
‘i
.’ ,,.

An Efficient Algorithm for the Incremental Updation of Association
Rules in Large Databases

Shiby Thomas Sreenath Bodagala Khaled Alsabti* Sanjay Ranka
Computer and Information Science and Engineering Department

University of Florida, Gainesville FL 32611
email: {sthomas, sre,kalsabti,ranka}@cise.ufl.edu

Abstract

Efficient discover of association rules in large
databases is a we 1 studied problem and several ap- 1y
proaches have been proposed. However, it is non triv-
ial to maintain the association rules current when the
database is updated since, such updates could inval-
idate existing rules or introduce new rules. In this
paper, we propose an incremental updating technique
btied on tie ittive borders, for the maintenance of aS-
sociation ru es when new transaction data is added to f
or deleted from a transaction database. An impor-
tant feature of our algorithm is that it requires a full
scan(exactly one) of the whole database only if the
database update causes the negative border of the set
of large itemsets to expand.

Introduction
Database m ining, or knowledge discovery in

databases (KDD) has recently attracted t remendous
amount of attention in the database research commu-
nity because of its wide applicability in many areas,
including decision support! market strategy and finan-
cial forecast. One of the important characteristics of
the database m ining problem is handl ing large volumes
of data. Further, the rules discovered from a database --I- --P--J. Al-- uruy reutx~ ~1x5 CiZP3lt SiEikie O f the dizt&hizSe. ITi OF
der to make the rules discovered reliable and useful,
large volumes of data need to be collected and ana-
lyzed over a period of time. This entails the devel-
opment of techniques to handle large volumes of data,
and to ma intain rules over a significantly long period of
time. Therefore, efficient algorithms to update, ma in-
tain and manage the discovered rules are central to the
database m ining technology.

The problem of m ining association rules over bas-
lmt &ha xxrs~ intrm-hrd in fAm~~.ml Tmielinaki and a."" -vu- ,. YY I--Y*v...."I.. -a. \"~'.a., .a-, --*-.".--Y-.-, -a-u
Swami 1993) and several algorithms have been pro-
posed (Agrawal and S&ant 1994; Savasere, Om iecin-
ski, and Navathe 1995; Toivonen 1996). These algo-
rithms provide efficient mechanisms for finding large
itemsets (itemsets with the user specified m inimum
support) and the association rules are computed
from the lar
database cou d 7

e itemsets. Updates to the transaction
potentially invalidate existing rules or

Visitin from the Department of Computer Science,
Syracuse mversity ug.

‘Copyright @ 1997, American Association for Artificial
Intelligence(www.aaai.org). All rights reserved.

introduce new rules. The problem of updat ing the as-
sociation rules can be reduced to finding the new set
of large itemsets. After that, the new association rules
can be computed using the new large itemsets. A sim-
ple solution to the update problem is to re-compute the
large itemsets of the whole updated database. This is
clearly inefficient because all the computations done
initially for finding the old large itemsets are wasted. ---- _-
An algorithm, FUP (Fast Update), for updating the
large itemsets has been developed for the addition of
new transactions to the database (Cheung et al. 1996).
It is based on the Apriori algorithm and needs O(n)
passes over the database where n is the size of the
maximal large itemset.

In this paper, we present an algorithm to find the
new large itemsets with m inimal recomputation when
new transactions are added to or deleted from the
transaction database. The important characteristics
of our algorithm are the following:

Along with the large itemsets, we also ma intain the
negative border (Toivonen 1996)r. The algorithm
uses negative borders to decide when to scan the
whole database and it can be used in conjunction
with any level-wise algorithm like Apriori or Parti-
tinn "A.,...
We first compute the large itemsets of the increment
database. The algorithm requires a full scan of the
whole database only if the negative border of the
large itemsets expands, that is, if an itemset outside
the negative border gets added to the large itemsets
or its negative border. Even in such cases, it requires
only one I/O pass over the whole data set.
The algorithm can be easily parallelized with min-
imal communicat ion and synchronization between
the orocessinn nodes. This is narticularly impor-
tant-since lark volumes of data heed to be handled.
However, we are not including the details of paral-
lelization in this paper due to space lim itations.

FeIdcan et -al. concurrently developed a similar
approach for discovering frequent sets in incremental
databases (Feldman et al. 1997). The rest of the paper
is organized as follows: We develop our incremental up-
dation algorithm in the next section. The experimental
results and a comparison of our incremental algorithm

‘Note that the negative border can be maintained while
computing the large itemsets without any additional com-
putation overhead.

Thomas 263

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

with FUP is presented next. The last section concludes
the paper and outlines possible extensions.

Incremental upckxkxg of association

In this section we develop an efficient method for up-
dating the association rules when the database is up-
dated. Since we deal mainly with basket data, database
update effectively means addition of new transactions
to the database or deletion of existing transactions.
Assuming that the two thresholds, minimum support A nl\nGA,-.,\nc. rln. nn+ nh.,m,-m +hn ..,A.nta nrnhlom r..r.m anu Ir”IIIIuCjllLcs, U” U”U LLLa.qjC “Us upuawz pvur-au LOJU
be reduced to finding the new set of large itemsets.
After that, the new association rules can be computed
from the new large itemsets. In this paper we concen-
trate on updating the large itemsets. Before we explain
the algorithm in detail, we explain some results which
aid in presenting the algorithm.
Computing N&d(L) from L

In this subsection, we explain how to compute the
negative border (n/ad(L)) of a set of large itemsets L.
This can be accomplished by repeating the join and
prune steps of the aptiori-gen function in the apriori
algorithm (Agrawal and Srikant 1994 . This computai
tion can be done using only the set o 4 large itemsets L
and the database need not be scanned.
Definition 1 The negative border A&d(L), of a coL
lection of items& L i s defined as fpllows: Given a
colEection L 5 P(R) of sets, closed wath respect to the
set inclusion relation, the negative border Nl3d(L) of L
consists of the minimal itemsets X C R not in L (Man-
nila and Toivonen 1996).

The apriori-gen function takes as argument Lk-1,
the set of all large (Ic-1)-itemsets. It returns a superset
of the set of all large Bitemsets.

function apriori-gen(Le-1)
for-each p and q E &-.I do

zf p.iteml = q.ii!eml ,..., p.itemk-2 = q.itemk-2
and v.itemk-1 < q.itemk-1 then insert
p.iterGl, p.item2

fOT each C E ck
, . . . ,p.itimk-l,q.itemk-1 into ck

delete c from ck if some (k - l)-subset of C is not
in .?&1

Figure 1: A high-level description of the apriori-gen
function

The negative border consists of all itemsets that were
candidates of the level-wise method which did not have
enough support. That is, NBd(Lk) = Ck - LI, where
ck is the set of candidate Ic-itemsets, Lk is the set of
large Ic-itemsets and NBd(Lk) is the set of k-itemsets
in Nad(L). Therefore, LkU Nad(Lk) = ck. The
apm’ori-gen function uses oniy Lb-1 to compute &.
Lemma 1 All 1-itemsets should be present in LU
NBd(L).
Addition of new transactions

When new transactions are added to the database,
an old large itemset could potentially become small in
the updated database. Similarly, an old small itemset
could potentially become large in the new database.

function negativeborder-gen(L)
S

P
lit Li?to Ll,+:!,..., L, where n is the size of the

fo~%eP3~,stet. ffkdo
compute ck+l using uprioTi-gen(&)

LU A&Z(L) = Ui=2,...,rr+l ck UIl where 11 is the set
of 1-itemsets.

Figure 2: A high-level description of the
negativeborder-gen function

In order to solve the update problem efficiently, we
maintain the large itemset and the negative border
along with their support count in the database. That
is, for every s E L U NI3d(L , we maintain s.count.
In the rest of this section, d B denotes the original
database, db denotes the transactions that are newly
added and DB+ denotes the updated database. Also
LDB, Ldb and LDB+ denotes the large itemset and
NBd(LDB), NBd Ldb) and NZ?d LDB+)

6
denotes the

negative border o the ori inal
database and the updated if

6 atabase, increment
atabase respectively.

Lemma 2 Let s be any itemset such that s # LDB.
Then s E LDB+ only ifs E Ldb.
Proof: Assume that there exists an itemset s such
that s E LDB+, s @ LDB and -‘: $ Ld”. ~~~ to,-($)
and t&(s) be the number of transactions in DB and
db respectively containing the itemset s. Also let tDB
and tdb be the total number of transactions in DB and
db respectively. Since s # LDB and s # Ldb,

tDB (s) tdb(S)

tDB
< m&Support and -

tdb
< minsupport.

From these two equations, it can be shown that

tDB (8) + tdb(S)

tDB + tdb
< minsupport

Therefore, s @ LDBf which is a contradiction. 0
Lemma 3 Let s be an itemset such that s E NI?d(L).
Then all possible subsets of s must be present in L.
Proof: For a contradiction, let t be an itemset such
that t C s and t $?! L. By the definition of negative
border, NBd(L) consists of the mine’mal itemsets not
in L. Since t $ L, s is not a minimal itemset not
in L. Therefore s cannot be in NBd(L), which is a
contradiction. cl
Theorem 1 Let s be an itemset such that s $Z LDB U
Nl?d(LDB) and s E LDB+. Then there exists an item-
.-..a .A ,....A .a,+ + r I r rrnafrDB\ ..,..J z n- rDB+ 3Gb I, D’UGI‘ Cl‘U‘ 0 c a, ‘ c ,” UU(JJ 1 (LILLL L e u
That is, some subset of s has moved from Nt3d(LDBj
to LDB’
Proof: Since s E LDB+ all possible subsets of s
should be in LDBS. But Lll the subsets of s cannot
be in LDB because if that was the case, then s should
be present in at least NBd(LDB) if not in LDB itself.
By our assumption, s $ L DB UNBd(LDB). Therefore,

264 KDD-97

there exists an itemset t such that t C s and t $ LDB.
Now we have two cases.
Case i : t E Ni3d(LDB).
In this case, t E LDB+ since s E LDBf and t c s.
Therefore, we have found a subset of s which has moved
from N13d(LDB) to LDB+.
Case ii : t # N13d(LDB).
That is, t $! LDB UNad(LDB). But, we know that
t E LDB+ since s E LDB+ and t c s. Therefore,
t r$ LDB U N13d(LDBl and t E LDBf and hence we
c& apply the th6oredrecursively on t. Note that the
size of t is less than the size of s since t c s.

When this is applied recursively, there are two possi-
bilities. First is, for some subset oft, case i holds true
in which case, there is a subset of t which has moved
from N13d(LDB) to LDB+, and hence the theorem is
proved. Otherwise, t will finally become a 1-itemset.
By Lemma 1, we know that all I-itemsets are present
in LDB U N13d(LDB). Since t 6 LDB, t E NBd(LDB)
which contradicts the assumption for case ii. That is,
case ii is not possible if t is a 1-itemset. 0

By theorem 1, if none of the itemsets move from the
negative border to the large itemset, we do not need
to scan the whole database. Even in cases where some
itemsets move from the negative border to the large
itemset, a complete database scan is required only if ..----A- L ̂ ^^__^^ the negative border aqJL%lKls uecaLlse, for aii ihe item-
sets in the negative border, we can derive the updated
support count easily.

We maintain the support count for all itemsets in the
large itemset and the negative border. First, we com-
pute the large itemset in db using a level-wise algorithm
like Apriori or Partition. Simultaneously we count the
support for all itemsets in LDB U N13d(LDB) in db. If
an itemset t E LDB does not have minimum support
in DB U db, then t is removed from LDB. This can be
easily checked since we know the support count for t
in DB and db. The change in LDB could potentially
change Nf3d(LDB) also. Therefore, we have to recom-
pute the negative border using the negativeborder-gen
function explained in subsection .

On the other hand there could be some new item-
sets which become large in the updated database. Let
s be an itemset which gets added to the large itemset
of the updated database. By Lemma 2, we know that
s has to be in Ldb. We also know by theorem 1 that
some subset of s must move from N13d(LDB) to LDB’.
For each itemset s E Ldb, we check if s gets the min-
imum support to move from NZ3d(LDB) to LDBf. If
none of the itemsets in Nl?d(LDB) gets the minimum
support, no new itemsets will be added to LDBf. If
some itemsets in N#d(LDB) gets the minimum sup-
port move them to LDB+ and recompute the negative
border. If LDB+ U Nl?d(LDB+) # LDB U NBd(LDB),
we have to find the negative border ciosure of L”“+
and scan the entire database once to find the up-
dated large itemset and negative horder. The nega-
tive border closure of L is found by repeatedly finding
L = L U Nl3d

During the a
L) until L does not grow.

in the ne
atabase scan, all the itemsets which are

in L UN
ative border closure that were not originally

B d(L) are used as the candidate itemsets and

function Update-Large-Itemset(LDB, NBd(LDB), db)

//DB and db denote the number of transactions in
the original database and the increment database
respectively.

Compute Ldb
for each itemset a E LDB

h(8) = number of
LDB+ = 4
for each itemset a E LDB do

if (tDB(3) + tdb(8)) > TlZiTt3UjJ * (DB -I- db) then
LDB+ = ~~~~ u .s

for each itemset a <idb do
ifs # LDB and a E NBd(LDB) and (tDB(8) -I-

t&(8)) 1 minaup * (DB -I- db) then . __ - - .
DB+ =GDB+~~ ’

if i$kd$$+;fnen
negativeborder-gen(LDB+)

else N13d(LDBJr)= NBd(LDB)
if iDz FD%fd(LDB) # LDB+ U M3d(LDB+) then

repeat
compute S = 5’ U NBd(S)

until S does not grow
LDB+ = {Z E Slaupport(z) 1 minsup}
//support(x) is the support count of x in DB U db
JvBd(L DB+) = negativeborder-gen(LDB+)

Figure 3: A high-level description of the Update-Large-
Itemset function

their support count is computed. The candidate set
can further be pruned by applying an optimization
while finding the negative border closure. It can be
observed that an itemset which is not large in the in-
crement database (db) cannot get added to the updated
set of large itemsets. Therefore, such itemsets can be
pruned at each step of the negative border closure com-
putation to get the pruned negative border closure.
However, the support count of these pruned itemsets
should also be found since they may potentially be in
the updated negative border.
Deletion of existing transactions

Similar to the case where new transactions are added
to the database, the large itemset and its negative bor-
der could potentially change when some existing trans-
actions are deleted from the database. As in the former
case, we maintain the large itemset and the negative
border along with their support count in the database.
Let DB- denote the updated database and LDB- and
N13d(LDB-) denote its large itemset and negative bor-
der respectively.

Lemma 4 &St s be an itemset such that s E LDB.
Then s # LuD- only ifs E Lao. That is a large itemaet
s will become small only if s E Ldb.

This lemma can be proved in the same way as
lemma 2.

The al
negative %

orithm to compute the large itemset and the
order of DB- is similar to the one in the case

where new transactions are added to the database.

Thomas 265

Experimental Results
We conducted a set of experiments to compare the

performance of our incremental algorithm. The ex-
periments were performed on a Sun SPARCstation 4
running SunOS 5.5. In this section, we report on the
results of some of those experiments.

The experiments were performed on synthetic data
generated using the same technique as in (Agrawal and
Srikant 1994). The dataset used for the baseline exper-
iment was T10.14.DlOOK (Mean size of a transaction
= 10, Mean size of maximal potentially large itemsets
= 4, Number of transactions = 100 thousand). The
increment database is created as follows: We generate
100 thousand transactions, of which (100 -d thousand
is used for the initial computation and d t h ousand is
used as the increment, where d is the fractional size (in
r\mnnd..~mn\ ,4 +hn :mmnmont prjr L~UUa.Ejrs, "L "I1.2 U&b,1 cxll-cjll".

18

16

14

12
s"

1 ':

6

4

2

0
2.0 1.5

sl;;pon Th%old cin"k$
0.33 0.25

Figure 4: Performance Ratio

We compare the execution time of the incremental
algorithm with respect to running Apriori on the whole
data set. Figure 4 shows the speed up of the incre-
mental algorithm over Apriori for different minimum
support thresholds. We report the results for incre-
ment sizes of l%, 2%, 5% and 10%. From the
it can be seen that the incremental al orithm ac

raph,

1
a ieves

speed up of about 3 to 20. The algorit m shows better
speed up for medium support threshold than low and
high support thresholds. At high support thresholds,
the number of large itemsets is less and hence it is less
costly to run Apriori on the whole database. At low
support thresholds., the probability of the negative bor-
der expanding is higher and as a result the incremental
algorithm may have to scan the whole database. Also,
the speed up is hi
the incremental a gorithm needs to process less data. K

her for smalier increment sizes since

Comparison with FUP
The framework of FUP (Cheung et al. 1996) is sim-

ilar to that of Apriori and contains a number of iter-
ations. Each iteration is associated with a complete
scan of the whole database and in iteration Ic all the
large k-itemsets are found. The candidate sets for it-
eration k + 1 are generated based on the large itemsets t-,,.,A :n :+.w.n+;nn I ~hnonoe-l.,nnCl7TTP nxro,. An&w; l”UllU 111. llocx a.UI”U m .
can be main1

.&AII.z oyzcx4 up"vr A "A "VljA LLyIAvII

ber of candi B
attributed to the reduction in the num-

ate itemsets. It uses the lar e itemset of
the original database to filter and prune t % e candidate

itemsets generated by Apriori. However, FUP may re-
quire 0(n) passes over the database where n is the size
of the maximal large itemset.

The most important feature of our incremental up-
dation algorithm is that the whole database is scanned
only when required (and that too only once), thereby
reducing the I/O requirements drastically. Computing
the negative border ciosure may increase the size of the
candidate set. However, a majority of those itemsets
would have been present in the original negative bor-
der or large itemset. Only those itemsets which were
not covered by the negative border need to be checked
against the whole database. As a result, the size of
the candidate set in the final scan could potentially be
much smaller as compared to FUP.

Conclusions
ZT, 1 we nave presented an eificient, incrementai updation

algorithm for the maintenance of the association rules
discovered by database mining. Our algorithm strives
to reduce the I/O requirements for updating the set
of large itemsets. This is achieved by maintaining the
large itemsets and the negative border along with their
support counts. The whole database is scanned only if
reauired and that too just once. This incremental UP-

daiion technique can be used in conjunction with aiiy
of the level-wise algorithms like Apriori and Partition.
Further? our algorithm is applicable to addition as well
as deletion of transactions.

References
R. Agrawal, T. Imielinski, and A. Swami. Mining
Association Rules between Sets of Items in Large
Databases. In Proceedings of the ACM SIGMOD In-
ternational Conference, May 1993.
zgA

R
rawal and R. Srikant. Fast Algorithms for Min-
ssocratlon Rules. In Proceedzngs of the 20th

VLDB, Santiago, Chile, September 1994.
D. W. Cheung, J. Han, V. T. Ng, and C. Y.
Wong. Maintenance of Discovered Association Rules
in Large Databases: An Incremental Updatin Tech-
nit-me. In Pmredinoc of the I.$& IQJJE. New - -4--zl_.ac 8 rlcnn 9.
2;>8iana, February <996:-

I _. _- _. .--.-ILz

R. Feldman, Y. Aumann, A. Amir, and H. Man-
nila. Efficient Algorithms for Discovering Frequent
Sets in Incremental Databases. In Proceedings of the
1997 SIGMOD Workshop on DMKD, Tucson, Ari-
zona, May 1997.
H. Mannila and H. Toivonen. On an Algorithm for
Finding all Interesting Sentences. In Cybernetics and
$yatems, Volume II, The 23th Evropean Meeting on -
Cybernetics and Systems Research, Vienna, Austria,
April 1996.
A. Savasere, E. Omiecinski, and S. Navathe. An Effi-
cient Algorithm for Mining Association Rules in Lar e
Databases. In Proceedings of the blst VLDB, Zuric % ,
Switzerland, September 1995.
Hannu Toivonen. Sampling Large Databases for AS-
sociation Rules. In Proceedings of the 22nd VLDB,
Mumbai(Bombay), India, September 1996.

266 KDD-97

