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Abstract 

In this paper, we employ a novel approach to 
metarule-guided, multi-dimensional association 
rule mining which explores a data cube structure. 
We propose algorithms for metarule-guided min- 
ing: given a metarule containing p predicates, we 
compare mining on an n-dimensional (n-D) cube 
structure (where p < n) with mining on smaller 
multiple pdimensional cubes. In addition, we 
propose an efficient method for precomputing the 
cube, which takes into account the constraints 
imposed by the given metarule. 

Introduction 
Metarule-guided mining is a interactive approach to 
data mining, whereby the user can probe the data un- 
der analysis by specifying hypotheses in the form of 
metarules, or pattern templates. A data mining sys- 
tem attempts to confirm the hypotheses by searching 
for patterns that match the given metarules. Metarule- 
guided mining increases the likelihood of finding rules 
that are of interest to the user and can make the dis- 
covery process more eficient by using the metarules to 
constrain the rule search space. For example, metarule 
(1 

1 
can be used to focus the data mining search towards 

ru es disclosing which two factors combined promote 
the sales of Pentium computers. 

Vx E person, P(x, y) A Q(x, ‘w) j buys(x, “pent&m”), (1) 

where P and Q are predicate variables, x is a variable 
representing a person, and y and w are objec2 variables. 
All variables will be instantiated to concrete values in 
the mining process, e.g., association rule (2) matches 
or complies with metarule (1). 

Vx E person, ou1ns(x, “laptops) A income(x, “high”) 
=+ buys(s, “pentium”) (2) 

Metarule-guided mining is closely linked with other 
rule mining methods,Jespecially association rule min- 
ing (Agrawal & Srikant 1994; Han & Fu 1995; Srikant 
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& Agrawal 1996; Meo et al. 1996). Previous studies 
on data mining with metarules include (Klemettinen 
et al. 1994) which uses metarules as filters defining the 
form of interesting association rules; (Shen et al. 1996) 
which uses metarules to guide the mining of Bayesian 
data clustering rules; and (Fu & Han 1995) which uses 
a relation table-based structure for metarule-guided 
mining. 

With recent progress on data warehousing and 
OLAP technology (Chaudhuri & Dayal 1997), it is ex- 
pected that many mining tasks will be performed on 
data warehouses. With efficient techniques developed 
for computing data cubes (Harinarayan et al. 1996; 
Agarwal et al. 1996; Zhao et al. 1997), it is important 
to explore data cube-based rule mining algorithms. 
This motivates our study on metarule-guided mining 
using the data cube structure. Metarule-guided min- 
ing focuses the search on desired rule patterns, whereas 
data cube structures make good use of structured ware- 
house and precomputed aggregation information. An 
integration of both is likely to lead to an efficient min- 
ing method. We propose algorithms which consider: 
(1) when a precomputed data cube is available; and 
(2) dynamic construction of relevant data cubes for 
metarule-guided mining, otherwise. In the latter case, 
to mine a metarule with p distinct predicates from n 
relevant attributes (p < n), we compare construction of 
an n-D data cube versus construction of several smaller 
p-D data cubes. 

Preliminaries 
A metarule is a rule template of the form 

A A Pz A... Ai’,n=kQlAQzA...AC& (3) 

where Pi (i = 1, .., m) and Qj (j = 1, .., 1) are either 
instantiated predicates or predicate variables, and p = 
m+l is the number of predicates in the metarule. Rule, 
R, complies with a metarule, MR, iff it can be unified 
with MR, e.g., (2) complies with metarule (1). 

A rule X + Y, where body X and head Y each 
consists of a set of conjunctive predicates, is a multi- 
dimensional association rule iff {X, Y) contains more 
than one distinct predicate. For a data set D contain- 
ing tuples from a relational database, the support of a 
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Figure 1: A 3-D data cube with summary layers 

rule X 3 Y in D is the probability that the tuples in 
D contain both X and Y. The confidence of X + Y 
is the probability that a tuple contains Y given that it 
contains X. Typically, rules that do not satisfy user- or 
expert-provided minimum support and minimum con- 
fidence thresholds are considered uninteresting. A k- 
predicate set (i.e., containing k conjunctive predicates) 
is large if its support is no less than the minimum 
support threshold. Rule X =% Y is strong if it satis- 
fies both minimum support and minimum confidence 
thresholds. A rule in which all the predicates have 
distinct predicate names is called a non-repetitive pred- 
icate multi-dimensional association rule. Our study of 
metarule-guided mining of strong, multi-dimensional 
association rules is confined to this case. 

Example 1 Suppose a user wishes to mine a set of strong 
rules in a university database, associating the students’ 
gpa with their major, student-id, birth-place, and residence. 
The task can be expressed in a data mining query language, 
DMQL (Han & Fu 1995), as follows. 

mine multi-dimensional association rules 
from student 
in relevance to major, student-id, birth-place, residence 
set template P(s : student, z) A Q(s, y) +- gpa(s, 2). 
with min-support = 0.20, min-confidence = 0.80 

First, the task-relevant data is extracted, i.e., the set of 
student records is projected onto {gpa, major, student-id, 
birth-place, residence} using an SQL&query transformed 
from the provided query. The minimum support threshold 
is used to perform dimension reduction, i.e., removing at- 
tributes with too many distinct values, such as student-id, 
and perform necessary generalization/discretization, e.g., 
replacing raw data values, such as 3.873 for gpa, by higher 
level concepts, such as “escellentn. This leaves only three 
attributes major, birth-place, residence for possible match- 
ing with the predicates, P and Q. 0 

Our study explores rule mining using a data cube 
structure. An n-dimensional data cube, C[Al, . . . , A,], 
stores the group-by aggregation (count) of all possible 
combinations of the n attributes or dimensions, Ar. 
Each dimension contains lAi[ data rows (where IAil is 
the number of distinct values in Ai) and one sum row, 

used to store the count summation of the correspond- 
ing columns of the above data rows. A data cube can 
be viewed as a lattice of cuboids. The n-D space or n-D 
layer (the base cuboid) consists of all data cells (i.e., the 
count information for each n-D combination of the di- 

mensions). The (n-1)-D space consists of the sum cells 
storing the count information for each (n-1,LD combi- 
nation of the dimensions, and so on. The O-D space 
consists of one sum cell which stores the total num- 
ber of counts (or generalized tuples) represented in the 
cube. A 3-D data cube is shown in Fig. 1. For sparse 
cubes, sparse matrix technology (Zhao et al. 1997) can 
be applied. 

Methods, for Metarule-Guided Mining 
Using Data Cubes 

In our notation, metarule MR is in conjunctive normal 
form as in Eq. (3); p is the number of instantiated 
predicates or predicate variables in MR (p 2 n, where 
n is the dimension of the cube); Lk is the set of large 
k-predicate sets, and each member of Lk has two fields, 
predicate set and support count; and R is the set of all 
strong association rules that comply with MR. 

Mining on an existing data cube 

Owing to the wide availability of data warehouses, a 
precomputed n-D data cube (including the summary 
layers) may be available for metarule-guided mining. 
We examine two cube-based algorithms for this case: 
(1) multi-D-slicing, which finds large l-predicate sets 
and uses them to perform multi-dimensional slicing 
on the data cube. This algorithm adopts the spirit 
of table-based approaches to association rule mining 
(such as Apriori of Agrawal & Srikant 1994) as well as 
our earlier table-based study on metarule-guided min- 
ing (Fu & Han 1995), although here a data cube struc- 
ture is used; and (2) n-D cube search, which directly 
examines the p-D cells of the precomputed n-D cube 
in order to find large p-predicate sets, L, . 

Algorithm 1 (multi-D-slicing) A multi- 
dimensional slicing technique for metarule-guided mining 
of multi-dimensional association rules. 

Input: (1) Metarule, MR, containing p distinct predicates; 
(2) An n-D data cube, C[&, .., An], with all of its dimen- 
sion space precomputed (p < n), where the cube con- 
tains the dimensions relevant to answering the specified 
metarule query; (3) min_sup and min_conf thresholds. 

Output: R, the set of strong association rules that comply 
with MR. 

Method: First find the large l-predicate sets in each di- 
mension and then use the large predicate sets in dimen- 
sion (k - 1) to grow large k-predicate sets by multi- 
dimensional slicing on the data cube until large p 
predicate sets are found. 

1) for each dimension Ai, 
L1,(~i) = find_?arge_l_predicatesets(C,A;, m&-sup); 

2) Ll = UiLl,(Ai); 
3) for (C = 2; (k 5 p) & Lb-l # 0; k++) { 
4) // intersect the (k-l) dimensions to find Lk, i.e., 

Lk = f ind_hwge_predicatesets(C, Lk__l, n’h_SUp); } 
5) R = rule_gen(L,, MR, C, min_conf); 
6) return {R}; 
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At each k-th iteration, only the k-D summary layer needs 
to be loaded into main memory. If the layer is larger than 
the available main memory, it can be partitioned into 
chunks (Zhao et al. 1997) and only the corresponding 
chunks need be loaded for efficient computation. 

Rationale. Step 1 finds the large l-predicate sets for each 
dimension Ai by searching the 1-D space of the cube. A 
candidate predicate set is a potentially large predicate set. 
If Lk-1 is not empty (step 3), step 4 uses Lk_1 to derive 
the candidate k-predicate sets by intersecting the dimen- 
sion vectors in &-I, based on the principle of Apriori i.e., 
every subset of a large itemset must be large (Agrawal & 
Srikant 1994). The counts of the candidates in k-space are 
examined in order to find Lk. Search continues until L, is 
found (since L, predicate sets are needed to generate rules 
complying with a metarule having p predicates). In step 
5, a typical rule generation method generate rules from L, 
that comply with Mn and satisfy min-conf. 0 

Instead of searching for Lp from Ll, Lz, etc., the 
count at each pD cell can be examined directly to find 
Lp, leading to, 

Algorithm 2 (n-D cube search) A direct metarule- 
guided mining of multi-dimensional association rules by in- 
specting p-D cells of an n-D cube. 

Input/Output: The same as Algorithm 1. 
Method: 1. Examine the cell count of each pD cell. If a 

cell count satisfies min_sup, then add the correspond- 
ing ppredicate set to L,. 

2. Call the same rulegen procedure as in Algorithm 1, 
returning strong rules that comply with MR from L,. 

Rationale. In step 1, we can find L, directly by examin- 
ing the p-D cells since the summary layers of the cube are 
computed. Since the entire data cube may be larger than 
the available memory, only the p-D summary layer need 
be loaded in. In step 2, given the large ppredicate sets, 
a typical rule generation method can be used to generate 
rules that comply with the metarule. 0 

Integration of cube construction with 
metarule-guided mining 
When no precomputed data cube is available, the min- 
ing process must be integrated with cube computation. 
Metarule, MR, contains p predicates, of which m are 
in the body. To mine strong rules complying with MR, 
only the m- and p-D layers of the cube need be com- 
puted. We call this abridged construction. The p-D 
layer can be scanned to find LP. The m-D layer is 
required to compute the confidence of rules satisfying 
MR. We propose two approaches: 1) abridged n-D cube 
construction, which computes the p and m-D layers 
of an n-D cube, while searching p-D for Lp; and 2) 
abridged multi-p-D cube construction, which constructs 
smaller, multiple p-D cubes instead of one big n-D cube 
for mining. 

When a data cube cannot fit in main memory, the 
proposed algorithms employ a cube chunking strategy, 
where the cube is broken up into smaller, memory-fit 

chunks. Our proposed hierarchy-based chunking tech- 
nique scans through the data cube in a single pass and 
facilitates multi-level rule mining, as well. 

We describe our algorithms in two steps. First, the 
motivating ideas behind the two abridged cube con- 
struction algorithms are presented. For lack of space, 
the chunking technique is briefly discussed afterwards. 

Algorithm 3 (abridged n-D cube construction) 
Metarule-guided mining using metarule information to con- 
struct and search only a subset of an n-D cube. 
Input/Output: The same as Algorithm 1 except that the 

input cube contains no computed summary layers. 
Method: Construct the pD layer from the n-D data cells. 

Construct the m-D layer using only the p-D layer cells 
satisfying L,. If the cube cannot fit into memory, use the 
chunking procedure described below. Call a rule gener- 
ation algorithm to return strong rules. 

Note. Each non-empty n-D data cell is visited only once, 
with its count accumulated in each of the corresponding 
pD planes. The m-D layer is computed from a scan of the 
p-D cells satisfying min_sup. A flag can be set to indicate 
that an m-D plane has been constructed, so that none of 
the counts on a pD plane is inappropriately added more 
than once to the same m-D plane. •1 

Instead of constructing an n-D cube for mining a p 
predicate metarule (where n is the number of dimen- 
sions relevant to the mining task), the mining can be 
performed on smaller pD cubes (p < n). 

Algorithm 4 (abridged multi-p-D cube construction) 
Metarule-guided mining of a ppredicate metarule with n 
related dimensions by construction of (p”) pD cubes. 

Input/Output: The same as Algorithm 1 except that the 
input cube contains no computed summary layers. 

Method: Since there are (:) ways to choose p dimensions, 
compute (,“) p-D cubes without summary layers, then 
compute the m-D summary layer from the “large” pD 
data cells. A chunking algorithm is used, as described 
below, to compute the relevant layers if there is insuffi- 
cient memory. Since the (pD) data cells already have 
their counts associated with them, only the m-D layer of 
each cube is computed. 0 

Computing summary layers by chunking 
When there is insufficient main memory to hold a data 
cube for computation, chunking techniques which par- 
tition the data cube into small subcubes (“chunks”) 
can be used (Sarawagi & Stonebraker 1994; Agarwal 
et al. 1996; Zhao et al. 1997). 

An efficient, array-based algorithm for simultane- 
ous multidimensional aggregation has been studied re- 
cently (Zhao et al. 1997). At any given time, at least 
one chunk is loaded into memory. The data cells of the 
chunk are scanned, and the corresponding summary 
layers of the data cube are updated. This requires 
memory for the chunk being processed, and for the 
portions of the summary layers being updated. If the 
memory is sufficient to hold the chunk and summary 
layer portions, the summary layers can be computed 
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in a single sweep through each cube chunk. Otherwise, 
some chunks must be scanned more than once. 

A similar method for cube computation has been 
proposed in our study. The method is based on 
“chunking” a cube according to dimension hierarchies, 
computing each chunk as a subcube with summary Zay- 
em, and merging summary layers of subcubes into a 
cube summary layer. Since each chunk is partitioned 
according to dimension hierarchies, a chunk forms a 
semantically meaningful entity and its computation 
is equivalent to computing an interesting, meaningful 
subcube which may facilitate mining of multiple-level 
rules (Han & Fu 1995). Each chunk and its summary 
layers are small enough to fit in main memory. One 
scan of a chunk derives all of its summary layers, and 
these layers are sufficient for computing the summary 
layers of the entire cube. Thus, a single scan of each 
chunk is sufficient for computing the entire cube. 

Although each chunk is accessed only once, the 
subsequent computation of cube summary layers may 
fetch the summary layers of multiple chunks, cost- 
ing I/O operations. However, the ordering in which 
summary layers are computed can be explored, e.g., 
by computing some summary layers simultaneously if 
there is sufficient memory. Therefore, this hierarchy- 
based chunking and prior computation of chunk sum- 
mary layers is an interesting alternative to (Zhao et al. 
1997) for cube computation. This is especially benefi- 
cial for metarule-guided mining since only a few cube 
layers (i.e., p and m) need to be computed. 

Performance Study 
Based on our performance study (Kamber et al. 1997), 
we recommend the n-D cube search algorithm when 
the data cube is available. Regardless of the number 
of generalized tuples, n-D cube search must examine 
the same number of cells (i.e., the pD layer) in order 
to find L,. Hence, it exhibits better scalability than 
multi-D-slicing, whose execution time is dependent on 
the number of candidates found, which typically in- 
creases with the data set size. When no data cube is 
available, we recommend abridged multi-p-D cube con- 
struction over abridged n-D cube construction since the 
former exhibits greater scalability as the number of rel- 
evant dimensions (n) and values per dimension grow. 

Discussion and Conclusions 
Previous methods for metarule-guided mining of asso- 
ciation rules have primarily used a table-based struc- 
ture, requiring costly, multiple scans of the data. 
We proposed four algorithms which explore a data 
cube structure for metarule-guided mining of multi- 
dimensional association rules. When an appropriate 
n-D cube is available, an n-D cube search of the p-D 
layer cells can be applied (where p is the number of 
metarule predicates, p 5 n). Otherwise, information 
from the metarule, such as the number of predicates, 
can be used for efficient construction of a relevant cube 

and mining of the required rules. Preliminary results 
show that when the number of relevant dimensions or 
values per dimension is large, it is more efficient to con- 
struct and mine from multiple, smaller pD cubes than 
from one large n-D cube. For efficient cube construc- 
tion, a hierarchy-based chunking algorithm was pro- 
posed which requires the scan of each chunk at most 
once and may facilitate mining of multiple-level rules. 
This study is confined to mining rules with no repeti- 
tive predicates. Efficient methods for metarule-guided 
mining of more general forms of rules using data cubes 
is an interesting topic for future research. 
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