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Abstract 

In order to be of use to scientists, large image 
databases need to be analyzed to create a catalogue 
of the objects of interest. One approach is to apply 
a multiple tiered search algorithm that uses reduction 
techniques of increasing computational complexity to 
select the desired objects from the database. The fnst 
tier of this type of algorithm, which is often called a 
focus of attention (FOA) algorithm, selects candidate 
regions from the image data and passes them to the 
next tier of the algorithm. In this paper we present a 
new approach to FOA that employs multiple matched 
filters (MMF), one for each object prototype, to detect 
the regions of interest. The M M F  are formed using k- 
means clustering on a set of example image patches 
identified by experts. An innovation of the approach 
is to radically reduce the dimension&y of the feature 
space, used by the k-means algorithm, by spoiling the 
sample image patches. This research was motivated 
by the need to detect small volcanos in the MagelIan 
probe data from Venus. An empirical evaluation of 
the approach illustrates that M M F  plus average filter 
perform better than a single matched filter for high 
true detection rates. 
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Introduction1 
Many image databases are so large that a comprehen- 
sive search, even an automated search for the objects 
of interest, may prove impossible. In such cases it is 
useful to do a multiple tiered search, in which each tier 
processes the data from the previous tier and selects 
candidate regions to pass on to the next tier (Fayyad, 
Haussler & Stolorz, 1996). The final tier produces a 
list of detections. This approach is designed such that 
each tier receives a decreasing amount of data, allow- 
ing each successive tier to increase in complexity and 
discrimination power. Our research addresses the first 
tier, focus of attention (FOA), which should be com- 
putationally simple and select promising regions of the 
image. 

‘Copyright 01997, American Association for Artificial 
Intelligence (www.aaai.org). All rights reserved. 

This paper describes a new method for learning an 
FOA procedure that can be used to search for hetero- 
geneous objects of interest in an image database. The 
approach was developed in the domain of searching 
for small volcanos in SAR images of Venus taken by 
the Magellan space probe. Magellan mapped 95% of 
the surface of Venus and returned 30,000,1024 x 1024 
pixel SAR images. Our approach is based on the hy- 
pothesis that the set of all volcanos is heterogeneous, 
thc,t thm.a IFD nvntntvnzm t?-isat ,.envmaant 0m.h r-lam nf Vllcy” .JIIx.Ib L&.*x, yr”Y”“,ypb” UIICN” IbpLb”\rllV bcubA1 .dIcuUU “A  

volcano, and that such prototypes can be learned. Us- 
ing multiple matched filters (MMF) allows more vol- 
canes to be found by the FOA algorithm, because each 
filter specializes in a specific type of volcano. The 
MMFs are produced using the k-means algorithm to 
cluster the training images into k classes and a matched 
filter is produced for each class. In order to reduce the 
dimensionality of the feature vector describing each im- 
age patch we radically scaled down the training image 
patches. 

In the remainder of this paper we first describe the 
procedure used to form the FOA algorithm. We then 
present the results of an empirical comparison to the 
original approach of a single matched filter, which illus- 
trates that the M M F  approach outperforms the single 
matched filter. We also present results combining the 
M M F  and average filter. The average filter detects the 
bulk of the objects and leaves the less common ones to 
be picked up be the MMFs.  Simply put, if it is neces- 
sary to find all of the objects, the M M F  plus average 
filter finds them with fewer false hits than the single 
matched filter method. 

Finding Object P rototypes 
The single matched filter FOA algorithm uses a nor- 
malized average of the training images to form a single 
filter. By using a single filter the approach assumes 
that one can characterize all of the training images in 
a single template. However, there are several classes of 
volcanos that appear visually dissimilar (see Figure 1). 
Therefore, it seems likely that separating these classes 
and forming a filter for each class will create an FOA 
algorithm that is capable of detecting more volcanos 
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Figure 2: Filters Formed by 2 x 3 Spoiled Training 
Images 

Figure 1: An Example of Heterogeneous Volcanos 

than a single matched filter. The FOA algorithm op- 
erates in two stages. First the system is trained using 
ground truth provided by experts to create a set of 
‘hbX.rlY- lvllvlr 8. Therl ilie flliers are applied to images to pro- 
duce a detection list. 

Reducing Dimensionality and Clustering 
The labeled data is in the form of a number of im- 
age patches that contain the region of the training im- 
age that surrounds the object of interest. To form the 
MMF we can cluster these image patches into Ic clusters 
and then form a filter for each cluster. Clustering using 
the pixel values of the 1 x 1 training image patches as a 
feature vector is not computationally feasible (Fayyad, 
Haussler & Stolorz, 1996), because an E x 2 image patch 
results in a feature space that requires a large training 
set to cluster with k-means (for 1 = 15, there are 225 
features which require far more data to produce good 
clusters than we have available). We present a solution 
to this problem that radically scales down the image 
before clustering. Specifically, the I x I image is scaled 
down to an m x n image and then its pixel values are 
used as the feature vector. Scaling down is referred to 
as spoiling because scaling down is irreversible. More- 
over, empirical tests show that clustering in the full 
I x I dimensional feature space produces clusters that 
less well separated than those produced by clustering 
in f,h_e spoiled f&1_?re .ww.ce!. -I----. 

In image search, treating the pixel value features as 
a simple vector obscures some obvious ways of reduc- 
ing the number of features. Features can be calcu- 
lated based on regional properties of the image patch 
(Rosenfeld & Kak, 1982) and may capture some trends 
in a lower dimensionality feature space that were not 
----..--A * --:...:--I LI,L -I:-~-2~~~l:L.. --^^^ appmtmb iii the orlglrm~ mgu u~~~~~~~s~wm~~cy apace. 
One very simple regional property that can be calcu- 
lated from the image patches is the average intensity 
of a region. We observed that, since the volcanos were 
illuminated from the z direction, there was more in- 
tensity information in the 2 direction. Therefore spoil- 
ing to a higher resolution in the x direction preserves 
more information about the volcano type. Our ap- 
proach combines both domain knowledge and a clus- 
tering metric to determine the degree of spoiling. 

To form the object prototypes we first spoil the im- 
age and then apply k-means clustering (Duda & Hart, 
1973). Applying k-means clustering to the spoiled im- 
ages results in a number of cluster centers that corre- 
spond to spoiled prototype volcanos. Once the spoiled 
cluster centers have been found, a corresponding 1 x 1 
(where I is the size of the original image patch, as dis- 
cussed above) matched filter must be formed for each 
of the L classes. Because spoiling is not reversible, all 
of the spoiled training images are classified into one 
of the k classes and the 1 x 1 images corresponding to 
each spoiled image in each class are averaged into a 
matched filter for that class. This results in k, 1 x 2 
matched filters; one filter for each cluster center. Fig- 
ure 2 shows the filters formed using a 2 x 3 feature 
space for clustering and Ic = 6 clusters. The number 
of clusters, Ic, was chosen empirically using a pair-wise 
cross-correlation metric. 

Producing a Single Detection List 

Once trained, the FOA algorithm can be used to pro- 
cess images and collect regions of interest (ROIs) to be 
passed on to the next tier of the image search system. 
The product of the FOA algorithm is a detection list 
reporting the location of all ROIs. 

To apply a filter, the system computes the normal- 
ized correlation of the filter f with each I x 1 patch in 
the test image. Candidate volcano locations are placed 
where the matcherl filter re~non~e euceecls a thrash&l. ..--_- 1--- -----1----- ..-1-- _-L =--- L- -_-----L 1 1____ L ____ -. 
Any threshold crossings within four pixels are consid- 
ered to be due to the same object and the highest re- 
sponse is chosen to represent the object (Burl, et al. 
1994). The result of this process is k detection lists, 
one for each matched filter. Although each filter corre- 
sponds to a particular class of volcano, many locations 
^_^ -1A.--L.^rl I-. --..---I JLaL.....-4. ClC--- T.L :- CL-^-.x..-- aTe ucbv.ILtxl uy sc”ela1 Ul,1txtxlb 1I,LtxS. IL 15, Cllcxtx”LC) 
necessary to combine the Ic detection lists into a single 
list, dramatically reducing the number of candidate lo- 
cations that are produced by the FOA algorithm. All 
of the detection lists are projected back into an empty 
(zero) image and the non-zero positions are spatially 
clustered around local filter response maxima. This 
procedure results in a single unified detection list that 
is much smaller than the sum of the individual detec- 
tions lists. 
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Experimental Design and Results 
The system was tested using a set of thirty-six images 
labeled by experts. The thirty six images were divided 
into six sets of six images. A six-fold cross validation 
was performed using parameter values determined us- 
ing different training and test sets. We used images 
from a set distinct from both the training and the test 
sets to tune the parameters. In the experiments we 
varied the detection threshold from 0.8 to 0.2. For 
the MMF, we used a single threshold value for all k 
matched filters. Clearly, a better approach is to cus- 
tomize the threshold for each prototype filter, and fu- 
ture work will address how these can be learned from 
the training data. A detection returned by the FOA 
algorithm can either be a true detection (true positive) 
or a false detection (false positive). Ideally, the FOA 
procedure should return a list of all of the objects of 
interest with zero false positives 

MMF versus Single Matched Filter FOA 
Statistics were calculated for each of the thirty-six test 
images for each threshold, 0.2 though 0.8. The true 
and false hit rates were then averaged across all thirty 
six of the test images for both the single and MMF 
methods and normalized by the number of volcanos in 
the image. To compare results across different test sets 
we computed the percentage of true detections (true 
hit rate) and the ratio of false hits to volcanos (false 
hit rate). The MMF method out-performs the single 
matched filter for high true hit rates on these images. 

MMF Plus the Average Filter versus the 
Single Filter FOA 
Examination of the initial MMF results lead us to ques- 
tion why the single filter FOA outperformed the MMF 
at lower true hit rates. We hypothesized that, if the 
average filter was able to capture a larger percentage of 
the true detections at a low false hit rate, including an 
average filter to the MMFs would allow them to pick 
up the rare objects while the average filter detected the 
bulk of the objects. In order to test this hypothesis, 
we performed an experiment wherein the average filter 
was added to the MMFs at a static threshold of 0.6 
(this is a selective threshold) and the threshold of the 
MMFs was varied from 0.2 to 0.8 as in the above exper- 
iment. In Figure 3, the dotted line represents the JPL 
baseline and the dashed line is the MMFs alone. The 
unbroken line is the results of combining the MMFs 
and the average filter. Combining the MMFs and the 
average filter results in an earlier breakaway from the 
JPL baseline system. This supports the hypothesis 
that, at low detection rates, the average filter picks up 
the majority of the detections leaving the MMFs to 
detect the rare cases. 

Ability to Achieve 100% Detection 
Because, for many applications, it is of paramount im- 
portance for the FOA to achieve 100% detection we 

Figure 3: Single and MMF Plus Average Filter FOA 

Figure 4: Single and Multiple Matched Filters at 100% 
Detection 

constructed experiments to determine the false hit rate 
at the point where a true hit rate of 100% is achieved. 
To understand the difference between the single and 
MMFs at a 100% true hit rate, we compared their 
false hit rate. Figure 4 shows a scatter plot of the 
thirty-six test images; the x-axis is the false hit rate 
for the single matched filter and the y-axis is the false 
hit rate for the MMF. For the points marked with ‘+‘, 
‘I’, and ‘x’, one or both of the methods did not detect 
100% of the volcanos at any threshold. In these cases, 
we choose the maximum false hit rate as the rate at 
“100%” detection (i.e. the false hit rate for a threshold 
of 0.2). If a point falls on the line z = y, the single and 
MMF methods have the same false hit rate at 100% 
detections for that image. If a point falls below the 
line, the MMF method out-performed the single filter 
for that image. If a point falls above the line, the sin- 
gle matched filter is better for that image. It can be 
seen in Figure 4 that the number of points on or be- 
low the line is greater than the number of points above 
the line. This illustrates that the MMF achieves 100% 
with fewer false hits for more of the test images than 
the single matched filter does. 
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Why Does Spoiling Work? 
Spoiling is applied to calculate new, low dimension- 
ality, feature vectors from the original image patches. 
For this domain, calculating the average intensity of 
regions of pixels forms a feature vector that captures 
the essential differences between different types of vol- 
canes. Spoiling works for feature generation whenever 
the image patches show large scale pixel intensity dif- 
ferences which separate different classes of the objects. 
If, however, the majority of information necessary to 
identify the objects resides in individual pixel values, 
spoiling would obscure the information necessary to 
form classes. 

In order to measure the quality of the clusters formed 
by the k-means algorithm, we used a metric that me& 
sures the ratio of the average inter-cluster distance to 
the average intr&uster distance (Fukunaga, 1990). 
A higher metric indicates better clusters. We applied 
this metric to clusters formed by k-means in the full 
dimensionality and low dimensionality (spoiled) fea- 
ture spaces. Clustering in the full dimensional feature 
space yielded a lower metric value than clustering in 
the spoiled feature space (0.92 versus 1.16). This indi- 
cates that spoiling allows the formation of better clus- 
ters than clustering in the original feature space for 
this domain. 

The essential advantage provided by using spoiling 
is the reduction of the dimensionality in the training 
data. In high dimensionality spaces, learning algo- 
rithms like k-means clustering require a large amount 
of data to form an accurate generalization. Reducing 
the number of features, assuming the information that 
separates classes is preserved, allows generalizations to 
be formed using less data. 

Discussion and Conclusions 
The MMF approach to the FOA algorithm is a gen- 
eral approach to object detection. While no volcano- 
specific domain knowledge is necessary for producing 
MMFs using our approach, different spoiling methods 
can be investigated the cross-correlation metric and an 
appropriate feature vector can be determined automat- 
ically. This allows our approach to be used without 
domain knowledge; however, we can take advantage 
of domain knowledge where it is available to deter- 
mine the degree of spoiling. If achieving the maximum 
number of true hits is the most important factor in 
searching a set of images, the MMF method is supe- 
rior to the single matched filter. While at lower true 
hit rates, the single matched filter has fewer false hits, 
at higher true hit rates, the MMF method has fewer 
false hits. Because each filter tends to produce a com- 
parable number of hits for a given threshold, la MMFs 
produce n times as many hits as the single filter for 
a given threshold. In order for the MMF method to 
outperform the single matched filter, it needs to detect 
more volcanos, but have sufficient overlap in false hits 

that the combination of the detection lists will result 
in a higher true hit rate for a given false hit rate. 

In performing the experiments, a single threshold 
value was used for all of the MMFs. Some filters have 
extremely strong responses for non-volcano features of 
the image. For example, the filter which detects a sin- 
gle point volcano (second row, middle column, in Fig- 
ure 2) is very responsive to lines in the image as well as 
small volcanos. This example illustrates that perfor- 
mance can be increased by having a separate thresh- 
old for each filter. One possible method for customiz- 
ing thresholds would be to characterize the response 
of each filter and probe the test image in order to de- 
termine the best threshold before applying the filters. 
Thresholds could be set based on this probing allowing 
each filter’s threshold to be customized. 

The technique of spoiling images to reduce the num- 
ber of pixels, and the dimensionality of the features, 
can be applied to other image processing tasks as it is a 
computationally inexpensive method of feature reduc- 
tion. Future work could entail testing the performance 
of spoiling with other learning methods. 
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