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Abstract 

The solar chromosphere consists of three classes 
- plage, network, background - which con- 
tribute differently to ultraviolet radiation reach- 
ina thn am-th ~.nl~r nhv&-iota cama intmwatd in --a “Y” U-V.&. Y”*- yYJ”.“‘uY” .“A.8 .Y”YIVY”VU IY 
relating plage area and intensity to UV irradi- 
ante, as well as understanding the spatial and 
temporal evolution of plage shapes. We describe 
a data set of solar images, means of segment- 
ing the images into constituent classes, and a 
novel high-level representation for compact ob- 
jects based on a spatial ‘membership function’ 
defmed via a triangulated planar graph. Segmen- 
tations axe found using a discrete Markov ran- 
dom field setup, and the high-level representa- 
tions are learned by a Markov chain Monte Carlo 
birth/death process on the triangulations. 

Introduction 
As observed in ultraviolet light (figure 1) the solar 
chromosphere roughly consists of three classes: plage 
(bright magnetic disturbances), network (hot bound- 
aries of convection cells), and background (cooler cell 
interiors). Plages appear as irregular groups of clumps 
and experience a cycle of formation and dissipation, 
starting out as relatively compact regions and decay- 
ing over many days into a diffuse and broken-up clus- _ --- ter (Zirin, lY88, p. 3i7j. ‘The ceii-structured network 
has little contrast with the background, is spatially 
homogeneous, and persists for tens of hours. The cells 
(difficult to see in this halftoned rendering) have a char- 
acteristic size, and it is thought that they arise due to 
convective processes in the plasma making up the solar 
atmosphere (Zirin, 1988, p. 126). 

The three classes contribute differently to the ul- 
traviolet (UV) radiation reaching Earth’s upper atmo- 
sphere, with the plages and network giving the largest 
contribution. While this radiation cannot be sensed 
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it can be. Such measurements are inputs to models 
of solar irradiance which are crucial to understanding 
phenomena such as global warming and atmopheric 
photochemistry (Withbroe and Kalkofen, 1994). 

Also of interest is the evolution of plages. As men- 
tioned above, a typical sequence has been described: 
from plage emergence as a shape of relatively smooth 
boundary, to expansion, and then eventual dissolution 
as an irregular, tentacled form. However, the under- 
standing is of a qualitative and anecdotal sort (e.g. 
(Stix, 1991, p. 284) for related work), and a more 
quantitative description of anticipated plage shapes 
and th& evolution of plage regions would be of value. 

In both sorts of problem described above one re- 
duces a series of images, comprising perhaps 500MB of 
data, to a time series of areas and intensities or plage 
A,“,...:..+:~~” lx... ,..,--1, n,.* ,.lnon nrnnn n-,-l mnnn 
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intensities can be represented in about 48 bytes per 
9MB image. The description of the features of interest 
for one plage might take a few KB per image, depend- 
ing on the activity level. These time series distill the 
diffuse information in the large data set into a scientif- 
ically usable form, at least for the tasks at hand. 

The primary source of data for this study is the set 
of CaII K full-disk spectroheliograms that has been 
taken on film, daily or as observing conditions per- 
mit, at Sacramento Peak National Solar Observatory 
in Sunspot, NM from the mid-sixties onward. An in- 
terval of these films, from the mid-eighties forward, has 
been digitized to 2Kx2K pixels, at which point atmo- 
spheric blurring limits resolution. 

Image Decomposition 
First we discuss the problem of partitioning the im- 
age into plage, network, and background components. 
Generally, scientists either apply a threshold across the 
flattened image to determine plage areas, or manually 
surround the plages with polygons. The first method, 
while simple and objective, ignores all available spatial 
information. The second method uses substantial do- 
main knowledge, but is also highly subjective, difficult 
to describe, and hard to repeat. 

Due to the strong prior information available to us 
about the images, we adopt the Bayesian framework 
of inference of underlying pixel classes based on the 
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Figure 1: A chromospheric image from 15 July 1992, showing several plages. In the center is a detail image of the 
northwest plage pair; at right is a detail from disk center, with considerable contrast enhancement, showing the 
network and background. 

observed intensity. Denoting pixel sites s = [sl SZ] in and network intensities have a heavy tail - making 
an image domain N, and defining matrices of class a normal distribution inappropriate. Nonparametric 
labels x = {x~}~~.N and observed intensities y, the distributional tests confirm that the lognormal distri- 
posterior probability of labels given data is bution is a good model for the per-class intensities. 

P(x I Yj = P(Y l4fYx>l~(Y> 0: P(Y I x>fYx) . 0) 
The maximum a posteriori (MAP) rule maximizes this 
probability: 

The objective function of (2) becomes 
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ji = argmXti logP(y 1 x) + logP(x) . (2) 

The first term is the familiar likelihood function, telling 
how the data is gotten from the labels; the second is the 
prior probability of a given labeling. In practice, the 
first term forces fidelity to the data while the second 
penalizes unlikely rough labelings. 

Prior models may be specified in many ways; we have 
used the smoothness priors 

The tradeoff between consistency of each observed in- 
tensity with the mean of its assigned class, and agree- 
ment of neighboring class labels, is apparent. If p = 0 
and the class variances are identical we recover the 
threshold rule currently used in practice. 

However, with p > 0, the optimization becomes cou- 
pled across sites, and is entirely intractable for our 
three-class problem. To tackle this problem we have 
followed the well-known numerical method known as 
the Gibbs sampler (Geman and Geman, 1984). In 
brief, this works by cycling through each site, com- 
puting P(zs I ys, zN(s)) for each class, and choosing 
the next label from this distribution. For finite label 
spaces, the resulting (random) sequence of labelings 
converges in distribution to the posterior. To extremize 
the posterior, one sharpens the distribution by decreas- 
ing a scale parameter slowly to zero, and the resulting 
labeling is the MAP estimate. 

P(x) = 2-l exp[-PC 1(z8j # zs)] (3) 
d-4 

introduced by Besag (Besag, 1974) and Geman and 
Geman (Geman and Geman, 1984). Above, 2 is a 
constant normalizing the distribution, and the sum- 
mation extends over all ‘neighboring’ pixels (s N s’) 
in N. Below we have taken the neighborhood relation 
to include all pixels strictly less than two units apart 
in Euclidean distance - each interior pixel has eight 
neighbors. For ,0 = 0, this distribution is uniform on 
all 3ca’d(N) labelings, and as ,0 is increased, smoother 
and smoother labelings are favored. 

The remaining ingredient is the likelihood 

JYY I4 = J-J %h I4 
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where we assume that intensities are independent con- 
ditional on the labels being known. The three densities 
P(p I z = Ic) can be estimated from labeled data sup- 
plied by scientists. It is not surprising that the plage 

Sample results are shown in figure 2. The first 
panel shows a detail of a spectroheliogram from Jan- 
uary 1980; the plage is at lower-right. Beside this is 
the corresponding threshold segmentation. The abun- 
dant speckle is consistent with the implicit prior that 
is uniform over all labelings. In the final panel is the 
MAP segmentation with MRF prior at ,6 = 0.7. The 
estimate is found by the standard Gibbs sampler ap- 
proach with temperature lowered in steps over 800 im- 
age sweeps. The MAP/MRF segmentation eliminates 
many of the tiny gaps in the large plage and makes the 
network structure more apparent. 
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Figure 2: Original image detail, 

Spatial Descriptions 
Now we address the second of the concerns raised in the 
introduction, that of representing and analyzing plage 
shape. In contrast to the essentially pixel-scale char- 
acteristics of the network/background interplay, plages 
are high-level phenomena which are not well-captured 
by pixel-level rules. Following the lead of Grenan- 
der (Grenander et al., 1991), we pursue a hierarchi- 
cal representation of plages. We will find it convenient 
t_o embed the pixel sites N in a bounded continuum 
N c R2. To represent a plage, or a cluster of related 
plages, we propose a tent-like structure defined by a 
triangulated planar graph 

G = (V, E, h) (5) 
VCR a vertex set 
E c fi2 an edge relation 
h: V + [O,l] a height function 

The height function extends to all of i’V by linear in- 
terpolation across the faces of the pyramids (figure 3). 
This structure is intended to model the “degree of 
membership” of a given pixel in the plage class, and 
allows the binding of nearby plage regions into one co- 
herent object. If the height function is thresholded, 
the resulting shape is a cluster of regions bounded by 
(not necessarily convex) polygons. This is similar to 
the way scientists currently delimit plage regions man- 
ually. 

To define a probability distribution on these struc- 
tures, we generate each as the Delaunay triangula 
tion (Aurcnhammer, 1991) of independently chosen 
points in N. These points comprise V, and E is gener- 
ated mechanicaiiy as the Deiaunay trianguiation of V. 
Heights are then assigned independently to the mem- 
bers of V to form tie-points. The probability density 
of such a height function h is 

p(h) = Z-le-?card(W (6) 

481 ’ ’ ’ ’ ’ 8 48 48.5 4s 48.6 50 60.6 6, M.6 62 62.5 

Fimre 3: Ton. a oerspective view of a ridge structure; --a-- -- r, --r- 
bottom, an air view of the same structure. 

and zero if the height function is not generated as such 
a triangulation. We have assumed the members of V 
are chosen according to the uniform distribution on 
m, and that the heights are uniform on [O, 11. While 
refinements (self-avoiding vertices, correlated heights) 
are possible, their ultimate effect in the presence of 
data would be minimal and not worth the added model 
,,V,-.~l,.F;C,. ~“urp,rr;nl”y. Ann+h . c.rlrmrr+om r.f +h;n A;o+r;h,&;r\n io CLIIucueL auva~~uruge “I “UlU uI~“IIvu”I”II In 

that additions, deletions, and adjustments of one ver- 
tex have a simple effect on the cost, and a local effect 
on the triangulation and the resulting cost function. 

Overlaying the new structure on the existing MHF 
model is simple; we wish to force agreement between 
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Figure 4: Left, original image, windowed to avoid edge effects; center, plage probability; right, membership function. 

plage labels and the membership function 

P(hlx) = i exp[-xIh,-l&=3)1- Ycard(Vh)] 
EN 

The goal becomes to adapt h to achieve a parsimonious 
description while fitting the pixels which indeed belong 
t.n thcl nhiert nf intmmd YY “LA” VYJ.,“” “A IA-YVAVUV. 

A procedure related to the Gibbs sampler is followed 
to infer h for a given labeling x. Earlier, movements in 
the parameter space were label-changes and were done 
via the Gibbs sampler; now such updates correspond 
to altering the plage graph, and are better done by the 
simpler Metropolis steps. Such a step proposes a new 
state h’, computes P( h’ 1 x)/P( h 1 x), and probabilisti- 
tally accepts or rejects h’ on this basis. To propose a 
new state, one of three operators is chosen randomly 
at each iteration: vertex move, vertex raise (or lower), 
and vertex birth/death. 

Move and raise are elementary as they are self- 
inverses as long as isotropic vertex-moves and sym- 
metric vertex-raises are used. The birth/death pair is 
harder because such moves are not self-inverse, i.e. the 
inverse of a birth when card(V) = Ic is a death when 
card(V) = k + 1. To ensure equilibrium at the distribu- 
tion above, the acceptance probability is chosen follow- 
ing the recent work of P. Green (Green, 1995). Finally, 
to speed the sampling process the indicator l(z, = 3) 
above is replaced with its expectation P(z, = 3 1 gs). 

Some results are shown in figure 4. The first panel 
shows the original solar image, and the second panel is 
the ‘probability map’ or plage probability conditioned 
on the observed data. It is this map that the graph 
is intended to fit. The third panel shows a typical 
triangulation after a burn-in period of 15 000 successful 
Metropolis steps. It is clear that the triangulation has 
captured the essentials of the plage shape. 

Conclusions 
We described two scientific problems of relating solar 
active regions to solar irradiance, and understanding 
the evolution of active regions. Currently, scientists 

often label images manually, or by thresholding the 
observed intensities. The use of MRF image priors al- 
lows the controlled, objective incorporation of simple 
kinds of prior knowledge about the spatial coherence 
of labels. By using these priors in a Bayesian inference 
setup, images are segmented without the speckle arti- 
facts associated with threshold labeling. Also, in an 
effort to understand the temporal evolution of plage 
shapes, we have proposed a representation of active re- 
gions in terms of a triangulated graph which gives rise 
to a membership function that is learned from image 
data. 
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