From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

A Guided Tour through the Data Mining Jungle®

Robert Engels!, Guido Lindner? and Rudi Studer!
! University of Karlsruhe, Institute AIFB, D-76128, Karlsruhe,
Email: {engels,studer}@aifb.uni-karlsruhe.de
2 Daimler Benz AG, Research and Technology, F3S/E
p.o. Mercedes Benz AG, T-402 D-70322 Stuttgart
Email: lindner@str.daimler-benz.com

Abstract

An important success factor for the field of KDD lies in
the development and integration of methods for sup-
porting the construction and execution of KDD pro-
cesses. Crucial aspects in this context are the (incre-
mental) development of a precise problem description,
a decomposition of this top level problem description
into manageable and compatible subtasks which can
be reused, and a selection and combination of ade-
quate algorithms for solving these subtasks. In this
paper we describe an approach for supporting the sys-
tematic decomposition of a KDD process into sub-
tasks and for selecting appropriate problem-solving
methods and algorithms for solving these subtasks.
Our approach has been partially integrated into the
CLEMENTINE system and has been used to develop
a real world application in the area of prediction.

Keywords : KDD-processes, User-support, Task
Decompositions, Knowledge Acquisition

1 Introduction

Iknowledge Discovery in Databases (KDD) is currently
a field that is seen as increasingly interesting. We think
that an important succes indicator for KDD lies in the
development and integration of methods for support-
ing the construction and execution of KDD processes.
Crucial aspects in this context are the (incremental)
development of a precise problem description, a de-
composition of this top level problem description into
manageable and compatible (reusable) subtasks and a
selection and combination of adequate algorithms for
solving these subtasks (Engels 1996). Therefore, meth-
ods and corresponding tool support are required which
assist the developer of a KDD application in building

* Copyright ©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved. This work
has been partially funded by the Daimler Benz AG, Re-
search & Technology, project no. 096 4 965047 1 E B.

up a high quality KDD process with as less effort as
possible. Our approach is on the one hand based on the
notion of task analysis and reusable problem-solving
methods (Breuker & van de Velde 1994). We propose
to use pre-/postconditions (i) to characterize (sub)-
tasks and methods, (ii) to guide the decomposition
process, and (iii) to handle the dependencies between
the subtasks and the methods. On the other hand we
exploit and integrate techniques to describe the char-
acteristics of the available (database) data to further
guide the selection of applicable methods and algo-
rithms. We use statistic measures (see e.g. the result
of the Statlog project (Michie, Spiegelhalter. & Taylor
1994)), measures from the field of machine learning.
e.g. missing values or noise, as well as information
available in the data dictionary, e.g. attribute types
or the size of relations. Our approach has been par-
tially integrated into the clementine! framework and
has been used to develop a real world application in the
area of prediction. The rest of the paper is organized
as follows: we shortly describe the application problem
and the solution we have developed using the clemen-
tine tool. In section 3 we introduce our approach for
supporting the construction of KDD processes. How
we have used this approach for solving the given ap-
plication problem is described in section 4. Finally. we
discuss related work and provide a conclusion.

2 Application Environment
2.1 The KDD-Tool

Our approach is partially integrated in the CITRUS
project (Wirth et al. 1997). Tool support is built
on Clementine. This tool supports many of the steps
that are typically found in a KDD-process. Moreover.
it facilitates defining a dataflow providing a graphical
user interface. The user can select icons which repre-
sent data sources, data manipulation algorithms, data

LClementine, trademark by INTEGRAL SOLUTIONS
LTD. (ISL).

Engels 163



mining algorithms, graphical and statistical data anal-
vsis techniques. Iowever, no support is provided for
the selection of the appropriate algorithms for a task.
Part of the CITRUS project deals with user-guidance
to give support during the different stages of the KDD-
process and to interactively construct a KDD-solution

for a given problem in the form of such streams (Engels
1996).

2.2 Application Scenario

We use a real world application from the automobile
industry (Wirth & Reinartz 1996). We will use this ex-
ample to illustrate our ideas on providing user guidance
for KDD-processes. This example of a multistrategy
KDD process was developed for an early warning sys-
tem, which is called the early indicator approach. The
main idea is to find and characterise subpopulations
of faulty cars that in an early stage show behaviour
of a whole population of cars at a later point in time.
Such a subpopulation can then be used for prediction
and thus facilitates reacting on quality problems with
subparts of the population at an earlier time point.

2.3 The EIC-task Decomposed

User support also requires a task decomposition. The
three steps of the EIC approach can be mapped to the
KDD-process model.

Basically we decompose the approach in two steps,
the first step (preprocessing) forms the main step,
where subset selection is performed and the attribute
space is changed. This step also comprises a KDD pro-
cess where a model is generated for a certain point in
time, which is then deployed for selecting data. The
last step in the preprocessing phase performs a trans-
formation of representation from the fault profile of
cars to their configuration data. The second step in the
approach forms the top level Data Mining step, that
finally delivers the interpretable model that is looked
for based on the defined set of attributes.

3 The Approach

This section deals with the approach that we take w.r.t.
user guidance for KDD-processes. In this paper we will
extend upon the terminology and ideas introduced in
(Engels 1996). The following sections will deal with
the two-staged process of mapping tasks to algorithm
classes as well as the final selection of an algorithm
that matches the task and data characteristics.

3.1 Recursiveness in KDD Processes

Decomposition of a task into subtasks is a refinement
problem that we solve using a multi-strategy approach.

164 KDD-97

On the one hand we refine the toplevel task accord-
ing to a library of so-called PSMs? and doing so, reuse
predefined methods that solve certain specified tasks.
In cases where no reusable components are available
we can either look for a single technique solving the
subtask or, when the problem is too complex to be
solved by only one technique, use a planner in order to
find a series of techniques that can solve the subtask.
Many KDD-processes show recursiveness (as oposed to
iterativeness, where certain subtasks are repeated un-
til a certain criterion is reached) in the sense that a
subtask of the task decomposition really is a (smaller)
KDD-process on its own. Recursiveness also shows up
in our example and lets us reuse the same PSM that
describes the KDD-process at the top level as well as
at the data preprocessing stage (see (Engels 1996)). A
singular PSM can in this case be retrieved from a li-
brary and reused twice in different instantiations. The
several stages that are defined in such a PSM introduce
certain constraints on its subtasks. Such a framework
is then used to guide an initial decomposition of the
task at hand.

3.2 Assigning Algorithm Classes to Tasks

Decomposing an initial task using PSMs delivers a tree
like structure describing the task at several levels of
abstraction. Tasks, subtask and PSM’s are described
using the same concept of pre- and postconditions so
that tasks can be mapped on methods.

Given a set of modelling algorithms that can be used
in KDD-processes it might occur that only a subset of
them is applicable. A selection of an algorithm class
must then be made. Such an algorithm class should
later be shrinked until a single algorithm is left.

3.3 Algorithm Selection using Data
Characteristics

For selecting of an algorithm from a set of potentially
useful algorithms we apply data characteristics to pick
the algorithm with the highest utility.

Since most large databases come with a data dic-
tionary, it is natural to use this data dictionary to
extract characteristic information on the data. Fur-
thermore simple statistic measures like standard devi-
ations, means, possibilities etc. that characterise and
describe the data can be calculated. In the Statlog
project (Michie, Spiegelhalter, & Taylor 1994) such
measures were used for determining the applicability
of statistical and data mining algorithms. We aim
at using similar measurements for selecting algorithms

?Problem Solving Methods. See also: (Breuker & van de
Velde 1994), (Angele, Fensel, & Studer 1996) for more on
PSM’s.



which fit to the identified subtask. Here we want to ex-
ploit information on attribute types and possible sets,
the percentage of positive and negative examples that
the database contains, missing values, consistency of
the dataset, etc.

4 How to Juggle the Jungle; the Exam-
ple in our Approach

The idea of recursiveness and iterativeness as we found
provides an example on the assigment of algorithm
classes to subtask types. For the following we will pre-
sume that there already is a problem description avail-
able as well as a mapping to an initial appropriate task
type. We will use task characteristics of the example
to show how an initial algorithm class is selected.

4.1 Recursiveness in the Example

Our example shows the recursive nature of KDD-tasks.
On the top level, the KDD-process is decomposed ac-
cording to the steps of a standard KDD-process. When
decomposing, the need for a preprocessing step arises.
Relevant attributes (i.e. the average mileage between
repairs), can be calculated from the database. These
attributes are used for model generation in the prepro-
cessing phase. The generated model in the first step of
the preprocessing stage is then used to extract those
examples out of a second data subset (from an earlier
point in time) that show the same behaviour on the
selected attributes. Lateron the static attributes (like
the model, type, engine, accesories, etc.) are merged
with the data subset resulting of this extraction.

It is clear that in order to be able to derive such a
refinement structure one needs to define the functional-
ity of tasks and use them for selecting the appropriate
PSMs and finally the right algorithms. Part of this re-
trieval is supported by annotations of KDD-processes
and algorithms.

4.2 Assigning Algorithm Classes to our
Task

From a problem description one can retract pre- and
postconditions. For the first round we can decide to
take a class of supervised learning algorithms due to
the fact that a domain specialist provided input that
there are classes known that might be used for learn-
ing and that there is a need for an interpretable model.
This gives us a set of algorithms that are possibly in-
teresting, namely the set of supervised learning algo-
rithms that generate interpretable models. Now we
need to close in on one of them in order to guide the
task decomposition process.

4.3 Closing in on a specific Algorithm
using Data Characteristics

The dataset that is used in the EIC approach has
data-characteristics that we will use in a kind of
*strike-through’ approach for eliminating algorithms
that would not work for our problem. We could re-
trieve a PSM for the preprocessing subtask based on
the set of requirements and constraints we retrieved in
the problem definition. We retrieve data characteris-
tics from the Data Dictionary or using the parameters
that are defined in the Statlog project. Doing so we
get information on the set of classes that comprises
our goal attribute (which is provided by the user). In
our case this set was not so large (4 items), otherwise
we should have started user interaction in order to de-
crease the number of classes, or maybe to ignore the
concept and start data analysis without it (as in unsu-
pervised learning tasks).

Some of the conditions that whe found in our ap-
proach lead to the advice to take a certain learning
algorithm (f.e. C4.5) for the Data Mining step, since
there are interesting classes that are provided by the
user and those classes are not represented as numeric
attributes and the results can be represented either
in the form of a decision tree, or as a set of produc-
tion rules (this also starts further user interaction in
order to make such decisions). Such a decision for a
specific algorithm then specifies the constraints (post-
conditions) for the prior step in our decomposition, to-
gether with the constraints that follow from data char-
acteristics and the user input.

An additional feature of task decompositions is that
we can make use of the context that such a decom-
position represents. It provides us possibilities to set
parameters of (selected) algorithms according to their
context.

5 Related Work

Approaches that include the user as the key-factor
for succesfully performing data analysis problems are
found in the field of machine learning ((Craw et al.
1992)), and the field of statistics (Hand 1994). Al-
though this literature outlines possibilities or needs for
a stronger inclusion of the user, there are no applica-
tions mentioned where the ideas are tested, as is the
case in our approach.

Breaking down a task’s complexity by decomposi-
tion is an approach that is known from the field of
Knowledge Acquisition, and is found in approaches
such as (among others) KADS (Wielinga, Schreiber,
& Breuker 1992) and MIKE (Angele, Fensel, & Studer
1996)). Those ideas combine very well with our aim
to provide user support. From the KDD point of view

Engels 165



there is also a need for defining a method for perform-
ing KDD. The steps that are defined in such method-
ologies form the basics for our task decompositions
and thus enable a first step decomposition, as shown
in this paper. One particular survey dealt with the
question if and how companies apply inductive learn-
ing techniques (Verdenius 1997). This research shares
the conclusion with many other papers like (Brodley
& Smyth 1995) that the process of machine learning
application should primarily be user-driven, instead
of data- or technology driven. Two approaches exist
that deal with the support of selecting data mining al-
gorithms for a certain task. One approach (Brazdil,
Gama, & Henery 1994) is based on learning of a deci-
sion tree for the applicability of algorithms given data
characteristics. The other approach is the more user
centered Consultant part of the MLT-project {Consor-
tium 1993).

6 Conclusions and Future work

The approach taken in this paper shows strengths and
some weaknesses, The main problem is that we must
deal with a huge unknown factor, and that is the user
himself. A user might be unaware of some important
problem characteristics. Although providing feedback
to the user in cases is aimed at, it can happen that the
system chooses the wrong track due to its ignorance
in those areas where it relies on user provided infor-
mation. Given this uncertainty we propose to extract
some of the most important characteristics of such a
user’s problem, get hold of the characteristics in the
data that he or she provides, and make use of a library
containing reusable task decomposition parts that have
been defined priorly. Supporting task decomposition
means that a user gets a better overview of what task
he/she should perform, and also enables us save parts
of such decompositions for later reuse. In the future
we will extend our framework and incorporate a plan-
ning mechanism that can fill gaps in cases that there
are no PSM’s available from the (user defined) library.
Furthermore we will have to deal with the problem of
finding a uniform representation for data mining algo-
rithms and corresponding task characteristics. Finally,
a knowledge base is needed that can help instantiate
algorithms once their context is defined, in order to
reduce the amount of effort that is needed to find a
successful approach as much as possible.

Acknowledgements

We want to thank Daimler Benz for granting and providing
the possibility to get industrial input in the form of real
world problems. Furthermore we thank our collegues for
many fruitful discussions.

166 KDD-97

References
Angele, J.; Fensel, D.; and Studer, R. 1996. Domain and
Task Modelling in MIKE. In Sutcliffe, A.; van Assche,
F.; and Benyon, D., eds., Domain Knowledge for Interac-
tive System Design, Proceedings of the IFIP WG8.1/13.2
Joint Working Conference on Domain Knowledge for In-
teractive System Design. Geneva: Chapman & Hall,

Brazdil, P.; Gama, J.; and Henery, B. 1994. Charac-
terizing the Applicability of Classification Algorithms Us-
ing Meta-Level Learning. In Bergadano, F., and Raedt,
L. D., eds., Proceedings of the European Conerence on Ma-
chine Learning (ECML 94), volume 784 of Lecture Notes
in Computer Science, 83 — 102, Catania, Italy: Springer-
Verlag.

Breuker, J., and van de Velde, W. 1994, CommonKADS
Library for Ezpertise Modelling. 10S Press.

Brodley, C., and Smyth, P. 1995. Applying Classification
Algorithms in Practice. In Aha, D., ed., Proceedings of
the Workshop on Applying Machine Learning in Practice
at the ICML-95.

Consortium, M. 1993. Final public report. Technical
report. Esprit [T Project 2154.

Craw, S.; Sleeman, D.; Granger, N.; Rissakis, M.; and
Sharma, S. 1992, CONSULTANT: Providing Advice for
the Machine Learning Toolbox. In Bramer, M., and Milne,
R., eds., Research and Development in Ezpert Systems, 5-
23.

Engels, R. 1996. Planning Tasks for Knowledge Discovery
in Databases; Performing Task-oriented User-Guidance.
In Simounis, E.; Han, J.; and Fayyad, U., eds., Proceed-
ings of the 2nd Int. Conference on Knowledge Discovery
in Databases, 170-175. Portland, Oregon: AAAI-Press.

Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.; and
Uthurasamy, R. 1996. Advances in Knowledge Discovery
and Data Mining. Cambridge, London: MIT Press.

Hand, D. 1994. Decomposing Statistical Questions. Jour-
nal of the Royal Statistical Society 317-356.

Michie, D.; Spiegelhalter, D.; and Taylor, C. 1994, Ma-
chine Learning, Neural and Statistical Classification, Ellis
Horwood.

Verdenius, F. 1997. Applications of Inductive Learning
Techniques: A Survey in the Netherlands. Al communi-
cations 10(1).

Wielinga, B.; Schreiber, A.; and Breuker, J. 1992. KADS:
A Modelling Approach to Knowledge Engineering. Special
Issue "The KADS Approach to Knowledge Engineering”.
Knowledge Acquisition 4(1):5-53.

Wirth, R., and Reinartz, T. 1996. Detecting Early Indi-
cator Cars in an Automotive Database: A Multi-Strategy
Approach. In Simounis, E.; Han, J.; and Fayyad, U., eds.,
Proceedings of the 2nd Int. Conference on Knowledge Dis-
covery in Databases. Portland, Oregon: AAAl-press.

Wirth, R.; Shearer, C.; Grimmer, U.; Reinartz, T.;
Schloesser, J.; Breitner, C.; Engels, R.; and Lindner, G.
1997. Towards Process-Oriented Tool Support for KDD.
In Proceedings of the 1st European Symposium on Prin-
ciples of Data Mining and Knowledge Discovery (PKDD-
97).



