alarms=l, non=998: 
fit= 2.2*x1+0.2*x19+0.028*x43 
scores: x19:2906 x51:511 x43:491 x56:476 x47:375 x41:337 x17:281 

- Selection cycle 4: avg train err=3.9e-15, alarms=l, nonz998: 
fit = 1.8*x1+0.31*x19+0.075*x43-0.22*x51 
scores: x19:2139 x56:236 x17:198 x52:104 x55:77 x23:72 x45:61 

- Seiection cycie 5: avg train err=3.Qe-i5, aiarms=i, non=QQ& 
fit = 1.8*x1+0.31*x19+0.075*x43-0.22*x51+0.00029*x56 
scores: x19:2133 x56:234 x17:198 x52:106 x55:77 x23:71 x45:61 

- Selection cycle 6: avg train err=5,8e-08, alarms=12, nonz987: 
fit = 1.4*x1+0.33*x19+0.053*x43+0.076*x51+0.12*x56-0.011*x17 

STOP: err getting worse . . . retract last cycle! 

Figure 5: TOPEX example. 

Conclusion 
This framework supports an anytime approach to 
large-scale incremental regression tasks. TTt ’ ’ nigmy- 
asymmetric cost can allow useful bounds even when 
only a small subset of the relevant features have yet 
been identified. Incorporating feature-construction 
(e.g. (SM91)) is one key direction for future work. 
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