
I

Selecting Features by Vertical Compactness of Data *

Ke Wang and Suman Sundaresh
Department of Information Systems and Computer Science

National University of Singapore
wangk@iscs.nus.edu.sg, sumans@iscs.nus.edu.sg

Abstract

Feature selection is a data preprocessing step for
classification and data mining tasks. Tradition-
ally, feature selection is done by selecting a mini-
mum number of features that determine the class
label, i.e., by the horizontal compactness of data.
In this paper, we propose a new selection cri-
terion that aims at the vertical compactness of
data. In particular, we select a subset of fea-
tures that yields the least number of projected
instances while determining the class label. A
hybrid search that is partially DFS and partially
BFS is proposed to exploit the pruning potential
of the problem. We compare the result induced
by C4.5 before and after the feature selection.

Introduction
Traditionally, feature selection is done by selecting
fewest features that determine the class label. See,
for example, Almuall im and Dietterich 1994, Schlim-
mer 1993. (There are other definitions of feature selec-
tion, such as Kira and Rendelll992, Koller and Sahami
1996, e.g.) One obvious problem is that in a medi-
cal diagnosis task, the patient’s social security number
(SSN) would be identified as one solution because SSN
determines the diagnosis. The rules produced using
only SSN would not be able to predict the diagnosis
for an unseen patient. The poor generalization lies
in the fact that the selection of SSN yields no reduc-
tion in the number of projected instances. Of course,
one could first remove SSN before the feature selection
starts because SSN is well known to have poor general-
ization. However, in many other less obvious cases, the
choice of which features to be removed is not always
straightforward. Answering this question is exactly the
task of feature selection.

In this paper, we propose a new feature selection
criterion that aims at the maximum vertical compact-

* Copyright 01997, American Association for Artifi-
cial Intelligence (www.aaai.org). All rights reserved.

ness of the data, in contrast to the traditional hori-
zontal compactness. For some given tolerance of noise
level y, we select a subset of features that yields fewest
projected instances without exceeding the tolerance y,
This criterion returns the most vertically compact sub-
set for the given tolerance. In fact, the more vertically
compact the subset is, the more duplicates in the se-
lected features map to the same class, therefore, the
more likely the selected features are relevant in describ-
ing the class. In the above medical diagnosis example,
it is obvious that SSN would be among the first not to
be selected since it gives no reduction in the number
of projected instances.

The rest of the paper defines the new feature selec-
tion criterion, considers issues involved in searching for
a solution, and studies the performance of the criterion.

The M IN-INSTANCE Criterion
The user usually has some idea about how much noise
in the dataset can be tolerated when performing fea-
L--~~- --1--L’--- t-~-l .--A 1- --~-I~ I 1 ture selection. auojecr ro sucn rorerance, the feature
selection is to select a subset of features that produces
the least number of projected instances. First, let us
define what is meant by the noise of the data.

Two instances are inconsistent if they match except
for the class label. For a set of matching instances,
the inconsistency count is the number of instances in
the set minus the number of instances belonging to a
major class in the set. For example, there are n match-
ing instances, among them, 1; instances belong to one
class, 1s instances belong to another class, and 13 in-
stances belong to the third class, where 11 +.Z’z+1a = n.
If 1s is the largest among the three, the inconsistency
count is n - Iz. The inconsistency rate is the sum
of all inconsistency counts (for all matching patterns)
divided by the total number of instances. In other
words, the inconsistency rate measures the misclassifi-
cation caused by changing minority classes of matching
instances to a majority class. The data size of a subset
of features refers to the number of distinct instances

Wang 275

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

ABCD:lO ABCE14 AmE:

A&E15

Figure 2: Pruning potential

Hybrid Search Algorithm
We present a search algorithm for HS. At the top
level, the search order of HS is guided by DFS. To
enforce Principle 1, however, a checking of the logical
parent is interleaved with DFS. On visiting a node v
(whose physical parent has obviously been evaluated),
HS checks the status of the logical parent vl of w, which
must be one of pruned, evaluated, unevaluated. If vl
is unevaluated, wl is pushed onto the stack and the
checking goes to the logical parent of vl recursively
(note that the physical parent of wl has been evalu-
ated). This repeats until encountering a logical par-
ent that is either pruned or evaluated. The unwinding
stage of the recursion pops each node from the stack
and evaluates it. When the stack becomes empty, the
computation comes back to w and the DFS resumes
and determines the next node to visit from unpruned
nodes. Instead of presenting the algorithm, we illus-
trate the idea using an example.

Example 1 Consider Figure 2. The number at each
node denotes the order in which the node is visited fol-
lowing Principles 1 and 2. Let us consider how Prun-
ings I and II are exercised. HS starts with A. AB is
the next node to visit in the DFS order. Principle 1
requires to evaluate the logical parent of AB first, i.e.,
B, and then AB itself. ABC is visited next in the DFS
order. The parent checking at ABCpushs ABC, AC, C
onto the stack, as indicated by the dotted line starting
at ABC, and evaluates C, AC, ABC in the unwinding
stage. Suppose that ABC is the current best subopti-
ma1 solution. From Pruning I, all nodes under ABC
are pruned. ABD is the next unpruned node to be vis-
ited in the DFS order. The parent checking at ABD
pushes ABD, AD, and D onto the stack. Assume that

the data size of D is larger than the current best size
(i.e., the data size of ABC). In the unwinding stage, D,
AD, ABD are simply popped ofl the stack and tagged
as pruned.

ABE is the next unpruned node in the DFS order.
The parent checking at ABE pushes ABE, AE, E onto
the stack. Assume that the data size of E is larger than
the current best size, E, AE, ABE all are tagged as
pruned and popped off the stack. ACD is visited next.
Since the logical parent AD was pruned before, AC’D is
pruned immediately. ACE is visited next. Similarly,
since its logical parent AE was pruned before, ACE is
pruned immediately. Then BC becomes the next un-
pruned node in the DFS order. This traversal goes on
until no more unpruned can be reached.

The worst case for HS algorithm is when all features
are relevant and no node can be pruned. In this case,
2n - 1 nodes will be evaluated, where n is the number
of original features. In most cases, however, the class
label depends only on a small number of features and
much fewer nodes are evaluated.

Experiments
We tested the proposed feature selection on a few
datasets in UC1 Repository (Murphy and Aha 1994).
Our focus is the data size reduction and the quality of
rules induced.

Features selected
Table 1 shows the features selected and the data size
before and after feature selection. The last three
datasets have continuous features. All datasets use
consistency rate y = 0, except Monk3(5%) which uses
y = 5% because the dataset contains 5% noise. If the
training data and testing data are separately specified,
such as all Monks, feature selection is applied to the
training data; otherwise, to the entire dataset.

For the first seven datasets for which the relevant
features are known, exactly the relevant features are
selected, as in the table. For all datasets, only a proper
subset of original features is selected. Except for Tic-
Tat-Toe, there is always some reduction in the data
size after feature selection, with Led 7 having the most
reduction, i.e., from 2000 instances to 10 instances. For
Abalone and Pima, though the reduction in data size
is small, three out of the original eight are selected,
reducing the data volume by more than 60%.

We have chosen DFS and BFS coupled with Prun-
ings I and Pruning II, denoted DFS(P) and BFS(P), as
the benchmark for comparison. The last three columns
in Table 1 give the number of dataset scans performed.
In most cases, HS makes fewer scans than DFS(P) and
BFS(P). For the three Monks, Parity3+3, and Pima,

w=% 277

Bupa
Abalone
Pima

345 6 A3 A4A5 337 43 5I 51
4177 8 &A&s 4175 79 81 95
768 8 &&A7 764 121 164 156

Table 1: Selected features and cost comparison

the reduction in the number of scans ranges between
19% and 45%, and for Tic-Tac-Toe and Led 7, the three
methods make the same number of scans. It is ex-
pected that HS will prune more scans on real datasets
where there are more irrelevant features.

Fff~ctivmww nf classification -‘-.-d-Z- J--2LL - - --__LL-----_I----

We run C4.5 (Quinlan 1993) on the above datasets
with and without feature selection. D.uplicate in-
stances produced by feature selection are kept in run-
ning C4.5. In practice, duplicates can be represented
by a single copy and a duplication number. For each
dataset, the lo-fold cross validation was applied to the
whole dataset projected on the features selected in Ta-
ble 1. Table 2 summarizes the size of pruned decision
trees and the error rate on test data. In general, se-
lected features induce better decision trees than orig-
inal features. For CorrAl (John, Kohavi and Pfleger
1994), Bupa, and Abalone, both tree size and error
rate are reduced after feature selection. Without fea-
ture selection the decision tree for CorrAl picks the cor-
related feature C as the root. With feature selection
the correlated feature (C) and the irrelevant feature (I)
are removed and the induced rules capture the target
concept, i.e., (A0 A Bo) V (Al A AZ).

For the two Parity datasets, a bigger decision tree
is induced, but the error rate is reduced from 40% to
nearly 0. Since the error rate is collected on test data,
this improvement is not always achievable by having
a larger tree. In the case of Tic-Tat-Toe, the tree size
has reduced significantly by having a slightly higher er-
ror rate. The feature selection does not affect Monk2,
Monk3, and Led 7 because C4.5 selects exactly same
features. For Monkl, the tree gets slightly bigger but
the error rate drops to 0. Unlike. discrete features, con-
tinuous features have much fewer repeating values, a
direct feature selection is less effective, as shown by the
last three datasets.

27s KDD-97

1 Dataset Tree Size I Error Rate (%)

I Paritv 3+3
L Tic-TaoToe

I 13.4 I 15.0 I 39.5 I 0.0 I
133.0 116.2 13.8 14.7

Led 7 19.0 19.0 0.0 0.0
Bupa 77.6 55.8 39.1 35.9
Abalone 2174.5 1882.2 79.9 79.0
Pima 125.4 136.2 29.5 38.1

Table 2: Results of C4.5

References
Almuallim, H.; & Dietterich, T. G. 1994. Learning boolean
concepts in the presence of many irrelevant features. Arti-
ficial Intelligence, 69 (l-2), 279-305.

John, G. H.; Kohavi, R.; & Pfleger, K. 1994. Irrele-
vant features and the subset selection problem. In Proceed-
ings of the Eleventh International Conference on Machine
Learning, 121-129.

Kira, K.; & Rendell, L. A. 1992. The feature selection
problem: Traditional methods and a new algorithm. In
Proceedings of Ninth National Conference on AI, 129-134.

Koller, D.; & Sahami, M. 1996. Toward optimal fea-
ture selection. In Machine Learning: Proceedings of the
Thirteenth International Conference.

Murphy, P.; & Aha, D. 1994. Repository of
Machine Learning Databases. http://www.ics.uci.edu/
mlearn/MLRepository.html

Quinlan, J. R. 1993. C4.5 : Programs for Machine Learn-
ing.

Schlimmer, J. C. 1993. Efficiently Inducing determina-
tions: A complete and systematic search algorithm that
uses optimal pruning. In Proceedings of Tenth Interna-
tional Conference on Machine Learning, 284-290.

