
Schema Discovery for Semistructured Data*

Ke Wang and Huiqing Liu
Department of Information Systems and Computer Science

National University of Singapore
10 Kent Ridge Crescent, Singapore 119260

wangk@iscs.nus.edu.sg, liuhuiqi@iscs.nus.edu.sg

Abstract

To formulate a meaningful query on semistruc-
tured data, such as on the Web, that matches
some of the source’s structure, we need first to
discover something about how the information is
represented in the source. This is referred to as
schema discovery and was considered for a single
object recently. In the case of multiple objects,
the task of schema discovery is to identify typi-
cal structurine: information of those objects as a
whole. We mitivate the schema discovery in this
general setting and propose a framework and al-
gorithm for it. We apply the framework to a real
Web database, the Internet Movies Database, to
discover typical schema of most voted movies.

Introduction
As the amount of data available on-line grows rapidly,
we find that more and more of the data is semistruc-
tured. In the semistructured world, data has no abso-
lute schema fixed in advance, and the structure of data
may be irregular or incomplete. Semistructured data
arise when the source does not impose a rigid struc-
ture (such as the Web) and when data is combined
from several heterogeneous data sources. See (Abite-
boul 1997) for an excellent survey on semistructured
data. Unlike traditional relational or object-oriented
databases where an external schema is known in ad-
vance, semistructured data is self-describing in that
each object contains its own schema, and the distinc-
t;.-.n nFn.-ha-9 nnA r-lntn in hlrrrmrl “l”ll “I UbIIc.IAIcLI UAIU UW”c.b I.7 LJIUIL~U.

Figure 1, taken from (Nestorov et al. 1997), shows
a segment of the information about the top soccer
league (The Premiership) in England. Each circle plus
the text inside it represents an object and its iden-
tifier. The arrows and their labels represent object
references and semantics, which are the main struc-
turing information of objects. There is a large de-

* Copyright @1997, American Association for Artifi-
cial Intelligence (www,aaai,org). All rights reserved.

gree of irregularity: different clubs may have a dif-
ferent number of players; some fields may be miss-
ing for some clubs; some players have first and last
names separately recorded; some just have a single full
name recorded; some have nicknames; etc. Other ex-
amples of semistructured data are LaTex and BibTex
files, genome databases, drug and chemical structures,
scientific databases, libraries of programs, production
schedules, task definitions and more generally, digi-
tal iibraries, on-iine documentations, eiectronic com-
merce.

To formulate any meaningful query on semistruc-
tured data, such as on the Web, that matches some
of the source’s structure, we need first to discover
something about how the information is represented in
the source, called the data guide in (Abiteboul 1997).
This is referred to as schema discovery in (Nestorov
et al. 1997). Schema discovery explores an object
by moving (navigating) from an object to its subob-
jects and keeping track of the labels of the object ref-
erences traversed. For example, schema discovery may
find that persons possibly have outgoing edges labelled
name,address, hobby and friend, that an address is
either a string or an object having outgoing edges la-
belled street and zipcode. Such information is very
helpful for query specification, query processing and
optimization, data organization, and search strategies.
We quote (Abiteboul 1997) here for the gist of the mo-
tivation:

. . . More generally, one could envision the use of
general purpose data mining tools to extract struc-
turing information. One can then use the informa-
tion extracted from the files to build a structured
layer above the layer of more unformed data. This
structured layer references the lower data layer
and yields a flexible and efficient access to the in-
formation in the lower layer to provide the benefits
of standard database access methods. . a n

In this paper, we consider a modified problem with

Wang 271

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

premiership

t.James’ Part!?

Figure 1: The premiership object

ch- n,.-c. m~+:v..t;nn TWc. n.-n :,t,,,,t,cl :n otr,,nt,rr;nrr bI,ci 30,lllC III”bI”a~A”II. “Y-.7 aLc IIItJ~IcTL3”~Ll 111 Durubuurlrrlj

information that is typical of a majority of a given col-
lection of objects. Such information are called schema
patterns. The main difference from (Nestorov et al.
1997) is that we consider multiple objects, rather than
a single object, for the discovery task. The motiva-
tion is simple: it is very common for an application to
deal with a collection of objects, such as finding the
typical structure of a collection of movie documents.
As suggested above, the discovered schema patterns
can be used to build a structured layer, e.g., relational
or object-oriented databases, over semistructured ob-
jects.

Schema Discovery
We adopt the Object Exchange Model (OEM) (Abite-
boul et al. 1996) that represents semistructured data
by a labelled graph.

The object-exchange model (OEM). OEM is a sim-
ple, self-describing object model with nesting and iden-
tity. Every object in OEM consists of an identifier and
a value. The identifier uniquely identifies the object.
The value is either an atomic quantity, such as an in-
teger or a string, or a bag of object references, denoted
as{11 :idi,.. . , 1, : idP}, where Zi are labels and idi are
identifiers of subobjects. Labeis ii describe the mean-
ing of subobjects idi. We assume that f(id) returns the
bag of object references for bag object id. (Often, we
don’t distinguish between an object and the identifier
of an object.)

We can view OEM as a labelled graph where the
nodes are the objects and the labels are on the edges.

272 KDD-97

An flli’K/T ;c nnnanln’n if the rrrnnh in rxovelie 111‘ “UlYl IU ustiyw*t, AI “LAX2 gAc.uprl IO .xbJUIb T”A”~$ copAm

sider only acyclic OEM. The bag semantics allows du-
plicates, thus, generalizes the set semantics. For exam-
ple, using the bag semantics we can model the struc-
turing information which tells that there are at least
10 players in 90% of clubs.

A transaction database is a collection of complex ob-
jects on which schema discovery is performed. These
objects are called transactions. In the premiership ex-
ample, a transaction database can be a collection of
club objects if we wish to perform schema discovery
on them. We make use of two special symbols. ? de-
notes the wildcard label that stands for any label. I
denotes the nil schema that contains no schema infor-
mation The following notion generalizes simple path
expressions in (Nestorov et al. 1997).

I is a tree expression of every object. Assume that
tei are tree expressions of objects idi, 1 5 i 5 p,
and that f(id) = {El : idi,. . . ,Z, : idp}. Then
{li; : tei,, . . . ,l& : tei,} is a tree expression of object
id, k > 0, where either Ei; = lij or Ei; =?. Intuitively,
a tree expression of an object is a partial (labelled)
tree representation of the object, in which identifiers
at nodes are ignored and labels on edges may be re-
placed with wildcard ?. A tree expression of an object
‘Lgeneralizes” the object by containing less information.
If a tree expression is shared by a significant number
of transactions, the tree expression represents a struc-
turing pattern of these transactions.

Example 1 Consider the transaction
database {&1,&20,&24} for three clubs in Figure 1.

tel = {Player : {Name : I}, Name : I} is a tree
expression of 8~1, &20,&24, so is the result of replac-
ing any label in tel with 9. te2 = {Player : {Name :
I, Nationality : I}, Name : I} is a tree expression of
&l and 8~20, but not of 8~24.

We can compare the generalization power of tree ex-
pressions by the “weaker than” relation defined below.
I is weaker than every tree expression. A tree expres-
sion {El : tel, . . . , lp : te,} is weaker than tree expres-
sion{li : tei,... ,li : teh} if for 1 I i 5 p, tei is weaker
than some te;< such that either li = lji or li =?, where
ji are different for different i.

Definition 1 (Schema discovery)
Consider a t~~~.s~.&& &&se. Let te &f. a tree ex- _ _ JL 1.1 -
pression of some transaction. The support of te is
the number of transactions t such that te is a tree ex-
pression of t. For a user-speci$ed minimum support
MINISUP, te is frequent i;f the support of te is not
less than MINISUP. te is maximally frequent if,fte is
frequent and is not weaker than other frequent tree ex-
pressions. te is a schema pattern or simply pattern ij
te is maximally frequent. The schema discovery prob-
lem is to find all patterns.

lhnmnl~ 2 f'm~timr~ with. &mmnk 1. Tbp sunnnrt -‘----r-- - Jr.rr...-.s -““,I --‘II.. “r”.. -. Pi--’ -
of tel is 9 and the support of tea is 2. Therefore,
if MINISUP = 3, tel is frequent, but te2 is not.
Suppose MINISUP = 2. Both tel and te2 are fre-
quent. Let tes = (Player : (Name : I, Nationality :
I, Number : 1}, Name : I}. te3 is supported by &l
and &20. Since tel and te2 are weaker than tes, they
are not patterns. For the same reason, nor is the result
of replacing any label in tes with wildcard ?. In addi-
tion, tes is not weaker than any frequent tree expres-
sion except itself. Therefore, tea is a pattern, which
captures the maximai common structure of supporting
transactions &l and &2O.

The algorithm
To compute patterns in the increasing size of tree ex-
pressions, we define a k-tree expression to be a tree
expression containing k occurrences of 1. Each I oc-
currence in a k-tree expression corresponds to a special
path in G, called a G-path. A G-path is a sequence
of alternating objects and labels that starts with the
-I..--- 2. _^___^ A.:-.” l- uu111111y blallstJLblUI1 I alld efidS With Z iiOde ii3 U. ’ /r TvXvTe

use superscripted label : idi to represent repeating oc-
currences of label : id pair. A k-tree expression can
be represented by a sequence pl . . .ph, where pi is the
G-path for the ith I occurrence. In particular, the
tree corresponding to the k-tree expression can be con-
structed by “assembling” G-paths pl, . . . ,pk in a nat-
ural way. For example, Figure 2 shows three trees for

(a) plp2

Figure 2: Constructing ~1~2~3 by extending plp2 by
PlP3

three sequences plpz, plp3, ~1~2~3 of G-paths, where
pl = {T,ll : a’,12 : 11}, pz = {T,ll : a’,12 : 12}, and
p3 = {T,ll : a1,i2 : i").

The algorithm makes multiple passes over the trans-
action file D to compute the set F, of frequent k-tree
expressions, k = 1,2,. . . In the first pass, we find all
frequent l-tree expressions, 4, in the form of G-paths.
Each subsequent pass over D computes Fk from Fk-1.
The following theorem forms the basis of computing
Fl.

Theorem 1 Let pi be G-paths. Every frequent k-
tree expression pl . . .pk-1pk iS constructed by tW0
frequent (k - lj-tree expressions pl...pk-@k-l and
Pl *. * p&Zpk such that p&1 is not a prefix Of pk and
vice versa.

Theorem 1 gives a superset of Fk, called k-
candidates. The actual frequent k-tree expressions in
Fk are found by counting the support of k-candidates
during a pass over the transaction file D. It does not
work to simply treat G-paths as items and find schema
patterns as large itemsets in (Agrawal, Imielinski, and
Swami 1993) because the connectivity among nodes on
G-paths is important.

To reduce the cost of search, the storage structure of
Fk-1 must facilitate efficient retrieval of the matching
pairs in Theorem 1 and dynamically extend from Fk-1
to Fk without reorganization. In addition, heuristics
of pruning useless search space are crucial to the per-
formance. Due to space limitation, we omit the detail
of the algorithm.

After all Fk’s are computed, we prune all non-
maximally frequent tree expressions. An important ob-
servation is that, for i > j: no i-tree expression can be
weaker than a j-tree expression. Therefore, the prun-
ing is done in the order Fk,F,-1, . . . , Fl.

Experiments
We tested the proposed discovery framework on the
Internet Movies Database (IMDb) on the Web at
http://us.imdb.com. IMDb currently covers more

wws 273

Pattern I (support = 22%):
{Title, Released-Year, Country,‘Award, Key, Distributor,

Director:(Name, Place, Award, Spouse:INameI, Category),
Cast:{{Name, Place, Award, Spouse:CNeme, Occupation>, Category),

{Name, Place, Spouse:CName, Occupation), Category),
(Name, Place, Spouse:(Name3, Category),
{Name, Place, Spouse:CName)>,
(Name, Place)),

Writer:{Name, Place, Category),
Composer:CName, Category),
Cinematographer:{Name, Category),
Editor:{Name),
Producer:{Name, Place, Category)).

Figure 3: The first pattern

than 95,000 movies and over 1,300,OOO filmograi
phy entries. All movies are organized into HTML
document trees. To make the manual verifica-
tion easier, we chosen only the top 100 movies
from the entry Top 250 movies as voted by YOU
(http:www.us.imdb.com/top-25O-films) for the trans-
action database, and picked only the top five actors
in each movie. The OEM is constructed by extract-
ing from the HTML documents data items of the form
1 : 21, where 1 is a label in bold face and w is either a
hyperlink (i.e., a complex object) or an atomic object.
The extraction ignores raw data such images and free
English text. We set MINISUP to 15%.

The first pattern found is given in Figure 3. (I is
omitted in all patterns, so is the label actor for each
actor object.) This pattern tells, among others, that
one actor got award, four actors had spouses, two of
which were doing movie related jobs, etc.

The second pattern with support = 17% is the same
as the first pattern except that the last five lines are
replaced by

?:(Name, Place, Spouse:(Name), Category)).
The wildcard label ? is for anyone who is a producer,
a writer, a editor, a cinematographer, etc. This sub-
structure was not discovered in the first pattern be-
cause it is not frequent enough if the wildcard ? is not
used. Since Director is in the second pattern, ? does
not include Director unless a movie has more than one
director.

The third pattern with support = 16% is the same
as the first pattern except that the line for Director is
-3 -1 -L..rl le.-c 4&.,1:-s., A..,. wfinlnn,\,l ..,:+h Ut!lebt!u and the 1Slblr 11”t: ,111c:3 cur; lopIaLou w1u11

?:CName, Place, Award,
Spouse:{Name, Occupation), Category)).

The wildcard ? here covers all those covered by ? in the
second pattern plus Director. This substructure was
not discovered in the second pattern where Director
was separated out.

274 KDD-97

Conclusion
We have introduced schema discovery for a collection
of semistructured objects. We addressed issues of (a)
considering multiple objects for schema discovery, (b)
allowing bag construction, (c) allowing wildcard labels
in patterns, (d) defining the generalization hierarchy
and maximality to focus on interesting patterns, (e)
defining the discovery problem and proposing an al-
gorithm, (f) studying the effectiveness on a real Web
database.

Despite the growing popularity of semistructured
data, such as Web documents, KDD research has
largely focused on well structured data, mainly rela-
tional tables. This paper presents one step to address
this unbalance. We believe that in the semistructured
world, KDD will play even a bigger role than in struc-
tured data - simply because there are more to be
discovered.

References
Abiteboul, S. 1997. Querying Semi-structured Data.
ICDT 1997 (http:// www-db.stanford.edu/pub/papers
/icdt97.semistructured.ps).

Abiteboul, S.; Quass, D.; McHugh, J.; Widom,J.;
and Wiener, J.L. 1996. The Lore1 Query Lan-
guage for Semistructured Data. to appear in Journal
of Digital Libraries, 1997 (http://www-db.stanford.
edu/pub/papers/lorel96.ps).

Agrawal, R.; Imielinski, T.; and Swami, A. 1993.
Mining Association Rules between Sets of Items in
Large Databases. SIGMOD 1993.

TYT\Tontnrnw 9 . TTllm.an 1 . IWi~nor 1 . snrl C!hanrstho r,ou”“r”“, Ia.) “rrAA,urr) v., r. LUIIYI, Y.) WLAU V’LLY..~Y”V,

S. 1997. Representative Objects: Concise Represen-
tations of Semistructured, Hierarchical Data. ICDE
1997 (http: J Jwww-db.stanford.edu/pub /papers J
representative-objeckps).

