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Abstract 

Discovery of association rules is an important 
problem in database mining. In this paper we 
present new algorithms for fast association min- 
ing, which scan the database only once, address- 
ing the open question whether all the rules can 
be efficiently extracted in a single database pass. 
The algorithms use novel itemset clustering tech- 
niques to approximate the set of potentially maxi- 
mal frequent itemsets. The algorithms then make 
use of efficient lattice traversal techniques to gen- 
erate the frequent itemsets contained in each clus- 
ter. We propose two clustering schemes based 
on equivalence classes and maximal hypergraph 
cliques, and study two traversal techniques based 
on bottom-up and hybrid search. We also use a 
vertical database layout to cluster related trans- 
actions together. Experimental results show im- 
provements of over an order of magnitude com- 
pared to previous algorithms. 

Introduction 
One of the central KDD tasks is the discovery of asso- 
ciation rules. The prototypical application is the anal- 
ysis of supermarket sales or basket data (Agrawal et 
al. 1996), which can be formally stated as follows: Let 
z= {i&y*. ,&} be the set of database items. Each 
transaction, T, in the database, 2), has a unique identi- 
fier, and contains a set of items, called an itemset. An 
itemset with k items is called a k-itemset. The support 
of an itemset is the percentage of transactions in 2) that 
contain the itemset. An association rule is a conditional 
implication among itemsets, A + B. The data mining 
task for association rules can be broken into two steps. 
The first step consists of finding all frequent itemsets, 
i.e., itemsets that occur in the database with a certain 
user-specified frequency, called m inimum support. The 
second step consists of form ing the rules among the fre- 
quent itemsets. This step is relatively easy (Agrawal 
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et al. 1996), compared to the computationally inten- 
sive first step. Given m  items, there are potentially 2” 
frequent itemsets, which form  a lattice of subsets over 
Z. However, only a small fraction of the whole lattice 
space is frequent. This paper presents efficient methods 
to discover these frequent itemsets. 
Related Work Among the extant solutions, the Apri- 
ori algorithm  (Agrawal et aE. 1996) was shown to 
be superior to earlier approaches (Park et al. 1995; 
Holsheimer et al. 1995). It uses the downward clo- 
sure property of itemset support to prune the item - 
set lattice - the property that all subsets of a fre- 
quent itemset must themselves be frequent. Thus only 
the frequent k-itemsets are used to construct candidate 
(k $ 1)-itemsets. A pass over the database is made 
at each level to find the frequent itemsets. The Par- 
tition algorithm  (Savasere et aE. 1995) m inim izes I/O 
by scanning the database only twice. Once for gen- 
erating a set of potential frequent itemsets, and once 
for gathering their support. Another way to mini- 
m ize the I/O overhead is to work with only a small 
sample of the database (Toivonen 1996; Zaki et aE. 
1997a). A number of parallel algorithms have also been 
proposed (Agrawal & Shafer 1996; Zaki et al. 1996; 
1997c). 

Itemset Clustering 
Consider the lattice shown in figure 1. Due to the down- 
ward closure property of itemset support the frequent 
itemsets (dashed circles) form  a border (bold line), such 
that all frequent itemsets lie below it. The border is 
precisely determined by the sub-lattices induced by the 
maximal frequent itemsets (bold circles). If we are given 
the maximal frequent itemsets we can design an opti- 
mal algorithm  that gathers the support of all their sub- 
sets in a single database pass. In general we cannot 
precisely determ ine the maximal itemsets a priori. We 
can however use intermediate results to obtain their 
approximations, called the potential maximal frequent 
itemsets. 
Equivalence Class Clustering For any lc 1 2, we 
can generate the set of potential maximal itemsets from  
the set of frequent itemsets, Lk. We partition Lk into 
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Lattice of Subsets of { L2.3.4.5) Sublattices Induced by Maximal Itemsets 

Lattice of Subsets of {1,2,3,4) 

Lattice of Subsets of [3,4,5) 

F igure 1: Lattice of Subsets and Maximal Itemset Induced Sub-lattices 

equivalence classes based on their common Ic - 1  length 
prefix, given as, [a] = {b[k]la[l : k - l] = b[l : k - 11). 
For example, consider the Lz and the resulting equiv- 
alence classes shown in figure 2. Any frequent itemset 
with the prefix 1, must consist of items in [ll, making 
12345678 a  potential maximal itemset. Each equiva- 
lence class can thus be considered as a  potential max- 
imal frequent itemset. Note that for lc = 1  we end up 
-with +ho ontirn itom r~nivorna sa thn mavimal itnmrat YYl”ll “&At., ..,LA”AIb LUtiLII UIAI”c.I”~ W ” Y11.., .IIu,ILIILIWI I”YIIIUU”. 

However, for any Ic 2  2, we can extract more precise 
knowledge, with increasing precision as k increases. 

-I 

Frequent 2-Itemsets 
(12, 13,14,15, 16,17,18,23,25,27,28,34,35,36,45,46,56,58,68,78) 

Equivalence Classes Maximal Cliques per Class Equivalence Class Graph 

F igure 2: Clustering Schemes 

Maximal Hypergraph Clique Clustering From 
Lk, it is possible to generate a  more refined set of po- 
tential maximal itemsets. The key observation is that 
given any frequent m-itemset, for m  > Ic, all its L- 
subsets must be  frequent. In graph-theoretic terms, 
if each item is a  vertex in a  hypergraph, and each k- 
subset an  edge, then the frequent m-itemset must form 
a  L-uniform hypergraph clique. Furthermore, the set 
of maximal hypergraph cliques represents an  approxi- 
matinn nr nnner-hmmrl gpA t,b,e sp,f; of m+&md p&p- ~~*Y”-v-. v- -YY-- ------ 
tial frequent itemsets. All the true maximal frequent 
itemsets are contained in the vertex set of the maximal 
cliques, as stated formally in the lemma below. 
Lemma 1 Let HL~ be the t-uniform hypergraph with 
vertex set 1, and edge set Lk. Let C be the set of max- 
imal hypergraph cliques in H, and let M  be the set of 

vertex sets of the cliques in C. Then for all maximal 
frequent i temsets f, 3t E M, such that f C t. 

An example of maximal hypergraph clique clustering 
is given in figure 2. The figure shows all the equivalence 
classes, the maximal cl iques per class, and the hyper- 
graph for class [l]. It can be seen immediately that 
clique clustering is more precise than equivalence class 
clustering. For example, for the class [l], the former 
generated the maximal element 12345678,  while the lat- 
ter a  more refined set {1235,1258,1278,13456,1568}.  
The maximal cl iques are discovered using a  dynamic 
programming algorithm; see (Zaki et al. 199713) for 
details. As the edge density of the equivalence class 
graph increases the cost for generat ing the cliques may 
increase. Some of the factors affecting the edge density 
include decreasing support and increasing transaction 
size. 

Lattice Traversal 
Each potential maximal itemset generated by the above 
clustering schemes, induces a  sublattice on 1. We  now 
have to traverse each of these sub-lattices to determine 
the true frequent itemsets. 
Bottom-up Traversal A pure bottom-up lattice 
traversal proceeds in a  breadth-first manner  generat- 
ing all frequent itemsets of length Ic, before generat- 
ing those of length k + 1. F igure 3  shows an exam- 
ple of this scheme, with the potential maximal item- 
set, 123456,  and the true maximal frequent itemsets 
1235 and 13456. Most current algorithms use this ap- 
proach (Agrawal et al. 1996; Savasere et al. 1995; 
Park et al. 1995). 
Hybrid Top-down/Bottom-up Traversal The 
bottom-up search may generate spurious candidates in 
the iiiteiimedi& Stieps, SiiiCe the fact ihd dl SiibSeiS 
of an  itemset are frequent doesn’t guarantee that the 
itemset is frequent. We  can envision other traversal 
techniques which quickly identify the set of true max- 
imal frequent itemsets. If we are interested in all fre- 
quent itemsets, we can then gather the support of all 
their subsets as well. We  rule out a  pure top-down ap- 
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Cluster: Potential Maximal Frequent Itemset (123456) HYBRID -J--VERSAL 
Itemset 12 1 13 1 14 1 15 1 16 Sort I temSetS by support 

SUPPO 150~300~200 400~500 G3cacacsG3 

True Maximal Frequent Itemsets: 1235, 13456 Top-Down Phase 

BOTTOM-UP TRAVERSAL 

F igure 3: Bottom-up and Hybrid Lattice Traversal 

preach due to the inaccuracies in the clusters (Zaki et 
al. 1997b), and propose a  hybrid top-down/bottom-up 
scheme that works well in practice. The basic idea is to 
start with a  single element from the itemset cluster, and 
extend this by one more element till we generate an in- 
frequent itemset. This comprises the top-down phase. 
In the bottom-up phase, the remaining elements are 
combined with the elements in the first set to generate 
all the additional frequent itemsets. For the top-down 
phase, we sort the cluster elements in descending order 
of their support. We  start with the element with max- 
imum support, and extend it with the next element in 
the sorted order. This is based on the intuition that the 
larger the support the more likely is the itemset to be  
part of a  larger itemset. F igure 3  shows an example of 
the hybrid scheme. 

Transaction Clustering 
There are two possible layouts of the database for as- 
sociation m ining. The horizontal layout (Agrawal et al. 
1996) consists of a  list of transactions. Each transaction 
has an identifier followed by a  list of items. The verti- 
cal layout (Holsheimer et aE. 1995) consists of a  list of 
items. Each item has a  tid-list - the list of all the trans- 
actions containing the item. The vertical format seems 
more suitable for association m ining since the support 
of a  candidate k-itemset can be computed by simple tid- 
list intersections. No complicated data structures need 
to be ma intained. The tid-lists cluster relevant transac- 
tions, and avoid scanning the whole database to com- 
pute support, and the larger the itemset, the shorter 
the tid-lists, resulting in faster intersections. Further- 
more, the horizontal layout seems suitable only for the 
bottom-up traversal. The  inverted layout, however, has 
a  drawback. Intersecting 1-itemset tid-lists to deter- 
m ine Ls can be very expensive (Zaki et al. 199710).  
This can be solved by using sampl ing(Toivonen 1996; 
Zaki et al. 1997a), or by using a  preprocessing step 
to gather the support all 2-itemsets. Since this infor- 
mation is invariant, the pre-processing has to be  per- 
formed once initially, and the cost can be amort ized 
over the number  of times the data is m ined. Our current 

implementation uses the pre-processing approach due 
to its simplicity. Sampling requires an extra database 
pass, while pre-processing requires extra storage. For 
m  items, O(m2) disk space is required, which can be 
quite large for large m . However, for m  = 1000 used in 
our experiments this adds only a  very small extra stor- 
age overhead. Note that the database itself requires 
the same amount  of space in both the horizontal and 
vertical formats. 

New Association Algorithms 
We present four new algorithms, depending on the clus- 
tering and lattice traversal scheme used: 
l Edat: equivalence class & bottom-up 
l MaxEclat: equivalence class & hybrid 
l Clique: maximal hypergraph clique & bottom-up 
l MaxClique: maximal hypergraph clique & hybrid 

The new algorithms use one of the itemset clustering 
schemes to generate potential maximal itemsets. Each 
such cluster induces a  sublattice, which is traversed us- 
ing bottom-up search to generate all frequent itemsets, 
or using hybrid scheme to generate only the maximal 
frequent itemsets. Each cluster is processed in its en- 
tirety before moving on to the next cluster. Since the 
transactions are clustered using the vertical format, this 
involves a  single database scan, resulting in huge I/O  
savings. Frequent itemsets are determined using simple 
tid-list intersections. No complex hash structures need 
to be built or searched. The algorithms have low mem- 
ory utilization, since only the frequent k-itemsets within 
a  single cluster need be kept in memory at any point. 
The  use of simple intersection operations also makes 
the new algorithms an attractive option for direct im- 
plementation on general purpose database systems. 

Experiment al Results 
Our experiments used a  1OOMHz M IPS processor 
with 256MB ma in memory, with different benchmark 
databases (Agrawal et al. 1996). For fair comparison, 
all algorithms use 2-itemset supports from the prepro- 
cessing step. See (Zaki et aE. 199713)  for detailed ex- 
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F igure 4: Performance Comparison 

periments. In figure 4  a), we compare our new algo- 
rithms against Apriori and Partition (with 10  parti- 
tions) on  T20.16.DlOOK database. E&t outperforms 
Apriori by a  factor of 10, and Partition by a  factor of 
5. As the support decreases, the size and the num- 
ber of frequent itemsets increases. Apriori has to make 
mu ltiple passes over the database, and performs poorly. 
Partition saves some I/O  costs, but it spends time  com- 
puting redundant frequent itemsets in common among 
different partitions. Among the new algorithms, CZique 
provides a  finer level of clustering, reducing the num- 
ber of candidates considered, and performs better than 
Eclat. Both the hybrid algorithms, MaxEcEat and Max- 
Clique, outperform the bottom-up ones, since they only 
find maximal itemsets, and thus perform fewer joins. 
Table 1  gives the number  of joins performed by the dif- 
ferent algorithms. Compared to E&t, the hypergraph 
clique clustering is able to cut down the joins by 25% 
for Clique. Combined with the hybrid search, there 
is a  75% reduction for MaxCZique, making it the best 
algorithm. It outperforms Apriori by a  factor of 40, 
Partition by a  factor of 20, and Eclat by a  factor of 2.5. 

Eclat Clique MaxEclat MaxClique 
# Joins 83606 61968 56908 20322 
T ime (set) 46.7 42.1 28.5 18.5 

Table 1: Number of Joins: T20.16.DlOOK (0.25%) 

F igure 4  b) shows how the different algorithms scale 
up as the number  of transactions increases from 0.1 to 
5  m illion (M). The times are normalized against the ex- 
ecution time  for MaxClique on O .lM  transactions. The 
number  of partitions for Partition was varied from 1  to 
50. Wh ile all the algorithms scale linearly, the slope is 
much smaller for the new algorithms. The new algo- 
rithms also scale well with transaction size, and have 
very low memory utilization (Zaki et al. 199713).  

Conclusions 
We proposed new algorithms for fast association m in- 
ing, using three ma in techniques. We  first cluster item- 

sets using equivalence classes or maximal hypergraph 
cliques. We  then generate the frequent itemsets from 
each cluster using bottom-up or hybrid traversal. A 
vertical database layout is used to cluster transactions, 
enabl ing us to make only one database scan. Experi- 
mental results indicate more than an order of magn i- 
tude improvements over previous algorithms. 
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