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Abstract 

In many data mining applications we are given 
a set of training examples and asked to 
construct a regression machine or a classifier 
that has low prediction error or low error rate 
on new examples, respectively. An important 
issue is speed especially when there are large 
amounts of data. We show how both 
classification and prediction error can be 
reduced by using boosting techniques to 
implement committee machines. In our 
implementation of committees using either 
classification trees or regression trees, we show 
how we can trade off speed against either error 
rate or prediction error. 

Introduction 

Boosting techniques [Trucker (1993, 1994, 1996a), 
Freund and Schapire (1996a,b), Schapire (lQQO)] allows 
one to obtain smaller prediction errors (in regression) 
and lower error rates (in classification) using multiple 
predictors. The ensemble of classifiers is often called a 
committee machine. As shown in Figure 1, the same set 
of input features (independent variables) is applied to 
what are termed the “weak learners” and each learner 
puts forth an hypothesis hi with a confidence inversely 
related to pi. For classification, hi is either 0 or 1 (for 
the two class case) or the predicted value of the 
dependent variable (in the case of regression). In a serial 
machine, the outputs of the weak learners are output 
sequentially so as we move down the chain of learning 
machines, the execution speed decreases but generally 
the prediction error or classification error also decreases. 
Therefore, by choosing to use only i (ST) of the T 
learners, we can choose the appropriate combination of 
execution speed and either classification accuracy or 
prediction accuracy. If parallel implementation is 
feasible (either each learner or blocks of N learners), 
then speed is governed by the slowest weak learner or 
the slowest block of N learners. Several studies of 
boosting in classification [Breiman (1996b), Freund and 
Schapire (1996a)] have shown the superiority of 
boosting over another committee machine approach 
termed bagging [Breiman (1994,1996a)] but this is the 
first experimental study where we also investigate 
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combining regressors using boosting techniques. In 
boosting each machine is trained on different subsets of 
the training set. The first machine is trained on 
examples picked with replacement from the original 
training set. We then pass all the training patterns 
through this first machine and note which ones are in 
error (in classification). For regression machines, those 
patterns whose predicted values differ most from their 
observed values are defined to be “most” in error. For 
those patterns in error, the sampling probabilities are 
adjusted so that difficult examples are more likely to be 
picked as members of the training set for the second 
machine. Thus, different machines are better in different 
parts of the observation space. Regressors are combined 
using the weighted median while classification machines 
are combined using a weighted sum of the hypotheses. 
Details of these weighting scheme are discussed later. 
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FIGURE 1. BOOSTING ENSEMBLE 

For classification, the parameter of interest is the error 
rate, while for regression, the parameters of interest are 
the modeling error (ME) and the prediction error (PE). 
We discuss regression first: Suppose we are given a set 
of observations, (vi,Xi) i=l,...,N1 where Ni is the 
number of training set observations, and x is an M- 
variate vector forming the features. The probability 
density function of (y,x) is fixed but unknown. Based 
on these observations, we form a predictor y@)(x). We 
define a sample modeling error (ME) and prediction 
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error (PE): 

ME = $yi”-yp)(xj)]2 
N2 i=l 

where yfp)&) is the prediction for the i’th test example, 
yi is the i’th observation, and y:) is the “truth”. The 
parameters of y@)(x) are obtained from the Nr training 
set observations but the yi and xi in the above 
summations are obtained from a set of N2 observations 
(the test set) never seen before. If the noise is additive, 
then Yi=Yf)+ni where ni is the i’th sample of the noise. 
Furthermore, if E[n] = 0 and E[~inj]=Gij02, then we 
may take the expectation with respect to (y,X) and 
obtain (Breiman and Spector, 1992): 

E[PE] = 02+E[ME] 
This shows us that even if we know the model exactly, 
there is a minimum prediction error due to the noise. Our 
problem will be that the modeling error is also nonzero 
because we have to determine the model in the presence 
of noise. Since we don’t know the probability 
distributions, we approximate the expectation of the ME 
and PE using the sample ME (if the truth is known) and 
sample PE and then average’over multiple experiments. 
Similarly, for the classification case, we have a training 
error for those examples we train on and a test error for 
the test examples tested on a machine constructed using 
the training examples. Our implementation of each 
weak learner is a tree, either a regression tree or a 
classification tree because of their ease of 
implementation, small training time, and fast execution 
speed. 

Boosting Algorithm 

The theory behind the boosting algorithms are presented 
elsewhere(Freund and Schapire, 1996b). Here we 
present the boosting algorithm for regression: 

Repeat the following while the average loss z defined 
below is less than .5 . 

1. The probability that training sample i is in the 
training set is pi=WiaWi where the summation is over 
all members of the training set. Initially, the wi are set 
equal to unity. Pick Ni samples (with replacement) to 
form the training set. This may be implemented by 
marking a line of length xwwi and subsections of length 
wi . A uniform number picked from the range [O,cWi] 
and landing in section i corresponds to picking pattern i. 

2. Construct a regression machine t from that training 
set. Each machine makes a hypothesis: h,:x+y 

3. Pass every member of the training set through this 
machine to obtain a prediction yp)(xJ i=l, ..,N 1. 

functional form as long as LE [O,l]. If we let 

D=sup 1 yp)&) -yi 1 i=l,...,Nr 

then we have three candidate loss functions we 
examined: 

L= 1 Y%i) -Yi I 
i D (linear) 

L = 1 Yfp’b?) - Yi 1 2 
i D2 

(square law) 

Li=l - exp 
[ 

- I yfp’(Xi> -yi I 
D 1 (exponential) 

5. Calculate an average loss: iZ=?Lj*i 
i=l 

- 

6. Form j3=-&. p is a measure of confidence in the 

predictor. Low p means high confidence in the 
prediction. 

7. Update the weights: wi-+w$**[l-Lj], where ** 
indicates exponentiation. The smaller the loss, the more 
the weight is reduced making the probability smaller 
that this pattern will be picked as a member of the 
training set for the next machine in the ensemble. 

8. For a particular input xi, each of the T machines 
makes a prediction h,, t=l,...,T. Obtain the cumulative 
prediction hf using the T predictors: 

hf = inf 

This is the weighted median. Intuitively, the effect of 
varying the weight wi to give more emphasis to 
“difficult” examples means that each subsequent 
machine has a disproportionately harder set of examples. 
Thus, the average loss tends to increase as we iteLate 
through the algorithm and ultimately the bound on L is 
not satisfied and the algorithm terminates, 

For classification, we replace steps 4 and 8 above. In 
step 4, the loss for pattern i becomes Liz I h,(i) - c(i) 1 
where h,(i) is the hypothesis of machine t (0 or 1) and 
c(i) is the correct classification (either 0 or 1). The issue 
of multiclass classification will be discussed in the 
conclusion. In step 8, the final hypothesis is: 

T T 
I;(bgl) h,(i)2L~10gL 

‘=I Pt 2 t=1 Pt 
otherwise 
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Note that the examples referred to in the algorithm above 
only refers to training examples and we usually observe 
convergence to zero classification error or zero 
prediction error on these training examples. However, 
we are interested in the performance on a test set. 
Therefore, at each stage of boosting, we pass the test set 
through the ensemble and use step 8 to obtain the test 
performance. How well we generalize to the test set will 
depend on our choice of weak learner, e.g., neural net, 
tree, nearest neighbor classifier. 

Trees 

Regression trees are based on Breiman’s CART 
[Breiman, 19941. In this implementation of regression 
trees, one starts (at the top) with a main node that 
examines a specified feature of the input pattern and 
compares its value to a “separator” value assigned to 
that node. If the value of the feature is less than or equal 
to the separator, we continue down the left side of the 
tree, else the right side. Each of the children of the main 
node has a specified feature and separator value for that 
feature. Each parent node has two children nodes and 
those children nodes become parents of their children. 
Depending on the values of the features for the input 
pattern, we continue down the tree, at each node going 
left or right until we reach a terminal leaf. At the 
terminal leaves, we assign a hypothesis that is the 
predicted value of the regression, For classification trees, 
the building criterion is based on an information 
theoretic basis found in C4.5 [Quinlan, 19931. To 
generalize well to as an yet unseen test set, we then 
prune back the trees using a separate pruning set. 
Pruning Mingers, 19891 performs two essential tasks (a) 
it increases the execution speed because the tree is 
smaller and (b) the generalization is better. 

Experiments 

We tried several cases of classification and regression 
using the techniques described above. The first 
regression problem was based on that of Friedman 
(1991), which is a nonlinear prediction problem which 
has 10 independent variables that are uniform in [O,l] 
Here we can determine both the modeling and prediction 
error. 

where n is normal (0,l). Therefore, only five predictor 
variables are really needed, but the predictor is faced 
with the problem of trying to distinguish the variables 
that have no prediction ability ( x6 to xl0 ) from those 
that have predictive ability ( x1 to x5 ). For different 
training set sizes (pruning size is 20% of the training set 
size) and a test set of of size 10,000 we plot (Figure 2) 
execution speed (on a SparcStation 20) versus the 
prediction error on the test set. Each data point is the 
average of ten samples. Generally as we increase the 
number of trees in the ensemble (thereby decreasing the 
execution speed), the prediction error decreases. Because 
of the inherent noise floor in this prediction problem, the 
PE tends to asymptote with increasing number of trees 
and large enough number of examples. There is a 

continuum of prediction error versus speed trade-offs, 
We can show similar behavior on other regression and 
classification problems. 

Discussion and Conclusions 

Discussion and Conclusions” We have shown how to 
use boosting to reduce error rates in classification and 
prediction error in regression using classification trees 
and regression trees, respectively. Of critical importance 
is the pruning of the trees by using a separate set of 
pruning data after the tree has been initially grown using 
the training set. Pruning both increases the speed and 
improves the generalization to samples as yet unseen. 
By picking the appropriate number of trees in the 
ensemble, one can trade off speed versus performance. 
If the speed performance is not acceptable (but the error 
rate or prediction error is), then one choice is a parallel 
architecture. Generally, there are between forty and 
seventy trees in an ensemble and therefore the speed 
would increase by those factors (but only approximately 
since not all trees are the same size). If error rate or 
prediction error is the issue, then another possibility is to 
build a single neural network. Generally a single neural 
network is slower than these ensembles because trees 
just implement simple IF statements, while neural 
networks need to implement both multiplication and 
some sigmoid function as the transfer functions. 
However, these issues must be decided on a case-by-case 
basis. 
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