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Abstract 

The large amount of data collected today is quickly 
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data and discover interesting patterns. Knowledge dis- 
covery and data mining approaches hold the potential 
to automate the interpretation process, but these ap- 
proaches frequently utilize computationally expensive 
algorithms. 
This research outlines a general approach for scal- 
ing KDD systems using parallel and clistribut,erl re- 
sources and applies the suggested strategies to the 
SUBDUE knowledge discovery system. SUBDUE has 
been used to discover interesting and repetitive con- 
cepts in graph-based databases from a variety of do- 
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ing time. Experiments that demonstrate scalability of 
parallel versions of the SUBDUE system are performed 
using CAD circuit databases and artificially-generated 
databases, and potential achievements and obstacles 
are discussed. 

Introduction 
One of the barriers to the integration of scientific dis- 
covery methods into practical data mining approaches 
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systems are motivated from the desire to evaluate the 
correctness of a discovery method without regard to 
the method’s scalability. As an example, our SIJBDIJE 
system was developed to evaluate the effectiveness of 
the minimum description length principle to discover 
regularities in a variety of scientific domains (Cook, 
Holder, & Djoko 1996). 

Another factor is that some scientific discovery ays- 
terns deal with richer data representations that only 
degrade scalability. A number of attribute-value-based 
approaches have been deveioped that discover concepts 
and can address issues of data relevance, missing data, 
noise, and utilization of domain knowledge. However, 
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much of the data being collected is structural in na- 
ture, requiring tools for the analysis and discovery of 
concepts in structural data (Fayyad et a?. 1996). For 
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sentation of the input data that captures the structural 
information. Although the subgraph isomorphism pro- 
cedure needed to deal with this data has been poly- 
nomially constrained within SUBDUE, the system still 
spends a considerable amount of computation perform- 
ing this task. 

The goal of this research is to demonstrate that KDD 
systems can be made scalable through efficient use of 
parallel and distributed hardware. To accomplish this 
goal, we introduce a general approach to parallelizing 
KDD systems and apply the proposed techniques to 
the SIJBDUE discovery system. 

Related approaches to scaling data mining and dis- 
covery systems have been pursued. Parallel MIMD ap- 
proaches to concept learning have included partition- 
ing the data set among processors and partitioning the 
search space among available processors (Provost & 
Hennessy 1996; Chan & Stolfo 1993). Data partition- 
ing approaches have also been effective for certain lim- 
ited approaches to data mining and knowledge discov- “71 In ery on 3nvru architectures. T---.-.._-.r.e- LL- --..I.. I_:,:A.-- unprovmg ~nl: acitlaun~y 
of scientific discovery systems will help break down the 
barrier excluding these techniques from practical data 
mining approaches. 

Overview of SUBDUE 
We have developed a method for discovering sub- 
structures in databases using the minimum description 
length principle. SUBDUE discovers substructures that 
compress the original data and represent structural 
concepts in the data. Once a substructure is discov- 
ered, the substructure is used to simplify the data by 
replacing instances of the substructure with a pointer 
to the newly discovered substructure. 

The substructure discovery system represents struc- 
tural data as a labeled graph. Objects in the data 
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Figure 1: Sample results of Subdue on a protein se- 
quence. 

map to vertices or small subgraphs in the graph, and 
relationships between objects map to directed or undi- 
rected edges in the graph. A substructure is a con- 
nected subgraph within the graphical representation. 
This graphical repretientation serves as input to the 
substructure discovery system. An instance of a sub- 
structure in an input graph is a set of vertices and 
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representation of the substructure. 

Figure 1 shows a sample input database containing 
a portion of a DNA sequence. In this case, atoms and 
small molecules in the sequence are represented with 
labeled vertices in the graph, and the single and don- 
ble bonds between atoms are represented with labeled 
edges in the graph. SUBDUE discovers substructure S1 
from the input database. After compressing the origi- 
nal database using ,!?I, SIJBDIJE finds substructure 4, 
which when used to compress the database further al- 
lows SUBDUE to find substructure 5’s. Such repeated 
application of SUBDUE generates a hierarchical descrip- 
tion of the structures in the database. 

The substructure discovery algorithm used by SIJB- 
DUE is a beam search. The algorithm begins with the 
substructure matching a single vertex in the graph. 
Each iteration the algorithm selects the best substruc- 
ture and incrementally expands the instances of the 
substructure. The algorithm searches for the best sub- 
structure until all possible substructures have been 
considered or the totai amount of computation exceeds 
a given limit. Evaluation of each substructure is de- 
termined by how well the substructure cornpresses the 
description length of the database. 

Because instances of a substructure can appear in 
different forms throughout the database, an inexact 
graph match is used to identify substructure instances 
with a bounded amount of variation from the suh- 

structure definition. A scientist can direct the search 
with background knowledge in the form of known sub- 
structure models that may potentially appear in the 
database! or graph match rules to adjust the cost of 
each inexact graph match test. SUBDUE has been 
successfully applied to databases in domains including 
image analysis, CAD circuit analysis, Chinese charac- 
ter databases, program source code, chemical reaction 
chains, Brookhaven protein databases, and artificially- 
generated databases (Cook, Holder, & Djoko 1996). 

The results of the scalability study in this paper 
are demonstrated on databases in two different do- 
mains. The first type of database is a graph repre- 
sentation of CAD A-to-D converer circuit provided by 
National Semiconductor containing 8,441 edges and 
19,206 edges. The second type of database is an 
artificially-constructed graph with 1,000 vertices and 
2,500 edges in which instances of a predefined sub- 
structure are embedded in a random graph. To test 
scalability on larger databases while maintaining the 
characteristics of these two domains, we generate mul- 
tiple copies of the CAD and ART graphs and merge 
the copies together by arbitrarily connecting the indi- 
vidual graphs. The terms “n CAD” and “n ART” thus 
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CAD or ART graphs. 

Scaling KDD Systems 

Making use of parallel and distributed resources can 
significantly affect the scalability of a KDD system. 
Parallelizing a knowledge discovery system is not easy 
because many KDD systems rely upon heuristics and 
greedy algorithms to avoid the intractability inherent 
irk a>~! t&al.&iye m-mrnn.chh Rnth hmrintirn nnrl cwma-lv -~~-^-- ---. 1-1-- ------11-“1 -*-- o- “~-~ 
algorithms share the potential of finding a suboptimal 
solution and, on closer inspection, a sequentially ori- 
ented solution. In many cases KDD algorithms can 
perform better if they are provided with enough his- 
tory of the problem being solved, thus they will per- 
form better in a sequential approach. In addition, the 
knowledge discovered in each step by KDD systems de- 
pends heavily on what has been discovered in previous 
steps. Thus, we cannot decompose the work without 
increasing the synchronization and communication be- 
tween the paraiiei processors. 

Two main MIMD distributed memory approaches to 
designing parallel algorithms are the functional paral- 
lel approach and the data parallel approach. In the 
functional parallel approach the algorithm steps are 
assigned to different processors, while in a data paral- 
lel approach each processor applies the same algorithm 
to different parts of the input data. 
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Figure 2: Discovery time of 60 substructures in ART. 
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Figure 3: Discovery time of 60 substructures in CAD. 

F’unctional Parallel SUBDUE 

The main idea behind this algorithm is to divide S~JB- 
DUE’S search for candidate substructures among pro- 
cessors. The search queue is maintained by one mas- 
ter processor which keeps track of the best discovered 
substructures. The master decides whether to keep ex- 
panded substructures based on a global evaluation of 
discovered substructures. If a slave processor does not 
have any substructures then the master asks another 
processor to transfer a substructure to the requesting 
processor. 

Figures 2 through 3 graph the decrease in runtime of 
FP-SUBDUE as the number of processors increases us- 
ing an nCUBE 2. The amount of compression achieved 
may also sometimes increase as the number of proces- 
sors increases. This is due to the fact that the beam 
width combined over all processors is greater than a 
single beam width on the serial machine, and thus a 
greater number of substructures can be considered. 

Dynamic Partitioning SUBDUE 
In the first data partitioning approach, Dynamic- 
Partitioning SUBDUE, each processor starts evaluating 
a disjoint set of the input data. When DP-SUBDUE 
is run, processor i begins processing a candidate sub- 
structure corresponding to the ith unique label in the 
graph. Each processor receives a copy of the entire in- 
put graph and processes a portion of the possible sub- 
structures. To prevent work replication, DP-SUBDUE 
constrains processors expanding a substructure to only 
include vertices with a label index greater than the pro- 
cessor ID. Load balancing is permitted between proces- 
sors to prevent excessiving processor idling. The par- 
titions here are logical: the set of all instances of all 
the candidate substructures discovered by a processor 
constitutes its partition. Quality control is imposed on 
the processors in the DP-SUBDUE system by period- 
ically pruning all substructure candidates with values 
less than the global average. 

Results from the DP-SUBDUE system indicate that 
very lim ited speedup can be achieved by distributing 
the substructure expansion and evaluation. The work 
done to lim it duplicate work and to load balance the 
system consumes considerable time in processing and 
communication. In addition, the memory requirements 
of this data partitioning approach are excessive be- 
cause the entire database is copied on each processor. 
The speedup achieved is very lim ited and the results 
are not included in this paper. 

Static Partitioning SUBDUE 
Although the DP-SUBDUE approach was not success- 
ful, the data partitioning idea itself is very appealing 
in terms of both memory usage and speedup. Here we 
introduce a static partitioning parallel approach. 

In SP-STJBDUE we partition the input graph into n 
partitions for n processors. Each processor performs 
sequential SUBDUE on its local graph partition and 
broadcasts its best substructures to the other proces- 
sors. Each processor then evaluates the communicated 
substructures on its own local partition. Once all eval- 
uations are complete, a master processor gathers the 
results and determines the global best discoveries. 

In partitioning the graph we want to balance the 
work load equally between processors while retaining 
as much information as possible (edges along which the 
graph is partitioned may represent important informa- 
tion). The Metis graph partitioning package tries to 
partition the graph so that the sum of the cut edges 
is m inimized. The run time of Metis to partition the 
databases is very small (ten seconds on average) and 
is thus not included in the parallel run time. 

Figures 4 and 5 graph the run time of SP-SUBDUE 
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Figure 4: CAD database evaluation time. 
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Figure 5: ART database evaluation time. 

on the CAD and artificial databases as the number of 
processors increases. The speedup achieved with the 
ART database is always superlinear. This is because 
the run time of sequential SUBDUE is nonlinear with 
respect to the size of the database. Each processor 
essentially executes a serial version of SUBDUE on a 
small portion of the overall database, so the combined 
run time is less than that of serial SUBDUE. 

Increasing the number of processors for the nCAD 
and nART databases results in similar quality discov- 
ered substructures. As the number of partitions be- 
comes large, the quality of the discovered substruc- 
tures will decrease because some of the edges are cut. 
However, with a small number of partitions superior 
compression to that of the sequential version can he 
realized because the combined beam length is larger 
over several processors than for the one processor used 
in the serial version of the algorithm. 
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sors, SP-SUBDUE can also utilize the increased mern- 

ory resources of a network of workstations using com- 
munication software such as PVM. The performance 
of SP-SUBDUE on a network of 14 PCs also improves 
close to linearly in the number of processors. 

Conclusions 
The increasing structural component of today’s 
databases requires data mining algorithms capable of 
handling structural information. The SUBDUE system 
is specifically designed to discover knowledge in struc- 
tural databases. However, the computational expense 
of a discovery system such as SUBDUE can deter wide- 
spread application of the algorithms. 

In this paper, we investigate methods for improv- 
ing the scalability of scientific discovery methods us- 
ing parallel resources. When comparing the benefits 
of the three parallel applied to SUBDUE, approaches, 
DP-SUBDUE is discarded because of poor run time 
and heavy memory requirements. FP-SUBDUE can 
prove effective in discovering substructures in very 
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SP-SIJBDUE is the most interesting approach of all - 
by partitioning the database effectively, SP-SUBDUE 
proves to be a highly scalable system. One of our 
databases contains 2 million vertices and 5 million 
edges, yet SP-SUBDUE is able to process the database 
in less than three hours. The minimal amount of com- 
munication and synchronization that is required make 
SP-SUBDIJE ideal for distributed environments. We 
have demonstrated the scalability of one KDD system 
using these techniques, and will continue to apply the 
described methodology to other systems. 
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