
Clustering Sequences of Complex Objects

A. Ketterlin
LSIIT, URA CNRS 187 1,

7, rue Descartes, F-67084 Strasbourg Cedex
e-mail: alain@dpt-info.u-strasbg. fr

Abstract Sequential Data

This paper is about the unsupervised discovery of patterns
in sequences of composite objects. A composite object may
be described as a sequence of other, simpler data. In such
cases, not only the nature of the components is important,
but also the order in which these components appear, The
present work studies the problem of generalizing sequences
of complex objects. A formal definition of generalized se-
quences is given, and an algorithm is derived. Because of
the excessive computational complexity of this algorithm, a
heuristic version is described. This algorithm is then inte-
grated in a general-purpose clustering algorithm. The result
is a knowledge discovery system which is able to analyze
any structured database on the base of a unified, unsuper-
vised mechanism.

Introduction
The process of knowledge discovery in databases has many
facets. This paper explores one of them, namely the task of
automatically discovering patterns in sequential data. The
goal is to find classes of data which appear to evolve “in the
same way”. The most important aspects are that the algo-
rithm is unsupervised (i.e., it doesn’t require any teaching),
and that the data to be analyzed may be structurally com-
plex (i.e., may contain sub-level data). This paper describes
an algorithm that learns classes of sequences of objects, and
is organized as follows: the next section explains what se-
quences are, and how classes of sequences are described.
The paper proceeds by briefly describing a general-purpose
clustering algorithm, and how it is adapted to handle se-
quences of objects. Finally, some conclusions are drawn,
and extensions of the approach are sketched.

a-----,-- -* #-Y---m--- c\L1--.A-
13e~Llb’IlLW VI LUIIl~lt?X UUJ”Lt.23

The purpose of this section is to describe the kind of data
the algorithm deals with, and then to explain how general-
ization is performed on such data.

Copyright @ 1997, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The problem of sequential data analysis has been studied
in several contexts. Statisticians usually talk about time se-
ries, but most research in this area deals with the problem
of prediction, i.e., predict the next event in the sequence
given a certain number of its predecessors. Also, time series
are usually bound to represent numerical or discrete sim-
ple quantities. A similar approach has been undertaken in
~68 caz&& !exnincr cnmmnnitv where it is USIJ~]]V c~llerl D 1-__ _ ---- ----~, . ---_- -1 -I , ------
discrete sequence prediction (Laird & Saul 1994). In both
cases, the goal is to predict a forthcoming event. A third,
more recent approach, is the frequent episodes discovery
approach (Mannila, Toivonen, & Verkamo 1995): the prob-
lem here is to find frequently appearing sequences given a
stream of events labeled with a finite number of discrete
symbols. This last approach is much more similar to the
one described in this paper, which is to cluster whole se-
quences.

The field of knowledge discovery in databases explic-
itly aims at handling databases, in contrast with data sets.
Databases are defined according to a schema, which details
how pieces of information are organized and linked to each
other. Data are usually structured when described at sev-
eral levels of abstraction. Structured data types are usu-
ally described with the help of several constructors. The
most common one is the tuple constructor, which allows
one to describe a type of objects with several attributes.
Another common constructor is the set constructor: an at-
tribute’s value may be a set of objects. Some clustering
algorithms are able to build classes of such objects (Ketter-
lin, Gancarski, & Korczak 1995). This paper is dedicated to
a third type of constructor: the sequence constructor, which
allows an attribute to accept an ordered sequence of sub-
-L.-+, c_ fr, . ..- I..-
CJDJeLl5 dS 115 VdlUB.

The clustering algorithm described below works on ob-
jects which are tuples of values, some of these values be-
ing sequences of (sub-)objects. Let us briefly introduce
an example in which sequential data appear. Imagine an
agent (e.g., a robot) moving in some delimited space. Sup-
pose now that the position of this agent is measured at sev-

Ketterlin ’ 215

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

era1 times. The result is a sequence of positions, where a
position might be a complex object, recording not only
the physical position, but also other parameters, like for ex-
ample, the temperature or any other relevant characteristic.
The complex object here may be called a trajectory, and
a potential data model could be:

position = tuple < x,y: number;
t : number; . ..>

trajectory = tuple i
traj : sequence < p : position >; . ..>

In this description, tuple and sequence stand for the basic
“type constructors”, and number stand for a basic data type;
position and trajectory are complex data type names;
and x, y, t, tra j and p are attribute names. Two particular
objects of such a type could be:

Tl = < traj = [PII, ~12, ~13 I , . . . >
T2 = < traj = [P21, P22, P23, P24 1 , . . . >

where, for example, the ~11 instance of position may be
described by:

p11=<x=25, y=5, t=40, . . . t

The basic problem is: given several objects TI, T2.. . how
is it possible to find classes of similar sequence?

Generalizing Sequential Data
Our main goal is to describe a system which is able to clus-
ter complex objects, like the ones presented at the end of the
previous section. These objects have “components” which
are themselves objects, and may thus also be clustered. In
fact, this remark is the basis of the algorithm presented in
this paper. The fundamental argument is the following: it
is not possible to cluster complex objects without first clus-
tering their components. Two remarks can be made in favor
of this argument:

l Sub-objects may themselves be complex, structured ob-
jects. One may imagine sequences of sets of any kind of
objects. This means that it is not possible, in general, to
consider the full description of components while clus-
tering their containers;

l Classes of complex objects have to be represented as in-
tensional descriptions, rather than as a set of members.
Thus, to build classes of complex objects, one needs
some “vocabulary” to formulate these classes. Names
of classes of components are good candidates in this re-
spect.

Another remark, which is of particular importance in a
knowledge discovery context, is the following:

l The resulting classes have to be easily understandable by
a human expert. This is especially true in unsupervised
learning tasks, where very few, if any, objective measures

are available to evaluate the results of an experiment. Ab-
straction levels (i.e., data types) which have been judged
relevant at the modeling step have to be “preserved” at
the analysis step, so as to help the interpretation of the
results.

For all these reasons, the system described in this paper pro-
ceeds in a bottom-up way in terms of abstraction. In our
previous example, this means that classes of positions
will be built first, and these classes will be used to build
classes of trajectories.

To understand how the clustering process works, let
us first make some general hypothesis about the cluster-
ing algorithm. We will assume that a clustering algo-
rithm is available for simple objects (i.e., objects described
with simple-so-called “primitive’‘-attributes: numeric
and nominal ones). We will also assume that this algorithm
is able to produce a hierarchical clustering from simple ob-
jects. Finally, we will assume that there is some way to
quantify the “precision” of each of the produced classes,
i.e., that very narrow (or specific) classes have a higher
score than wide (or general) ones. In our example, this
implies that there exists an algorithm that will build a hier-
archy of classes of positions. These classes will be used
to describe classes of trajectories.

The next phase is to define a generalization mechanism
for sequences of sub-objects. The question now is the fol-
lowing: given two sequences, what is the best description
for what is common to both sequences, i.e., the best gen-
eralization. When computing this generalization, classes of
components will be used in the following way: since each
component is classified, it can be replaced by the name of
the most specific class covering it. Hence, we transform
a sequence of sub-objects into a sequence of class labels.
Because these classes are hierarchically organized, the gen-
eralization process is much less strict than if a finite set of
unordered class labels was used. Here is the basic prob-
lem we are left with: given two sequences U and V of class
labels taken from a hierarchy Yf, find a most specific gen-
eralization S covering both U and V.

The formal definition of the generalization is as follows:
a generalization S = [sl , $2 , . . . ,sJ of two sequences U =
[Ul,ue] andV= [VI , . . . , v,] must be such that:

1.

2.

3.

4.

3f,,: [l,!]-+ [l,n](resp.f,: [l,m]-t [l,n])asurjective
mapping such that sA,(i) covers ui (resp. SJ,(J covers vj);

Vi,j E [l,t] (resp. E [l,m]), i < j implies &(i) 5 fU(j)
(rev. fd4 I fv(jh

Sk = Gen({u;,i E fL’(k)},{vj,j E f;‘(k)}) (recall that
fU and fv are surjective mappings, so f;’ (i) and f;’ (i)
are sets of indices), where Gen(yl ,y2,. . .) denotes the
most specific class covering YI, y2, . . .

Vi E [l,n- l],siflsj+l = 0.

216 KDD-97

The first condition states that any element of U or V is
“represented” in S. The second ensures that the order is
preserved, and implies that several elements of a sequence
may be mapped onto the same element of the generaliza-
tion. The third expresses the fact that an element of S is
the label of the most specific class covering the elements
of U and V it represents. The fourth condition states that
two adjacent class labels in the generalization are disjoint,
i.e., cannot both match with the same element of one of the
initial sequences. This condition enforces the uniqueness
of the generalization. These conditions have an intuitive
meaning: the generalization of two sequences is a sequence
whose elements are generalizations of the elements of the
initial sequences. These generalizations appear in the same
,,,l,” n” :.. A, :,\:t:n, na”.los.nn” ..,;th *_ n,,p+.,-I~n;“~ ha- “lwa a3 11, I.,,0 lll,Llcl, or;yuG,rbrjo, WlLLl ,I” ““~~‘a~~“‘~ vu-
tween adjacent class labels.

Searching for Generalizations
The problem now is: “how does one compute such a gen-
eralization?” Unfortunately, there is no simple answer to
this question. We are left with a typical matching problem.
It is quite easy to show that an exhaustive search through
the space of generalizations has an exponential cost in the
length of the sequences. The only solution left is to per-
form a guided search through this space. Fortunately, there
are some good heuristics to help that search. Before exam-
ining them, let us first give the overall matching algorithm.
It simply consists in testing two limit cases:

l If one of the sequences U and V is of length 1, both se-
quences “collapse” into a generalized sequence of length
1. The class label used as the only element of the se-
quence is the label of the most specific class covering all
elements of the initial sequences;

a If both sequences are of length 2, the resulting sequence
is the superimposition of both initial sequences: the re-
sult of matching [nt,u2] with [vt,v2] is the sequence
[sl,s2] with st = Gen(ut,vl) and s2 = Gen(uz,vz). If
st and s2 overlap, the result is [Gen(st,sz)]. This is an
example of explicit enforcement of the disjointness con-
dition.

In any other case, the algorithm proceeds to test some pair-
ing between one element of the first sequence and one el-
ement of the second sequence. The function PAIRS(U,V)
returns all possible such pairings. For each couple of in-
dices (i,jj, it then solves the probiem “on the ieft part” of
the pairing, then on the “right part”, and finally “pastes”
together both partial results, The PASTE recombines both
parts, taking into account that both have a common ele-
ment (the class covering ui and vj). The final result of the
matching is the best generalization found: the ranking is
performed according to the Il heuristics, which will be de-
scribed in the next section. The algorithm is:

GENERALIZE : U, V : Sequence + S : Sequence
if IUI = 1 or IV1 = 1 then

return COLLAPSE(U,V)
elseifIUI=2andIVI=2then

ldU~YUPERIMPUSE(U ,V)

else
foreach (i,j) E PAIRS(U,V) do

let L = GENERALIZE(U[~,~],V[~,~])
let R = GENERALIZE(U[I',.&V[~,~])
IetRi,j = PASTE(L,R)

done
return the Ri , j with best r'I(Ri, j)

endif

The exhaustive algorithm is obtained by making the func-
A: - n. --,. -^A__-- -11 _^^^ 21-1,. ^ ,...- I,” I: :\ I.-.v..rn..+ /I ,\
UOn IAIKS It;Lll,I, ill, IJVSS,““; L”U~‘GS \L,J, \G,~LG~L \‘, 1,

and (I,m) to avoid infinite recursion). But as we have seen,
this leads to an intractable algorithm. Fortunately, there are
some ways to reduce this cost.

First, each couple (i, j) makes the element Gcn(ui,vj)
appear in the resulting sequence. But since the quality of
this class label can be quantified, couples can be ranked ac-
cording to the quality of the class label they lead to. This al-
lows for all standard heuristic searches: for instance, beam-
search is achieved by sorting the list of couples and keeping
only a fixed number of the best ones for further inspection.
Second, because adjacent class labels in the resulting se-
quence must represent disjoint classes, the input sequences
can be reduced after having been matched. In some circum-
stances, this leads to a dramatic decrease in their length, and
allows for a rapid elimination of bad pairings.

The experiments conducted bu the author have shown
that these simple heuristics allow keeping the execution
times under a reasonable limit. More subtle optimizations
can be applied, which lead to even better results (Ketterlin
1997).

The Learning Algorithm
Unsupervised Learning
The COBWEB algorithm (Fisher 1987) takes as input a
list of objects and builds a hierarchy of classes grouping
these objects, It proceeds by taking one object at a time,
and drives it down the tree. At each level, the algorithm
looks at several variations of the current level’s partition-
ing. The selection of one of these variations is made on
the base of a heuristics (decribed below), and the algo-
rithm eventuaiiy recurses to the next ievel. Fuil descrip-
tions of the algorithm are available elsewhere (Fisher 1987;
Gennari, Langley, & Fisher 1989) for readers interested in
the details, COBWEB has two major interesting aspects with
respect to sequential data clustering. First, this algorithm is
incremental: it never requires to find a generalization of
more than two sequences, since the basic action is to put
an object (a sequence) into a class (another sequence). Sec-

Ketterlin 217

ond, the heuristics used by COBWEB is easily extendable:
the “quality” of a partitioning is directly related to the qual-
ity of the individual classes in the partitioning, which in
turn can be easily quantified.

One last positive aspect of COBWEB is its genericity: in
fact, in the process of clustering sequential data, two class
hierarchies have to be built. The first one groups the el-
ements of the sequences, and the second one groups the
sequences themselves. It is an important advantage to be
able to use the same algorithm for both phases, because it
reduces the overall complexity of the knowledge discov-
ery system, and also because data can be analyzed at any
level of structural complexity. One can imagine clustering
sequences of sequences of whatever complex objects, for
instance.

Handling Sequences
We still have to describe precisely how COBWEB makes
its decisions. At the level of a class C, the algorithm has to
decide how to modify the current set of sub-classes of C. To
measure each potential partitioning {Cl,. . . ,CK}, COBWEB
uses:

f i P(Ck) o-wk> -PI)
k=l

where P(Ck) measures the proportion of objects covered by
Ck, and lYl measures the individual precision of a class: this
heuristics simply averages the gain in precision from the
common super-class to each sub-class. We thus have to
define ll for generalizations of sequences of sub-objects.
Since classes of components (taken in the H hierarchy),
can be evaluated with n, evaluating a class of sequences
consists in evaluating the classes of components whose la-
bels are used in the generalization of the sequences. If the
class S of sequences is described with the generalization
[%,az,..., a,], the algorithm simply averages the individ-
ual classes’ quality, namely:

This is enough to select between different partitionings, and
allows COBWEB to work on sequences of components.

Conclusion
This paper describes an algorithm which is able to cluster
sequences of complex, structured objects-full details and
examples are provided in (Ketterlin 1997). The process is
based on a generalization procedure, which determines in-
tensional representations of classes of sequences. This pro-
cess is straightforwardly embedded into a general purpose
clustering algorithm. This algorithm is able to cluster sim-
ple and complex objects: the extensions presented in this
paper, along with previous work by the same author (Ket-
terlin, Gancarski, & Korczak 1995) on set-valued attributes,

lead to a knowledge discovery system that can handle any
type of composite objects.

There are several potential applications of clustering in
the context of knowledge discovery in databases. The first,
most obvious one, is to uncover important regularities in
the database. Since similar data are put together, important
trends may appear. A second, less immediate application
is schema evolution. Since the algorithm forms a hierar-
chy of classes based on generalization, it may be applied to
the contents of a database to suggest conceptual modifica-
tions, by eliciting classes present in the data, so as to help
redesigning a conceptual model from data.

However, several extensions of the approach presented in
this paper may be worth studying. Tbe first one is to allow
some tolerance during the generalization phase: as it is de-
scribed in this paper, generalization requires a strict match-
ing to be found between two sequences. Allowing some
deviation would make the algorithm more robust. Another
source of further developments is the fact that building gen-
eralizations is a process that allows other kinds of inference.
One notable example of such inferences may be called se-
quence completion. Starting with an incomplete sequence
(i.e., a sequence which is known to miss some elements), it
is possible to use the class hierarchy to suggest classes of
the “unknown” part(s) of the sequence. Such a completion
procedure would make the clustering algorithm be also an
information retrieval systems.

References
Fisher, D. H. 1987. Knowledge acquisition via incremen-
tal conceptual clustering. Machine Zearning 2: 139-172.
Gennari, J. H.; Langley, P; and Fisher, D. H. 1989. Mod-
els of incremental concept formation. Arti$ciuZ intelli-
gence 40: 1 l-6 1.
Ketterlin, A.; Gancarski, P.; and Korczak, J. J. 1995. Con-
ceptual clustering in structured databases: a practical ap-
proach. In Fayyad, U. M., and Uthurusamy, R., eds., Pro-
ceedings of the first international KDD conference. Mon-
treal, Canada: AAAI/MIT Press.
Ketterlin, A. 1997. Clustering complex objects: the
case of sequences. Rapport de recherche, LSIIT, Uni-
versite L. Pasteur, Strasbourg, France. (Available from
http://dpt-inio.u-strasbg.fr/“alain).

Laird, P, and Saul, R. 1994. Discrete sequence prediction
and its application. Machine learning 15:43-68.
Mannila, H.; Toivonen, H.; and Verkamo, A. I. 1995.
Discovering frequent episodes in sequences. In Fayyad,
U. M., and Uthurusamy, R., eds., Proceedings of the
first international KDD conference. Montreal, Canada:
AAAI/MIT Press.

218 KDD-97

