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Abstract 

We introduce a knowledge-based approach to deep knowledge 
discovery from real-world natural language texts. Data mining, 
data interpretation, and data cleaning are all incorporated in cy- 
cles of quality-based terminological reasoning processes.. The 
methodology we propose identifies new knowledge items and 
assimilates them into a continuously updated domain knowl- 
edge base. 

Introduction 
The work reported in this paper is part of a large-scale 
project aiming at the development of SYNDIKATE, 

I,,,..,,- &---, 1, ̂̂ ._. ,-,a,, ,-2,:I,+:,- a Germaii-lmg;uagc: CGAL lul”wlc;ugc; zmsIuuIiaLI”,I system 
(Hahn, Schnattinger, & Romacker 1996). ‘Iwo real-world 
application domains are currently under active investigation 
- test reports on information technology products (101 doc- 
uments with lo5 words) and, the major application, med- 
ical reports (approximately 120,000 documents with lo7 
words). The task of the system is to aggressively assimi- 
late any facts, propositions and evaluative assertions it can 
glean from the source texts and feed them into a shared text 
knowledge pool. This goal is actually even more ambitious 
than the MUC task (for a survey, cf. (Grishman & Sund- 
heim 1996)) which requires mapping natural language texts 
onto a highly selective and fixed set of knowledge templates 
in order to extract factual knowledge items only. 

Given that only a few of the relevant domain concepts 
can be supplied in the hand-coded initial domain knowledge 
base, a tremendous concept learning problem arises for text 
knowledge acquisition systems. Any other KDD system 
running on natural language text input for the purpose of 
knowledge extraction also faces the challenge of an open 
set of knowledge templates; even more so when it is specifi- 
cally targeted at R~XJ knowledge items. In order to break the 
high complexity barrier of a system integrating text under- 
standing and concept learning under realistic conditions, we 
supply a natural language parser (Neuhaus & Hahn 1996) 
that is inherently robust and has various strategies to get 
nearly optimal results out of deficient, i.e., underspecified 1-----.,-J-- ~.~~...~ *~ I- ..- -E ~-.*-I I. ~.&.J 3 ~&I ~~_... mowleage sources m rems 01 pamal, nmma-aepm pars- 
ing. The price we pay for this approach is underspecifica- 
tion and uncertainty associated with the knowledge we ex- 
tract from texts. To cope with these problems, we build on 
expressively rich knowledge representation models of the 
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underlying domain (Hahn, Klenner, & Schnattinger 1996). 
Accordingly, we provide a start-up core ontology (such as 
the Penman Upper Model (Bateman et al. 1990)) in the 
format of terminological assertions. The task of the module 
we describe in this paper is then to position stew knowledge 
items which occur in a text in that concept hierarchy and to 
link them with valid conceptual roles, role fillers and role 
filler constraints; hence, deep knowledge discovery. 

Concept hypotheses reflecting different conceptual read- 
ings for new knowledge items emerge and are updated on 
the basis of two types of evidence. First, we consider the 
type of Zinguistic construction in which an unknown lexical 
:+a- ,-.n,.,,.-” ;., ,, +a%?+ In:..T.a .-,a nnn.v-n el..-.e .L-. ,.....+?.-4 ,...A 1CU‘ll “bbL&lJ 111 4 Cl2.L \JIUbtz we (WDUUIFi L114l. UK cI”IILcaL auu 
type of granunatical construction forces a particular inter- 
pretation on the unknown item); second, conceptual criteria 
are accounted for which reflect structural patterns of con- 
sistency, mutual justification, analogy, etc. of concept hy- 
potheses with concept descriptions already available in the 
domain knowledge base. Both kinds of evidence are repre- 
sented by a set of qua&y labels. The general concept learn- 
ing problem can then be viewed as a quality-based deci- 
sion task which is decomposed into three constituent parts: 
the continuous generation of quality labels for single con- 
cept hypotheses (reflecting the reasons for their formation 
and their significance in the light of other hypotheses), the 
estimation of the overall credibility of single concept hy- 
potheses (taking the available set of quality labels for each 
hypothesis into account), and the computation of a.prefer- 
ence order for the entire set of competing hypotheses (based 
on these accumulated quality judgments) to select the most 
plausible ones. These phases directly correspond to the ma- 
jor steps underlying KDD procedures (Fayyad, Piatetsky- 
Shapiro, & Smyth 1996), viz. data mining, data interpreta- 
tion, and data cleaning, respectively. 

A Scenario for Deep Knowledge Discovery 
In order to illustrate our problem, consider the following 
knowledge discovery scenario. Suppose, your knowledge 
of the information technoloav domain tells vou that Aauar- -----‘2, , - -- --~~~~ --1.---- 
ius is a company. In addition, you incidentally know that 
AS-168 is a computer system manufactured by Aquarius. 
By convention, you know absolutely nothing about Me- 
galine. Imagine, one day your favorite computer maga- 
zine features an article starting with “The Megaline unit by 
Aquarius ..‘I. Has your knowledge increamo, what 
did you learn already from just this phrase? 
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cus here on the issues of learning accuracy and the learning 
rate. Due to the given learning environment, the measures 
we apply deviate from those commonly used in the machine 
learning community. In concept learning algorithms like 
IBL (Aha, Kibler, & Albert 1991) there is no hierarchy of IT-.... 3: -rl- -2 Al-- llcTT .---.--L -..ql-:.- COiiCeptS. Hence, any preamuon 01 cue class memoersmp 
of a new instance is either true or false. However, as such 
hierarchies naturally emerge in terminological frameworks, 
a prediction can be more or less precise, i.e., it may ap- 
proximate the goal concept at different levels of specificity. 
This is captured by our measure of learning accuracy which 
takes into account the conceptual distance of a hypothesis 
to the goal concept of an instance rather than simply relat- 
ing the number of correct and false predictions, as in IBL. 

In our approach, learning is achieved by the refinement 
of multiple hypotheses about the class membership of an 
instance. Thnn. the m-easgre of jp~~??jqy r&e wp. nrnnnse ^ __ -I, -__ - r--r--- 
is concerned with the reduction of hypotheses as more and 
more information becomes available about one particular 
new instance. In contrast, IBL-style algorithms consider 
only one concept hypothesis per learning cycle and their 
notion of learning rate relates to the increase of correct pre- 
dictions as more and more instances are being processed. 

We considered a total of 101 texts taken from a corpus 
of information technology magazines. For each of them 5 
to 15 learning steps were considered. A learning step is 
operationalized by the representation structure that results 
from the semantic interpretation of an utterance which con- 
tains the unknown lexical item. Since the unknown item is 
usually referred to several times in a text, several learning 
steps result. For instance, the learning steps associated with 
our scenario are given by: MEGALINE INST-OF UNIT and 
MEGALINE PRODUCT-OF AQUARIUS. 

Learning Accuracy 
In a first series of experiments, we investigated the learning 
accuracy of the system, i.e., the degree to which the sys- 
tem correctly predicts the concept class which subsumes 
the target concept under consideration. Learning accuracy 
for a single lexical item (LA) is here defined as (n being 
the number of concept hypotheses for that item): 

LA := x 
LAi 
-y- with LA := 

iE{l...tl} I 

SPi specifies the length of the shortest path (in terms of 
the number of nodes traversed) from the TOP node of the 
concept hierarchy to the maximally specific concept sub- 
suming the instance to be learned in hypothesis i; CPi spec- 
ifies the length of the path from the TOP node to that con- 
cept node in “njipo’r”leSiS ,i which is COiiiniOii boih for ihe 
shortest path (as defined above) and the actual path to the 
predicted concept (whether correct or not); FP,- specifies 
the length of the path from the TOP node to the predicted (in 
this case false) concept and DPi denotes the node distance 
between the predicted node and the most specific concept 
correctly subsuming the target in hypothesis i, respectively. 
As an example, consider Fig. 1. If we assume MEGALINE 

to stand for a COMPUTER, then hypothesizing HARDWARE 
(correct, but too general) receives an LA = .75 (note that 
OBJECT ISA TOP), while hypothesizing PRINTER (incor- 
rect, but still not entirely wrong) receives an LA = .6. 

Fig. 2 depicts the learning accuracy curve for the en- 
tire data set. It starts at LA values in the interval be- 
tween 48% to 54% for LA -, LA TH and LA CB in the 
first learning step. ALL 

LA CB gives the 
accuracy rate for 

1.0 - IACB - 

the full qualifi- ,.__.: _,..: . . . ..i .i . . . . . . . . . . . . i ;, 
cation calculus 0.7 . 

including thresh- 5 
old and credibility OA _ 
criteria, LA TH o.3 . 
considers linguis- 0.2 - 
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picts the accuracy Learningsteps 

values without Figure 2: Learning Accuracy 
incorporating quality criteria at all, though terminological 
reasoning is still employed. In the final step, LA rises up 
to 79%, 83% and 87% for LA -, LA TH and LA CB, 
respectively. Hence, the pure terminological reasoning 
machinery which does not incorporate the qualification 
calculus always achieves an inferior level of learning 
accuracy than the learner equipped with it. 

Learning Rate 
The learning accuracy focuses on the predictive power 
and validity of the learning procedure. By considering 
the learning rate (LR), we supply data from the step- 
wise reduction of alternatives in the learning process. Fig. 
3 depicts the mean number of transitively included con- 
cepts for all considered hypothesis spaces per learning step 
(each concept 
hypothesis relates 
to a concept 
which transitively 
subsumes various 
subconcepts; 
hence, pruning of 
concept subhier- 
archies reduces 
the number of 
concepts being 
considered as hy- 
potheses). Note 

’ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Learningsteps 

Figure 3: Learning Rate 

5 

that the most general concept hypothesis in our example 
denotes OBJECT which currently includes 196 concepts. In 
_^^^_^ 1 __.^ -1. ,.^_.^ 1 I ,.b . ..-.-- ..,.,..*:.., ,l,,, .-A AL,, ,...-.^ gwGLq WG ““SaVGlJ il auuul; UG~slU”c; s,upc; “I Lllci GUIVG 
for the learning rate. After the first step, slightly less than 
50% of the included concepts are pruned (with 93,94 and 
97 remaining concepts for LR CB, LR TH and LR -, 
respectively). Summarizing this evaluation experiment, the 
system yields competitive accuracy rates (a mean of 87%), 
while at the same time exhibiting significant and valid 
reductions of the predicted concepts. 
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Related Work 
The issue of text analysis is only rarely dealt with in the 
KDD community. The reason for this should be fairly obvi- 
ous. Unlike pre-structured data repositories (e.g., schemata 
and relations in database systems), data mining in textual 
sources requires to determine content-based formal struc- 
tures in text strings prior to putting KDD procedures to 
work. Similar to approaches in the field of information 
retrieval (Dumais 1990), statistical methods of text struc- 
turalization are favored in the KDD framework (Feldman & 
Dagan 1995). While this leads to the determination of asso- 
ciative relations between lexical items, it does not allow the 
identification and relation of particularfacts and assertions 
about or even evaluations to particular concepts. If this kind 
of deep knowledge is to be discovered, sophisticated natural 
language processing methodologies must come into play. 

Our approach bears a close relationship to the work of, 
e.g., (Rau, Jacobs, & Zernik 1989) and (Hastings 1996), 
who aim at the automated learning of word meanings from 
the textual context using a knowledge-intensive approach. 
But our work differs from theirs in that the need to cope 
with several competing concept hypotheses and to aim at 
a reason-based selection is not an issue in those studies. 
In the SCISOR system (Rau, Jacobs, & Zernik 1989), e.g., 
the selection of hypotheses depends only on an ongoing dis- 
crimination process based on the availability of linguistic 
and conceptual clues, but does not incorporate a dedicated 
inferencing scheme for reasoned hypothesis selection. The 
difference in learning performance - in the light of our eval- 
uation study discussed in the previous section, at least - 
omnnn+n tn QUA r~.naL-l~rinn thra rliff~vaanrw hdrrrsan T.A - ul‘,“U,,LU C” ” 10, U”IIUIUUIIA,E) LllV UlllWl”ll”Y ““L”“V”ll U‘) - 
(plain terminological reasoning) and LA CB values (termi- 
nological me&reasoning based on the qualification calcu- 
lus). Acquiring knowledge from real-world textual input 
usually provides the learner with only sparse, highly frag- 
mentary clues, such that multiple concept hypotheses are 
likely to be derived from that input. So we stress the need 
for a hypothesis generation & evaluation component as 
an integral part of large-scale real-world text understanders 
e.,,..,,:.., :.. . . . ..Tl. ..,:+l. l,..,....l,A*, ,I:,,,.,,, A,,:,.,” “pcaar,Il~ 111 LaIIuwll WlLIl nu”wls2”~G uK%vv-ay Uc2”IL,~D. 

This requirement also distinguishes our approach from 
the currently active field of information extraction (IE) 
(e.g., (Appelt et al. 1993)). The IE task is defined in terms 
of a$xed set of apriori templates which have to be instanti- 
ated (i.e., filled with factual knowledge items) in the course 
of text analysis. In contradistinction to our approach, no 
new templates have to be created. 

Conclusion 
We have introduced a new quality-based knowledge dis- 
covery methodology the constituent parts of which can be 
equated with the major steps underlying KDD procedures 
(Fayyad, Piatetsky-Shapiro, & Smyth 1996) - the gener- 
ation of quality labels relates to the data mining (pattern 
extraction) phase, the estimation of the overall credibility 
of a single concept hypothesis refers to the data interpreta- 
tion phase, while the selection of the most suitable concept 
hypothesis corresponds to the data cleaning mode. 

Our approach is quite knowledge-intensive since knowl- 
edge discovery is fully integrated in the text understand- 
ing mode. No specialized learning algorithm is needed, 
since concept formation is turned into an inferencing task 
carried out by the classifier of a terminological reasoning 
system. Quality labels can be chosen from any knowledge 
“,-,l,e,,P l nt “nnm” ~r\...m..:s..t .I...- ,...“.a.:-- A_,... -l-..d..lAl D”UIb,cI lu4L 5~~1113 b”IIY~IIIGlIL, Cl1113 cxJ”II11~ c;clsy Lu.qJL’I”ll- 

ity. These labels also achieve a high degree of pruning of 
the search space for hypotheses in very early phases of the 
learning cycle. This is of major importance for considering 
our approach a viable contribution to KDD methodology. 
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