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Abstract 

A variety of techniques from statistics, signal processing, 
pattern recognition, machine learning, and neural 
networks have been proposed to understand data by 
discovering useful categories. However, research in data 
mining has not paid attention to the cognitive factors that 
make learned categories intelligible to human users. We 
ohnwr +hn+ _,.a Cnnte... the+ ;nfl.,nmnao thn ;ntczll;~.;h:l;+.r nf cu.” w UllaL “II-d lcLlrl.“l UlaL I,,IIUcII,~U,J LllU IIILtAII~,“IIICJ “I 

learned models is consistency with existing knowledge 
and describe a learning algorithm that creates concepts 
with this goal in mind. 

Introduction 
Knowledge-discovery in databases is a field whose goal is 
to extract usable models from a collection of data. Such 
models are expected to be accurate and are further 
expected to be intelligible to experts in the field. For 
example, knowledge acquired through such methods on a 
medical database might be published in scientific journals 
or written down as procedures to be followed in a health 
maintenance organization. While it is important that such 
knowledge be an accurate summary of the data, it is 
equally important that the knowledge be comprehensible 
to experts in the domain. Research in learning 
comprehensible models has typically equated 
comprehensible with concise (e.g., Craven, 1996 and 
Karalic, 1996). Other work on increasing the 
understandability of learned models concerns the 
construction of tools for visualizing the results of learning 
(e.g., The MineSet Tree Visualizer- Kohavi, Sommerfield 
& Dougherty, 1996). Here we argue that another factor 
that influences intelligibility of learned rules is being 
integrated with other knowledge in the domain. 

The goal of knowledge-discovery in databases is 
sometimes viewed as finding “the” model of the data, 
while in reality there are often many possible models of 
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the data that are not significantly different according to 
any statistical procedure on the training data. For 
example, Murphy and Pazzani (1994) used a massively 
parallel computer to find all decision trees consistent 
with a set of 20 training examples. A total of over 
25,000 trees were found. Many of these trees were very 
complex. However, on average there were 20 trees with 
5 or fewer tests. If it is important that the results of 
learning be intelligible to people then agreement with 
known human biases is an additional constraint that may 
be placed on model selection. Psychological 
investigation has revealed factors that simplify learning, 
understanding and communication of category and 
process information (e.g., Billman & Davila, 1995; 
Kelley, 1971). In this paper, we will focus on one 
constraint from psychological investigations: the 
consistency with prior knowledge (Murphy & Allopenna, 
1994; Pazzani, 1991). 

This research grew out of analyzing a database 
collected by the Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD). A patient database was 
collected containing data on the dementia status of each 
patient and the results of two commonly used cognitive 
tests for dementia screening. The particular problem of 
interest is to identify patients with early signs of 
dementia. In previous research (Shankle, Mani, Pazzani, 
& Smyth, 1997), we have shown that a variety of 
machine learning and statistical methods can acquire 
models that have accuracy, specificity and sensitivity 
that exceed the average practitioner at screening for early 
stages of dementia. However, it is unlikely that the 
description of patients with early dementia created by 
any of the models so far would be widely adopted in 
practice. The decision procedure implied by some 
models (e.g., logistic regression) is too complex to 
follow, while the decision criteria explicitly stated in 
learned rules or decision trees make little sense to the 
neurologist or the practitioner since it differs drastically 
from the current practice. 

To understand why the results of current knowledge- 
discovery algorithms make little sense, it is necessary to 
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describe how cognitive tests are currently used for 
screening. In each test, the patient answers questions that 
assess orientation for time and piace, registration, 
attention, short-term recall, language skills, and drawing 
ability. For example, the patient is first asked to 
remember a name and address (“John Brown, 42 Market 
Street, Chicago”) and later asked to recall these items. 
The patient receives a score for each item in the test. For 
example, the number of times that the test giver repeats 
the name and address before the patient is able to repeat it 
is recorded. An overall score is given to each patient by 
summing the score on each question. A threshold on the 
total score is used in practice for screening for dementia. 

The score on each question of the test and the patient’s 
age, sex, and years of education were used in our earlier 
work to predict whether a patient was “normal” or 
“mildly impaired” by learning algorithms. We showed 
that such methods would be more effective than a simple 
threshold on the aggregate score because some questions 
seemed more important than others. All of the algorithms 
were more accurate than the simple threshold and none of 
the methods were substantially more accurate than the 
others. In such a case, one might prefer to make decisions 
based upon rules or trees since such representations are 
easy to follow. However, neither the trees produced by 
C4.5 (Quinlan, 1993) nor the rules produced by rule 
learners such as C4.5rules or FOCL (Pazzani & Kibler, 
1992) produced rules that would be acceptable in practice. 
In particular, some items that should be viewed as signs 
of being impaired are used as signs of being normal and 
vice versa. Table 1 shows an example of one such rule 
that was produced by FOCL. 

In the remainder of this paper, we first discuss rule 
learning algorithms using FOCL as an example. We 
describe an extension to FOCL to prevent it from learning 
rules that violate the expectations of a domain expert and 
show that the extension does not hurt the diagnostic value 
of the learned concepts. We present evidence that one 
neurologist prefers rules without these violations. 

Background: Rule Learners 
FOCL is derived from Quinlan’s (1991) FOIL system. 

FOIL is designed to learn a set of clauses that distinguish 
positive examples of a concept from negative examples. 
Each clause consists of a conjunction of tests. For 
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whether the patient’s age is less than a certain value or 
whether the age is greater than a certain value. 

FOCL follows the same procedure as FOIL to learn a 
set of clauses. However, it learns a set of clauses for each 
class (such as normal and impaired) enabling it to also 
deal with problems that have more than two classes. The 
clause learning algorithm is run once for each class, 
treating the examples of that’class as positive examples 
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Table 1: Rule with questionable tests underlined. 
IF the vears of education of the natient is > 5 , ~~~- -- rl--d_-_ -- _ - 
AND the patient does not know the date 
AND the uatient does not know the name of a 
nearbv street 
THEN The patient is NORMAL 

OTHERWISE IF the number of repetitions 
before correctly reciting the address is > 2 
AND the age of the natient is > 86 
THEN The patient is NORMAL 

AND the mistakes recalling the address is < 2 
THEN The patient is NORMAL 

OTHERWISE The patient is IMPAIRED 

and the examples of all other classes as negat: le 
examples. This results in a set of clauses for each class. 

FOCL has an optimization procedure that selects an 
ordered subset of the original clauses to convert a set of 
clauses for each class into a single decision list. The 
algorithm initializes the decision list to a default clause 
that predicts the most frequent class. Next, it tries to 
improve upon the current decision list with an operator 
that replaces the default rule with a learned clause and a 
new default clause. The impact is calculated of adding 
each remaining clause to the end of the current decision 
list and assigning the examples that match no clause to 
the most frequent class of the unmatched examples. The 
change that yields the highest impact in accuracy is made 
and the process is repeated until no change results in an 
improvement. Typically, only a few clauses are selected 
by this process resulting in a relatively short decision 
procedure. Using the same examples to learn the initial 
set of clauses and to create the ordered decision list can 
result in overfitting because the learned rules rarely make 
errors on the learning data. Therefore, we divide the 
training data into a learning set consisting of 2/3 of the 
training data for learning clauses and an ordering set 
consisting of the remaining l/3 of the training data for 
creating the decision list. One further detail is needed to 
understand how FOCL arrives at a decision list using 
rule optimization. When adding clauses to the decision 
list, FOCL also has the option to choose a prefix of a 
learned clause. That is, if a clause such as X&Y&Z was 
learned, FOCL considers using X or X&Y in addition to 
X&Y&Z as a clause in the decision list. 

Monotonicity Constraints 
Some clauses in the learned category descriptions 

violate the intent of the tests used for screening. In 
particular, getting some questions right is used as 
evidence that one is impaired and getting some questions 



wrong is used as evidence that one is not impaired. A 
relatively simple change to FOCL eliminates such tests 
from consideration. For variables with numeric 
relationships, the user declares whether the variable has a 
known monotonic relationship with each class. A 
monotonic relationship is one in which increasing the 
value of the variable always increases or decreases the 
likelihood category membership. When considering tests 
to add to a clause, the tests that violate these relationships 
are removed from consideration. For example, when 
learning a description of the normal patients, FOCL with 
monotonicity constraints only checks to see if the number 
of errors recalling the address is less than some number. 
When learning clauses describing the impaired category, 
it only tests to see if this variable is above some threshold. 
These constraints on tests may also be used on Boolean 
and nominal variables. In this case, the user specifies 
which values are possibly indicative of membership in a 
class. For example, a value of true for the variable 
“knows the date” may be used as a sign for normal, while 
the value false may be used as a sign for impaired. Table 
2 shows an example of a decision list learned with 
constraints provided by the neurologist working on this 
.vm.;P,x.t p&“puL. 

If we assume that the constraints are correct, then there 
are two factors that contribute to a test that violates these 
constraints being used in a rule. First, while the test 
appeared best according to an information-based selection 
procedure, this procedure detected a “spurious 
correlation” in the data due to sampling biases or noise. 
Second, there are often several tests that are equally 
informative or statistically indistinguishable. Under these 
circumstances, a decision procedure could be found that is 
both accurate and comprehensible to an expert by 
eliminating from consideration tests that violate 
monotonicity constraints. 

To test whether a neurologist preferred rules that did 
not violate constraints, we generated 16 decision lists 
from constrained and unconstrained FOCL. Each rule 
was printed on a separate sheet of paper and presented in 
a random order to a neurologist not involved in this 
project. We asked the neurologist to rate on a scale of O- 
10 “How willing would you be to follow the decision rule 
in screening for cognitively impaired patients?” We 
hypothesized that the neurologists would be more willing 
to use rules that were generated by FOCL when it used 
monotonicity constraints. The average score of rules 
generated by FOCL without the monotonicity constraints 
was 0.25, while the average score of rules generated with 
t'he monotonicity constraints was significantiy higher at 
2.38 t(l.5) = 5.09, p < .OOl. 

Violations of the monotonicity constraints 
So far, we have assumed that the monotonicity constraints 
are correct and the learning system does not allow 

Table 2. A rule learned with monotonicity constraints. 

IF the years of education of the patient is > 5 
AND the mistakes recalling the address is c 2 
THEN The patient is NORMAL 

OTHERWISE 
IF the years of education of the patient is > 11 
AND the errors made saying the months backward is < 2 
THEN The patient is NORMAL 

OTHERWISE 
IF the years of education of the patient is > 17 
THEN The patient is NORMAL 

OTHERWISE The natient is IMPAIRED 
violations of the constraints. Ideally, we would not allow 
rules that violate the constraints unless violating them 
results in more accurate rules. Here we describe an 
extension to FOCL that implements this idea. 

The rule optimization algorithm selects from a pool of 
clauses that contains clauses learned on the training set 
with constraints and clauses learned from the same 
training data without constraints. The rule optimization 
procedure is changed to prefer clauses learned with 
constraints when the addition of two clauses results in 
the same increase in accuracy. Initial experimentation 
with this algorithm revealed that often all of the clauses 
in the optimized decision list came from one source or 
the other. This occurs because each set of clauses 
represents an alternative way of partitioning the training 
examples into disjunctive sets and clauses from these 
two different sources usually cannot be recombined to 
cover the training data. To mitigate this problem, we 
have further extended FOCL to learn alternative rules 
from the same training data. We use stochastic search in 
FOCL to achieve this. Rather then selecting the most 
informative condition to add to each rule, FOCL selects 
among the k (3) most informative tests with probability 
proportional to the informativeness. By repeating the 
process of learning a set of rules from the training data, 
several alternative partitions of the data are formed. In 
the experiment reported below, 5 rule sets are learned 
without monotonicity constraints and 5 rule sets are 
learned with monotonicity constraints. These are all 
entered into the pool of rules for rule optimization. 

Table 3 shows the accuracy of C4.5, C4.5rules and 
FOCL under various conditions with optimized rules on 
the fWR An rlata The cac-,.,~rcs~xr ia omaronwl AIIPV Gn UI” VYIYXY . . ..a-. ill” LWVUAU”~ *La U.“AU6VU “.VI 4” 
trials of dividing the data into a training set of size 210 
and a test set of size 105. The test set does not contain 
any examples from the training set. The four conditions 
of FOCL reported are 1) no monotonicity constraints, 2) 
monotonicity constraints, 3) stochastic search and rule 
optimization selecting from 10 rule sets learned without 
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monotonicity constraints and 4) stochastic search and rule study. 
optimization selecting from 5 rule sets learned without 

This research was funded in part by the 
Alzheimer’s Association Pilot Research Grant, PRG-95- 

monotonicity constraints and 5 rule sets learned with 
monotonicity constraints. 

161 and the National Science Foundation grant IRI- 
9310413. 

Table 3. Accuracy at identifying impaired patients. 

Algorithm 
c4.5 

1 Accuracy 
I 86.7 I 

The first noteworthy result is that FOCL is significantly 
more accurate than the C4.5 and C4.5 rules at the .Ol 
level using two-tailed t-tests. Second, there is not a 
substantial or significant difference in accuracy in using 
the constraints. FOCL is 90.7% accurate when using 
monotonicity constraint and 90.6% accurate when 
unconstrained. On average, a decision list formed without 
constraints contains a total of 4.65 tests and 2.13 
violations of the monotonicity constraints. With the 
constraints, an average of 4.30 tests are used in a decision 
list, none of which violate the constraints. 

The results show that there is an added benefit in 
selecting from combined multiple sets of rules learned 
with and without monotonicity constraints. Optimized 
rules from this source are significantly more accurate (at 
the .Ol level using a paired two-tailed t-test) than 
optimized rules learned in the same manner without 
monotonicity constraints. Furthermore, the average 
number of monotonicity constraint violations is 
significantly reduced (from 2.06 to 0.75). 

Conclusions 
We have argued that to be truly useful, the knowledge 
discovered in databases must both be accurate and 
comprehensible. We have further argued that one factor 
that influences the comprehensibility of learned 
knowledge is the use of conditions as evidence for 
belonging to some category when prior knowledge 
indicates that these conditions are evidence that an 
example does not belong to that category. We have 
created an enhancement to one algorithm that prevents 
these conditions from being added to learned models. 
Finally, we have presented preliminary evidence that 
experts prefer rules that do not contain violations of prior 
knowledge. 
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