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Abstract 

As said in signal processing, “One person’s noise 
is another person’s signal.” For many applica- 
tions, such as the exploration of satellite or med- 
ical images, and the monitoring of criminal ac- 
tivities in electronic commerce, identifying ex- 
ceptions can often lead to the discovery of truly 
unexpected knowledge. In this paper, we study 
an intuitive notion of outliers. A key contribu- 
tion of this paper is to show how the proposed 
notion of outliers unifies or generalizes many ex- 
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tests for standard statistical distributions. Thus, 
a unified outlier detection system can replace a 
whole spectrum of statistical discordancy tests 
with a single module detecting only the kinds of 
outliers proposed. A second contribution of this 
paper is the development of an approach to find 
all outliers in a dataset. The structure underly- 
ing this approach resembles a data cube, which 
has the advantage of facilitating integration with 
the many OLAP and data mining systems using 
data cubes. 

Introduction’ 
It has been widely recognized that knowledge discov- 
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dependency detection, (b) class identification, (c) class 
description, and (d) exception/outlier detection. The 
first 3 categories of tasks correspond to patterns that 
apply to many objects, or to a Iarge percentage of ob- 
jects, in the dataset. In contrast, the 4th category 
focuses on a very small minority of data objects, so 
small that these objects are often discarded as noise. 
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lead to the discovery of truly unexpected knowledge. 
Some existing algorithms in machine learning and data 
mining have considered outliers, but only to the extent 
of tolerating outliers in whatever the algorithms are 
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supposed to do (Ester et ~1. 1996; Ng & Han 1994; 
Zhang, Ramakrishnan, & Livny 1996). 

Almost all studies that consider outlier identification 
as their primary objective are in statistics. Barnett 
and Lewis provide a comprehensive treatment, listing 
about 100 discordancy tests for normal, exponential, 
Poisson, and binomial distributions (Barnett & Lewis 
1994). The choices of appropriate discordancy tests 
depend on: (a) the distribution, (b) whether or not 
the distribution parameters (e.g., mean and variance) 
are known. Ic\ the number of extxctd olltlierq and , \., .-_- ---__--- -_ r -----. - -1____ L, ____ 
(d) even the types of expected outliers (e.g., upper or 
lower outliers, in an ordered sample). For example, for 
a normal distribution with known mean and known 
variance, there are separate discordancy tests for: sin- 
gle upper outliers, upper outlier pairs, k upper out- 
hers, single lower outliers, lower outlier pairs, k lower 
outliers, upper and lower outlier pairs, etc. There are 
other tests if the mean is not known, or if the variance 
is not known. Furthermore, there are separate tests for 
other distributions. Yet, despite all of these options 
and decisions, there is no guarantee of finding outliers, 
either because there may not be any test developed for 
a specific combination, or because no standard distri- 
bution can adequately model the observed distribution. 
In a data mining context, the distributions of the val- 
ues of the attributes are almost always unknown. To fit 
the observed distributions into standard distributions, 
and to choose suitable tests, requires non-trivial com- 
putational effort for large datasets. This motivates our 
study of a unified notion of outliers, defined as follows: 

This notion is intuitive because it captures the gen- 
eral spirit of an outlier. Hawkins eloquently describes 
an outlier as “an observation that deviates so much 
from other observations as to arouse suspicions that 
it was generated by a different mechanism” (Hawkins 
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1980). As such, this notion is a natural candidate 
for situations where the observed distribution does not 
fit any standard distribution, or where no discordancy 
test has been developed. In this paper, we show that 
for many discordancy tests, if an object 0 is an outlier 
according to a specific discordancy test, then 0 is also 
a UO(p, D)-outlier for some suitably defined p and D. 

Data mining, by definition, implies large quantities 
of data; therefore, efficiency or scalability is an im- 
portant goal. A key contribution of this paper is the 
development of a partitioning-based approach for de- 
tecting UO(p, D)-outliers. Its efficiency, particularly 
for datasets with low dimensionality, will be demon- 
strated by the performance results presented at the 
end of this paper. Another advantage of our approach 
is that its underlying data structure resembles a data 
cube (Gray et al. 1995). This makes our method eas- 
ily integratable with the many OLAP systems and data 
mining systems using data cubes. 

Properties of UO(p, II)-Outliers: 
Relationships with Existing Notions 

In this section, we show how our notion of UO(p, D)- 
outliers relates to existing notions of outliers, most of 
which turn out to be specific instances of ours. 

Definition 1 We say that UO(p, D) unifies or gener- 
alizes another definition Def for outliers, if there exist 
specific values PO, DO such that object 0 is an outlier 
according to Def iff 0 is a UO(po, Do)-outlier. 0 

Let N be the number of objects in the input dataset 
T. Each object is identified with the same k attributes. 
k is called the dimensionality of the dataset. Suppose 
there is an underlying distance metric function F that 
gives the distance between any pair of objects in T. 
For an object 0, the D-neighbourhood of 0 contains 
the set of objects Q E T that are within distance D 
from 0, i.e., {Q E T 1 F(O,Q) 5 D}. The fraction p 
is the minimum fraction of objects in T that must be 
outside the D-neighbourhood of an outlier. 

Outliers in Normal Distributions 
For a normal distribution, outliers can be considered to 
be points that lie 3 or more standard deviations (i.e., 
2 3~) from the mean p (Freedman, Pisani, & Purves 
1978). 
Definition 2 Let T be a set of values that is truly 
normally distributed with mean p and standard devia- 
tion 6. Define DefNormal as follows: t E T is an outlier 
iff % 2 3 or y 5 -3. cl 

Lemma 1 UO(p, D) unifies DefNorntal with po = 
0.9988, DO = O.l3a, i.e., t is an outlier according to 
DefNornaal iff t is a UO(O.9988,0.13a)-outlier. 

Proof Outline: We use probabilities to reflect the 
number of points lying in a D-neighbourhood. Specifi- 
cally, the probability is 1 -p that the distance between 
2 randomly selected points, 0 and Q; is less than or 
equal to D. Let TI and TZ be random variables that are 
normally distributed with parameters p and g2 i.e., 
Tl , T2 

i - N(p, c2)). Define 21 = v and 22 = y 
as standard normal variables (i.e., Zl,& - N(0, 1)). 
Using a table that lists areas for ranges --oo < .Zi 5 z 
under the standard normal curve to 4 decimal places, 
and given po = 0.9988 and DO = O.l3a, we get: 

Pr(ITl - Tzl > 0.134 > 0.9988 
u PT(JTI - Tz1 5 0.13~) 5 0.0012 
u PT(TI - 0.13r < Tz < TI + 0.13~) 5 0.0012 
u Pr(Z1 - 0.13 5 22 5 21 + 0.13) 5 0.0012 
U 21 5 -3.0000 or 21 2 3.0000 
u Tl<p-3g or Tl>p++u 0 

Note that if the value 3a in DefNornzal is changed 
to some other value, such as 40-, the above proof pro- 
cedure can easily be modified with the corresponding 
po and Do to show that UO(p, D) still unifies the new 
definition of DefNormal. 

Barnett and Lewis give many specialized tests for 
identifying outliers in normal distributions with known 
or unknown means and/or standard deviations. In- 
stead of using the standard normal curve, some of those 
tests use a t-distribution curve, which has a fatter tail 
than the normal curve. Nevertheless, the same proof 
procedure shown above still works with appropriate 
modifications. As a concrete example, Barnett and 
Lewis give DefN6 for testing for an upper and lower 
outlier pair in a normal distribution with unknown 
mean and variance. In a more detailed report (Knorr 
& Ng 1997), we give a proof showing that UO(p, D) 
unifies DefN6 with po = 0.999 and DO = 0.2. Due to 
very limited space, we omit those details. Details and 
proofs are also available for the following lemmas. 

Outliers in Other Distributions 
Consider the following test for finding a single upper 
outlier in an exponential sample with unknown param- 
eter (Barnett & Lewis 1994). Let the sampled values 
be ordered as z(l), . . . , ~(~1, and let the test statistic Tl 

be defined as (&ci,) * Let T be the observed value 

for TI , and SP(T) be the significance probability that 
TI takes values more discordant than r. 

Barnett and Lewis provide an example using 131 ex- 
cess cycle times in steel manufacture, whose distribu- 
tion reasonably approximates an exponential distribu- 
tion with parameter 0.14. Let us consider this example. 
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Definition 3 Define DefEcp as follows. Observation 
t is an outlier (according to test statistic Tl defined 
above) iff SP(r) < 0.01. For example, for the 131 
excess cycle times, ~(131) = 92 is an outlier because 
SP(T) 5 0.00017. 0 

Lemma 2 For an exponential distribution with pa- 
rameter 0.14, UO(p, D) unifies &?fEzp with po = 0.999 
and D 0 = 0.0001. 0 

For a binomial distribution, t can be defined as an 
outlier iff r is greater than or equal to a specific crit- 
ical value (listed in tables of such values (Barnett & 
Lewis 1994)). Again, a proof is available showing that 
UO(p, D) unifies this definition of outliers in a bino- 
mial distribution. 

The following test can be used to find outliers in a 
Poisson distribution with parameter p = 3.0. 

Definition 4 Define DefpoiSSon. as follows: t is an out- 
lier iff t > 8. 0 

Lemma 3 UO(p,D) unifies Defpoissors with po = 
0.9962 and Do = 1. II 

Comparison with Sequential Exceptions 
and with T’Ista Clnsterincr Alpnrithms ___-- -__- -__J-_ __-L1-__-_a ---o---‘-----’ 

All of the outlier identification studies that we have 
come across are in statistics expect for the “sequen- 
tial exceptions” approach (Arning, Agrawal, & Ragha- 
van 1996), whereby a dataset is searched for implicit 
redundancies. Specifically, data items called sequen- 
GnI O’PPDmt;nl7E lVCl nvtT.nrtnrl wh;rh mc,.Am;n~ tha I.O- OYUU bL.rb~‘Y”‘UG CUIC b‘%“IU~“xAL, “I 1,1..,11 IlIwAxlllllu~ “11b IL. 
duction in Kolmogorov complexity. Unlike UO(p, D)- 
outlier detection (and all statistical discordancy tests, 
and most distance-based data mining works), the ap- 
proach of Arning, et al. does not require a metric dis- 
tance function. Thus, because of model differences, 
their approach and ours will not necessarily identify 
the same outliers, even for a dataset that is applicable 
to both approaches. 

Data clustering algorithms assign similar objects 
in a dataset to the same classes; however, they 
provide little support for identifying outliers (Kauf- 
man & Rousseeuw 1990; Fisher 1987). CLARANS, 
BIRCH, and DBSCAN are clustering algorithms de- 
signed specifically for data mining applications. In 
CLARANS (Ng & Han 1994), an object is (removed 
as) “noise” if its removal raises the silhouette coeffi- 
cient of the clusters. In BIRCH (Zhang, Ramakrish- 
nan, & Livny 1996), an object is (removed as) noise if 
it is “too far from its closest seed,” where a seed is some 
representative object such as the centroid of a cluster. 
DBSCAN classifies objects as core, border, or outlying, 
based on the reachability and connectivity of the ob- 
ject being clustered (Ester et al. 1996). A key here is 

that DBSCAN, as a clustering algorithm, aims to pro- 
duce maximal-size clusters and is reluctant to label ob- 
jects as outliers. Neither DBSCAN nor CLARANS nor 
BIRCH is designed to unify the kinds of distribution- 
dependent discordancy tests described earlier. 

An Approach for Finding All 
UO(p, D)-Outliers 

Although limited space does not permit the inclusion 
ant-l rnmnlc4t.v analv& of ~I,P nlmrit.hm fQr fi.n&ng -..- --A.AI.-‘.‘vJ .“..--J --- “* --_ I-‘o -__-..___ 
all UO(p, D)-outliers, we present the underlying prop- 
erties and the general approach for computing those 
outliers, followed by preliminary experimental results. 

Underlying Cell Structure and Properties 
A naive algorithm for detecting all IrO(p, D)-outlier~ 
for given values of p and D would be to count, for 
each object Q, the number of objects in the D- 
neighbourhood of Q. A more optimized algorithm is 
to build and search a spatial indexing structure, such 
as a k-d tree (Bentley 1975). Instead, our approach for 
finding all UO(p, D)- ou tl iers relies on an underlying 
cell structure. As will become obvious later, the idea 
is to reduce object-by-object processing to cell-by-cell 
processing, thereby gaining efficiency. For ease of pre- 
sentation, we show the cell structure and its properties 
for the 2-dimensional case, i.e., k = 2. Later, we de- 
scribe what changes are required to generalize to higher 
dimensions. 

The 2-dimensional space spanned by the data ob- 
jects is partitioned into cells or squares of length I = 
6. Let CX,y denote the cell that is at the intersection 
of row z and column y. The Layer-l (Li) neighbours 
of cz,, are all the immediate neighbouring cells of C,,, 
as defined in the usual sense, i.e., 

~l(G,,) = 

In the 2-dimensional case, a typical cell (except for cells 
that are on the boundary of the cell structure) has 8 
Li neighbours. 

Property 1 Any pair of objects within the same cell 
is at most distance 4 apart. q 

Property 2 If C,,, is a L1 neighbour of Csc,Y, then 
any object P E Cub, and any object Q E CzVY are at 
most distance D apart. cl 

Property 1 is valid because the length of a diagonal of 
a cell is & = Jzs n = f. Similarly, Property 2 is 
true because the distance between any pair of objects 
in the two cells cannot exceed twice the length of a 
diagonal of a cell. As will become obvious later, these 
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two properties are useful in ruling out many objects 
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C,,, are all the cells within 3 cells of C3c,y, i.e., 

While Layer 1 is 1 cell thick, Layer 2 is 2 cells thick. 
This is significant because of the following property. 

Property 3 if C,,, + Cz,Y is neither an il nor an i2 
neighbour of Cx,y, then any object P E C,,, and any 
object Q E Cz,y must be at least distance D apart. 0 

Because the combined thickness of L1 plus La is 3 cells, 
the distance between P and Q must exceed 31 = s > 
D. In the 2-dimensional case! a typical cell> except for 
boundary cells, has 72 - 3’ = 40 L:! cells. 

The key idea of our approach is summarized in the 
following property. For convenience, let M denote the 
maximum number of objects that can be inside the D- 
neighbourhood of an outlier, i.e., M = N(1 - p), and 
let m be the total number of cells. 

Property 4 (a) If there are > M objects in Cx,y, 
mr,mn ,f tLn ,h:,,+c- ;, /-’ :, _n ,,,cl;o, /lx1 Tf th,nno ,‘“r‘G “I tJ11c “UJGLIJ” 111 vl,y 1u au “U~II~;I. \u, II “IIGIG 

are > M objects in Cz,yUL1 (Cz,y), none of the objects 
in Cr,y is an outlier. (c) If there are < A4 objects in 
Cz,y U L1(C,,,) U Lz(C~,~), every object in C,,, is an 
outlier. cl 

Properties 4(a) and 4(b) are direct consequences of 
Properties i and 2, and 4jcj is due to Property 3. 
Note that these properties help to identify outliers or 
non-outliers in a cell-by-cell manner, rather than on an 
object-by-object basis. This kind of “bulk processing” 
reduces execution time significantly. 

Generalization to Higher Dimensions 
To generalize from the 2-dimensional case to k > 2, we 
use the same algorithm; however, to maintain Proper- 
ties 1-4, (i) the length of a cell changes from I = 3 
to 1 = &, and (ii) Layer 2 is no longer 2 cells thick, 

but rather [2&l cells thick. We defer proofs and com- 
plexity analysis to a more detailed report (Knorr & Ng 
1997). In ongoing work, we are studying how to opti- 
mize UO(p, D)-outlier detection for high dimensional 
cases, e.g., k > 10. 

Preliminary Experimental Results 
We ran our algorithm on a 16-attribute, 856-record 
dataset consisting of 1995-96 performance statistics 
for players in the National Hockey League. For a 3- 
dimensional cell structure containing 1000 cells, and 
using parameters 0.99 5 p < 0.979 and 70 _< D 5 

125, search times ranged from 0.11 to 0.17 seconds- 
nnnrovima.teIv s@J of k-d t;rpe sear& t,imes. -=r--~ -.-^- -LeJ Wh-en 
we ran our algorithm against much larger, synthetic 
datasets, we obtained results even more dramatic. For 
100000 tuples and 0.99 5 p 2 0.99999 (approxi- 
mately), our algorithm yielded search times ranging 
from 0.52 to 95.09 seconds. In comparison, a some- 
what optimized brute force approach required 4.54 to 
447.68 seconds. Searches using various kinds of k-d 
trees exceeded the CPU timer limit of 2147 seconds. 
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