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Abstract 
We present here an approach and algorithm for mining gen- 
eralized term associations. The problem is to find co-occur- 
rence frequencies of terms, given a collection of documents 
each with relevant terms, and a taxonomy of terms. We have 
developed an efficient Count Propagation Algorithm (CPA) 
targeted for library applications such as Medline. The basis 
of our approach is that sets of terms (termsets) can be put 
into a taxonomy. By exploring this taxonomy, CPA propa- 
gates the count of termsets to their ancestors in the taxon- 
omy, instead of separately counting individual termset. We 
found that CPA is more efficient than other algorithms, par- 
ticularly for counting large termsets. A benchmark on data 
sets extracted from a Medline database showed that CPA 
outperforms other known algorithms by up to around 200% 
(half the computing time) at the cost of less than 20% of 
additional memory to keep the taxonomy of termsets. We 
have used discovered knowledge of term associations for the 
purpose of improving search capability of Medline. 

Introduction 
As the processing of business records, documents, and sci- 
entific experiments has been automated, discovery of inter- 
esting patterns from a huge amount of existing data (data 
mining) has attracted much attention recently. In particular, 
the problem of mining association rules from transaction 
records of department or grocery stores, with item taxono- 
mies (Han and Fu 1995; Srikant and Agrawal 1995) or 
without them (Agrawal and Srikant 1994; Park, Chen, and 
Yu 1995; Savasere, Omiecinski, and Navathe 1995), has 
been studied extensively for the last few years. The most 
computationally expensive step in this mining process is to 
count co-occurrence frequencies of two or more items. 

We have developed the Count Propagation Algorithm 
(CPA) for mining associations among terms in the presence 
of a term taxonomy (generalized term associations), and 
used discovered term associations to improve search capa- 
bilities of Medline (a medical information retrieval system). 
Medline at USC provides extensive information about over 
5 million research articles in bio-medical areas. It main- 
tains a taxonomy of 18,000 MeSHs (Medical Subject Head- 
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ings), and each article is assigned a set of relevant MeSHs. 
CPA has been applied to efficiently determine associations 
among MeSHs. We were motivated by the observation that 
Medline data is different from typical transaction records in 
several aspects. For example, interconnection among terms 
in the taxonomy is denser, and groups of several terms tend 
to strongly associate with each other. This is in contrast to 
transaction records, in which two or three item associations 
are dominant (Srikant and Agrawal 1995). 

The basis of our approach is that the set of terms (tenn- 
set) can be put into a taxonomy. By exploring this taxon- 
omy, the frequency count of termsets can be propagated to 
their ancestors in the taxonomy. This is distinct from other 
approaches which count frequencies of individual termset 
separately. We found that CPA is more efficient than other 
algorithms, particularly for counting termsets of large sizes. 
Our benchmark showed that, for Medline data, CPA outper- 
forms other known algorithms by up to around 200% (half 
the CPU time) at the cost of less than 20% of additional 
memory to keep the taxonomy of termsets. 

Problem Statement 
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state the problem. T = {tl, f2, . . . . t,,,} is the set of terms 
involved in the application, and X is the taxonomy of those 
terms (the tuxonomy in short). X is represented by a 
directed acyclic graph (DAG), where a node is a term and 
an edge is directed from a child to its parent term (see Fig- 
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ure l(a) for an example). A term may have multiple par- 
ents, implying that multiple classification schemes are 
represented by the taxonomy. 

A termset refers to a set of terms, and n-termset is a set of 
n terms. A termset s is triviuE if it contains one or more 
ancestor/descendant pairs (e.g., {fz, t4, ts}). For the rest of 
this paper, a termset will refer to a non-trivial termset, 
unless otherwise mentioned. A termset ~1 is an ancestor of 
a termset ~2 if ~1 and ~2 have the same number of terms 
and any term in ~1 is either a term in s2 or an ancestor of 
one or more terms in s2. S1 is a parent of Sp if S1 is an 
ancestor of s2 and there does not exist a termset sg such 
that ~1 is an ancestor of sg and ~3 is an ancestor of ~2 (e.g., 

parents of (t4, t6) are (t2, t6}, (t4, ts}, and {t4, ts}). Descen- 
dants and children of a termset are similarly defined. A 
termset taxonomy is represented by a DAG, where a node is 
a termset and an edge is directed from a child to its parent 
termset. Figure I(b) shows a portion of a 2-termset taxon- 
omy, including all ancestors of {td, fe}. 

The database in the application is denoted by 0, and 
called a set of term occurrences (or a set of occurrences in 
shortj; each occurrence is a subset 0fT. An occurrence cor- 
responds to the set of items in a department transaction 
record, and the set of terms (MeSHs) assigned to an article 
in Medline. For a given X, an extended occurrence of an 
occurrence o consists of all terms in o and all of their 
ancestors. 

An occurrence o supports a termset s if and only if every 
term in S is either a term in 0 or an ancestor of one or more 
terms in 0. For example, o = {td, t6, t, o} supports {tb}, {t6}, 
{tloh 04, tfjh U4, GoI, {t6, td, U4, t6, Q0h and all antes- 
tors of these termsets. The support of a termset is the per- 
centage of occurrences that support it. A termset with a 
support over a certain threshold (a minimum support) is 
called afrequent termset. It follows from definitions that a 
termset s is supported by o if and only if s is a subset of the 
extended occurrence of O; and that all ancestors of a fre- 
quent termset are also frequent termsets. 

With this terminology, the problem of mining general- 
ized term associations is formally defined as: 

Given a term taxonomy, a set of occurrences, and a 
minimum support, find all frequent termsets. 

Count Propagation Algorithm 
We now examine the new concepts and mechanism that are 
necessary for a count propagation scheme. Given a taxon- 
omy X, the reduced taxonomy X’ is a taxonomy derived 
from X such that X’ has the same terms as X, a term in X’ 
has at most one parent and at most one child, and a term 
that has multiple parents or multiple children based on X is 
either a root or a leaf in x’. Figure 2(a)-(b) shows an exam- 
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Figure 2: An example of taxonomies. 

ple of this derivation. In the initial stage of the frequency 
counting, x’ will be heavily fragmented because most terms 
in X are likely to have either multiple parents or multiple 
children. In the later stage, however, if terms that are 
unnecessary for further counting are removed from X, the 
average height of trees in X’ will increase. 

Given X and X’ derived from X, the augmented occur- 
rence 0' of an occurrence o is derived from o as follows. 
First, add to 0' all terms in o and all their ancestors based on 
X. Then, if more than one term in the same tree of X’ are 
present in 0’, keep only the one with the greatest depth and 
remove all the others. For example, 0’ = (t3, f7, tg, t10, tl A} 
results from o = {tll}, and 0’ = (f3, tg, t,, tg, tjO, $1) 
results from 0 = (t5, tll}. 

The transformed problem given by X’ and 0’ has an 
interesting property: 

Theorem The set of frequent termsets F’ computed 
from X’ and 0’ includes the set of frequent termsets F 
computed from X and 0, and F’ - F consists of term- 
sets that are non-trivial based on X’ but trivial based on 
X. 

The extended occurrence of o in 0 (based on X) is the same 
as that of the corresponding 0’ in 0’ (based on X’) so that o 

and 0’ supports the same termsets. The only difference is 
that, among those supported termsets, trivial ones based on 
X are different from those based on X’: the latter is included 
in the former. This is because x’ misses some of ancestor/ 
descendant relationships present in X. For example, t3 is an 
ancestor of t6 in X, but not in X’ so that (t3, t6) is trivial 
based on X, but non-trivial based on X’. Therefore, X’ and 
0’ will result in the same frequent termsets as X and 0 as 
far as termsets that are trivial based on X are excluded. 

CPA transforms the problem given by X and 0 into 
another problem given by derived x’ and 0’, and computes 
frequent termsets for the transformed problem. Extra care 
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is necessary, of course, for termsets that are trivial based on 
X. But, for the moment, let’s focus on the problem given by 
VI -A n~...:+h _,. ,.+L-. .-- kn:..+m V’ ,,A tn-no+ +nvr\..rr A n,,u ” Wllll 1,” “Lllrjl L”IIDIILLIIIID. A LulLI LG11113cIL Lcl*“II”- 
mies built from it have some simple and nice properties: 

l A term t in X’ is uniquely identified by an index 
defined as cr, d> where r is the root of the DAG that 
contains t and d is the depth of t in the DAG (e.g., 
the index of tl, t2, t3 is ctl, O>, ~11, l>, ctl, 2>, 
respectively). The index makes it easy to identify 
relationships between two terms. For tl with an 
index crl, dl> and t2 with an index cr2, dp, tl is 
an ancestor (or a descendant) of t2 if and only if rl = 

r, and d; < t-l, (nr c-i, > &+ -L \-- - I - 

l Termset taxonomies built from X’ has a simple struc- 
ture. As for terms, a termset s in such termset taxon- 
omies can be uniquely identified by an index which 
is the set of indices of the terms in S. A termset s 

with an index {cut, dl>, . . . . KU,, d,>} is an ances- 
tor of a termset q with an index {cvq, el>, . . . . CV,, 

en>} if and only ifs and q are not identical and, for 
any i, there exists j such that Ui = Vi and di <= ej. 
That is, any ancestor of a termset q can be obtained 
by simply replacing one or more terms in g with 
their ancestors. Note that this is not true if X’ 
allowed multiple parents or multiple children 
because thus obtained termsets may turn out to be 
trivial. 

CPA keeps only candidate termsets in termset taxono- 
mies, and use them for top-down count propagation. Sup- 
pose that a termset s is a subset of an augmented 
occurrence 0’ so that s and its ancestors are supported by 0’. 

CPA first checks if the root of the DAG that contains s is 
present in the taxonomy. If it is not, no ancestor of s are 
nrewnt in the taYnnnmv ~0 &t ~0 f~~fi*h~.r g~~~ntino ic net- y'""""' A.. ..A" C....V'.V"', 0 -- ---- 

essary. But, if it is present, CPA traverses down the DAG 
while counting all ancestors of s on the way. Indices of 
termsets are used to identify the root and to determine 
whether termsets in the DAG are ancestors of s or not. Fig- 
ure 2(c) shows a portion of the 2-termset taxonomy con- 
structed from X’ in Figure 2(b). Suppose that the termsets 
below the dotted line are not candidate termsets so that they 
are not stored in the taxonomy. If an augmented occurrence 
0’ contains a termset {t3, 5}, the counting begins at the root 
(tq, t4) and propagates down to 02, f41, 01, k,l, and {b, k,}. - - 

Coming back to the problem of termsets that are trivial 
based on X, but non-trivial based on x’, it is possible to dis- 
card them after frequent termsets are computed. This strat- 
egy will however waste a lot of computing time and 
memory. Therefore, those termsets should rather be 
removed from termset taxonomies before the counting 
begins. This operation is simple enough, but it would break 
down the count propagation scheme just described, if some 
ancestors of a termset s were removed while s remained. 

Such a problematic situation would not happen because, if a 
termset s in the termset taxonomy is trivial based on X, all 
tn-anto ;n tha l-xAfZ that onnt&nr E a,-~ alan t,-irrinl hcxrwl nn LbLIIIJbLJ 111 11.b ULILI LllLII cI”lllllllli) ” L&L* c4I.J” I.&1 “XUl “U.JYU “1, 

X so that the whole DAG drops out of the termset taxon- 
omy. In other words, if a termset s remains in the termset 
taxonomy, so do all of its ancestors. 

In summary, CPA partially extends occurrences 0 into 
augmented occurrences 0’, and partially relies on count 
propagation using termset taxonomies built from the 
reduced taxonomy X’. It would be especially efficient when 
the average height of trees in X’ is large so that a large por- 
tion of counting is covered by propagation. This is likely to 
happen when the given taxonomy X is deep and the count- 
ing procedure reaches later iterations. (Due to the space 
limitation, details of the algorithm will be reported else- 
where.) 

Performance Evaluation 
We have implemented CPA and evaluated its performance 
in comparison with other algorithms. Among the two algo- 
rithms, Cumulate and EstMerge, developed by IBM for 
mining generalized association rules (Srikant and Agratial 
1QWA the latter &owed only 2 rr?qind nerfnrmnnw. “/“,, . . ..- *....-. I -__-_-__ - _.-- 

improvement over the former. Han and Fu (1995) reported 
another algorithm whose strategy is similar to EstMerge. 
We therefore chose and implemented Cumulate for compar- 
ison with CPA. Our benchmark was run on a Sun SPARC- 
Station 20 running SunOS 4.1.3 with 128 MB of real 
memory and 439 MB of virtual memory. 

We have compared CPA with Cumulate for data sets 
extracted from a Medline database at USC. Each article in 
Medline has major and minor MeSHs (Medical Subject 
Headings) which are selected from the 18,000 MeSH tax- 
onomy. We picked the major MeSH field, and applied the 
algorithms to discover associations among MeSHs. 

In all cases that we checked on different sets of research 
articles from Medline, CPA showed better performance 
than Cumulate, the ratio of the total CPU times varying 
between 35% and 75% (Figure 3(a)-(b)). Figure 3(c) shows 
the breakdown of the CPU times into each iteration (the nth 
iteration computes frequent n-termsets) for a typical case of 
our benchmark. As expected, the performance gain of CPA 
over Cumulate becomes higher for later iterations. Memory 

P A,~ A-- -1.. IL, - ,-..- -.-.-- _.-.__ J :-IT: ___-_ ?,A, usages or me two algorlrnms dre Lompdreu in r~gurt: J(U) 
for the same data set as in Figure 3(c). The figure indicates 
that CPA uses less than 20% of additional memory to store 
termset taxonomies near the peak use of the memory (itera- 
tions five through nine). 

Conclusions 
An algorithm CPA for mining generalized term associations 
was presented, and it was shown that, for Medline data, 
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CPA performs better than a known algorithm, Cumulate. 
Other algorithms for generalized association rules, includ- 
ing Cumulate, have been designed and tested for depart- 
ment transaction records. We found that our data sets from 
Medline have characteristics very different from the trans- 
action records. We expect that other library data would 
behave more like Medline data than department transaction 
records so that other library applications will also benefit 
from the count propagation technique of CPA. More inves- 
tigation is on the way to confirm this conjecture. 

We have used discovered term associations to improve 
the search mechanism of Medline, within the context of 
USC Brain Project (Arbib et al.). In particular, we have 
developed a query interface that progressively guides users 
to refine queries by providing MeSHs that might be relevant 
to their interests. Further, we found that the knowledge of 
term associations is very useful for measuring relevance of 
documents to a given query. 
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Figure 3: A benchmark on Medline data. 


