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Abstract 

Feature selection is a data preprocessing step for 
classification and data mining tasks. Tradition- 
ally, feature selection is done by selecting a mini- 
mum number of features that determine the class 
label, i.e., by the horizontal compactness of data. 
In this paper, we propose a new selection cri- 
terion that aims at the vertical compactness of 
data. In particular, we select a subset of fea- 
tures that yields the least number of projected 
instances while determining the class label. A  
hybrid search that is partially DFS and partially 
BFS is proposed to exploit the pruning potential 
of the problem. We compare the result induced 
by C4.5 before and after the feature selection. 

Introduction 
Traditionally, feature selection is done by selecting 
fewest features that determine the class label. See, 
for example, Almuall im and Dietterich 1994, Schlim- 
mer 1993. (There are other definitions of feature selec- 
tion, such as Kira and Rendelll992, Koller and Sahami 
1996, e.g.) One obvious problem is that in a medi- 
cal diagnosis task, the patient’s social security number 
(SSN) would be identified as one solution because SSN 
determines the diagnosis. The rules produced using 
only SSN would not be able to predict the diagnosis 
for an unseen patient. The poor generalization lies 
in the fact that the selection of SSN yields no reduc- 
tion in the number of projected instances. Of course, 
one could first remove SSN before the feature selection 
starts because SSN is well known to have poor general- 
ization. However, in many other less obvious cases, the 
choice of which features to be removed is not always 
straightforward. Answering this question is exactly the 
task of feature selection. 

In this paper, we propose a new feature selection 
criterion that aims at the maximum vertical compact- 
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ness of the data, in contrast to the traditional hori- 
zontal compactness. For some given tolerance of noise 
level y, we select a subset of features that yields fewest 
projected instances without exceeding the tolerance y, 
This criterion returns the most vertically compact sub- 
set for the given tolerance. In fact, the more vertically 
compact the subset is, the more duplicates in the se- 
lected features map to the same class, therefore, the 
more likely the selected features are relevant in describ- 
ing the class. In the above medical diagnosis example, 
it is obvious that SSN would be among the first not to 
be selected since it gives no reduction in the number 
of projected instances. 

The rest of the paper defines the new feature selec- 
tion criterion, considers issues involved in searching for 
a solution, and studies the performance of the criterion. 

The M IN-INSTANCE Criterion 
The user usually has some idea about how much noise 
in the dataset can be tolerated when performing fea- 
L--~~- --1--L’--- t-~-l .--A 1- --~-I~ I 1 ture selection. auojecr ro sucn rorerance, the feature 
selection is to select a subset of features that produces 
the least number of projected instances. First, let us 
define what is meant by the noise of the data. 

Two instances are inconsistent if they match except 
for the class label. For a set of matching instances, 
the inconsistency count is the number of instances in 
the set minus the number of instances belonging to a 
major class in the set. For example, there are n match- 
ing instances, among them, 1; instances belong to one 
class, 1s instances belong to another class, and 13 in- 
stances belong to the third class, where 11 +.Z’z+1a = n. 
If 1s is the largest among the three, the inconsistency 
count is n - Iz. The inconsistency rate is the sum 
of all inconsistency counts (for all matching patterns) 
divided by the total number of instances. In other 
words, the inconsistency rate measures the misclassifi- 
cation caused by changing minority classes of matching 
instances to a majority class. The data size of a subset 
of features refers to the number of distinct instances 
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Figure 2: Pruning potential 

Hybrid Search Algorithm 
We present a search algorithm for HS. At the top 
level, the search order of HS is guided by DFS. To 
enforce Principle 1, however, a checking of the logical 
parent is interleaved with DFS. On visiting a node v 
(whose physical parent has obviously been evaluated), 
HS checks the status of the logical parent vl of w, which 
must be one of pruned, evaluated, unevaluated. If vl 
is unevaluated, wl is pushed onto the stack and the 
checking goes to the logical parent of vl recursively 
(note that the physical parent of wl has been evalu- 
ated). This repeats until encountering a logical par- 
ent that is either pruned or evaluated. The unwinding 
stage of the recursion pops each node from the stack 
and evaluates it. When the stack becomes empty, the 
computation comes back to w and the DFS resumes 
and determines the next node to visit from unpruned 
nodes. Instead of presenting the algorithm, we illus- 
trate the idea using an example. 

Example 1 Consider Figure 2. The number at each 
node denotes the order in which the node is visited fol- 
lowing Principles 1 and 2. Let us consider how Prun- 
ings I and II are exercised. HS starts with A. AB is 
the next node to visit in the DFS order. Principle 1 
requires to evaluate the logical parent of AB first, i.e., 
B, and then AB itself. ABC is visited next in the DFS 
order. The parent checking at ABCpushs ABC, AC, C 
onto the stack, as indicated by the dotted line starting 
at ABC, and evaluates C, AC, ABC in the unwinding 
stage. Suppose that ABC is the current best subopti- 
ma1 solution. From Pruning I, all nodes under ABC 
are pruned. ABD is the next unpruned node to be vis- 
ited in the DFS order. The parent checking at ABD 
pushes ABD, AD, and D onto the stack. Assume that 

the data size of D is larger than the current best size 
(i.e., the data size of ABC). In the unwinding stage, D, 
AD, ABD are simply popped ofl the stack and tagged 
as pruned. 

ABE is the next unpruned node in the DFS order. 
The parent checking at ABE pushes ABE, AE, E onto 
the stack. Assume that the data size of E is larger than 
the current best size, E, AE, ABE all are tagged as 
pruned and popped off the stack. ACD is visited next. 
Since the logical parent AD was pruned before, AC’D is 
pruned immediately. ACE is visited next. Similarly, 
since its logical parent AE was pruned before, ACE is 
pruned immediately. Then BC becomes the next un- 
pruned node in the DFS order. This traversal goes on 
until no  more unpruned can be reached. 

The worst case for HS algorithm is when all features 
are relevant and no node can be pruned. In this case, 
2n - 1 nodes will be evaluated, where n is the number 
of original features. In most cases, however, the class 
label depends only on a small number of features and 
much fewer nodes are evaluated. 

Experiments 
We tested the proposed feature selection on a few 
datasets in UC1 Repository (Murphy and Aha 1994). 
Our focus is the data size reduction and the quality of 
rules induced. 

Features selected 
Table 1 shows the features selected and the data size 
before and after feature selection. The last three 
datasets have continuous features. All datasets use 
consistency rate y = 0, except Monk3(5%) which uses 
y = 5% because the dataset contains 5% noise. If the 
training data and testing data are separately specified, 
such as all Monks, feature selection is applied to the 
training data; otherwise, to the entire dataset. 

For the first seven datasets for which the relevant 
features are known, exactly the relevant features are 
selected, as in the table. For all datasets, only a proper 
subset of original features is selected. Except for Tic- 
Tat-Toe, there is always some reduction in the data 
size after feature selection, with Led 7 having the most 
reduction, i.e., from 2000 instances to 10 instances. For 
Abalone and Pima, though the reduction in data size 
is small, three out of the original eight are selected, 
reducing the data volume by more than 60%. 

We  have chosen DFS and BFS coupled with Prun- 
ings I and Pruning II, denoted DFS(P) and BFS(P), as 
the benchmark for comparison. The last three columns 
in Table 1 give the number of dataset scans performed. 
In most cases, HS makes fewer scans than DFS(P) and 
BFS(P). For the three Monks, Parity3+3, and Pima, 
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Bupa 
Abalone 
Pima 

345 6 A3 A4A5 337 43 5I 51 
4177 8 &A&s 4175 79 81 95 
768 8 &&A7 764 121 164 156 

Table 1: Selected features and cost comparison 

the reduction in the number of scans ranges between 
19% and 45%, and for Tic-Tac-Toe and Led 7, the three 
methods make the same number of scans. It is ex- 
pected that HS will prune more scans on real datasets 
where there are more irrelevant features. 
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We run C4.5 (Quinlan 1993) on the above datasets 
with and without feature selection. D.uplicate in- 
stances produced by feature selection are kept in run- 
ning C4.5. In practice, duplicates can be represented 
by a single copy and a duplication number. For each 
dataset, the lo-fold cross validation was applied to the 
whole dataset projected on the features selected in Ta- 
ble 1. Table 2 summarizes the size of pruned decision 
trees and the error rate on test data. In general, se- 
lected features induce better decision trees than orig- 
inal features. For CorrAl (John, Kohavi and Pfleger 
1994), Bupa, and Abalone, both tree size and error 
rate are reduced after feature selection. Without fea- 
ture selection the decision tree for CorrAl picks the cor- 
related feature C as the root. With feature selection 
the correlated feature (C) and the irrelevant feature (I) 
are removed and the induced rules capture the target 
concept, i.e., (A0 A Bo) V (Al A AZ). 

For the two Parity datasets, a bigger decision tree 
is induced, but the error rate is reduced from 40% to 
nearly 0. Since the error rate is collected on test data, 
this improvement is not always achievable by having 
a larger tree. In the case of Tic-Tat-Toe, the tree size 
has reduced significantly by having a slightly higher er- 
ror rate. The feature selection does not affect Monk2, 
Monk3, and Led 7 because C4.5 selects exactly same 
features. For Monkl, the tree gets slightly bigger but 
the error rate drops to 0. Unlike. discrete features, con- 
tinuous features have much fewer repeating values, a 
direct feature selection is less effective, as shown by the 
last three datasets. 
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1 Dataset Tree Size I Error Rate (%) 

I Paritv 3+3 
L Tic-TaoToe 

I 13.4 I 15.0 I 39.5 I 0.0 I 
133.0 116.2 13.8 14.7 

Led 7 19.0 19.0 0.0 0.0 
Bupa 77.6 55.8 39.1 35.9 
Abalone 2174.5 1882.2 79.9 79.0 
Pima 125.4 136.2 29.5 38.1 

Table 2: Results of C4.5 
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