
! ,/

,.

New Algorithms for Fast Discovery of Association Rules *

M . J. Zaki, S. Parthasarathy, M . Ogihara, and W . Li

Computer Science Department
University of Rochester

Rochester NY 14627
{zaki,srini,ogihara,wei}@cs.rochester.edu

Abstract

Discovery of association rules is an important
problem in database mining. In this paper we
present new algorithms for fast association min-
ing, which scan the database only once, address-
ing the open question whether all the rules can
be efficiently extracted in a single database pass.
The algorithms use novel itemset clustering tech-
niques to approximate the set of potentially maxi-
mal frequent itemsets. The algorithms then make
use of efficient lattice traversal techniques to gen-
erate the frequent itemsets contained in each clus-
ter. We propose two clustering schemes based
on equivalence classes and maximal hypergraph
cliques, and study two traversal techniques based
on bottom-up and hybrid search. We also use a
vertical database layout to cluster related trans-
actions together. Experimental results show im-
provements of over an order of magnitude com-
pared to previous algorithms.

Introduction
One of the central KDD tasks is the discovery of asso-
ciation rules. The prototypical application is the anal-
ysis of supermarket sales or basket data (Agrawal et
al. 1996), which can be formally stated as follows: Let
z= {i&y*. ,&} be the set of database items. Each
transaction, T, in the database, 2), has a unique identi-
fier, and contains a set of items, called an itemset. An
itemset with k items is called a k-itemset. The support
of an itemset is the percentage of transactions in 2) that
contain the itemset. An association rule is a conditional
implication among itemsets, A + B. The data mining
task for association rules can be broken into two steps.
The first step consists of finding all frequent itemsets,
i.e., itemsets that occur in the database with a certain
user-specified frequency, called m inimum support. The
second step consists of form ing the rules among the fre-
quent itemsets. This step is relatively easy (Agrawal

*This work was supported in part by an NSF Re-
search Initiation Award (CCR-9409120) and ARPA contract
(F19628-94-C-0057). Copyright 1997, American Associa-
tion for Artificial Intelligence (www,aaai.org). All rights
reserved.

et al. 1996), compared to the computationally inten-
sive first step. Given m items, there are potentially 2”
frequent itemsets, which form a lattice of subsets over
Z. However, only a small fraction of the whole lattice
space is frequent. This paper presents efficient methods
to discover these frequent itemsets.
Related Work Among the extant solutions, the Apri-
ori algorithm (Agrawal et aE. 1996) was shown to
be superior to earlier approaches (Park et al. 1995;
Holsheimer et al. 1995). It uses the downward clo-
sure property of itemset support to prune the item -
set lattice - the property that all subsets of a fre-
quent itemset must themselves be frequent. Thus only
the frequent k-itemsets are used to construct candidate
(k $ 1)-itemsets. A pass over the database is made
at each level to find the frequent itemsets. The Par-
tition algorithm (Savasere et aE. 1995) m inim izes I/O
by scanning the database only twice. Once for gen-
erating a set of potential frequent itemsets, and once
for gathering their support. Another way to mini-
m ize the I/O overhead is to work with only a small
sample of the database (Toivonen 1996; Zaki et aE.
1997a). A number of parallel algorithms have also been
proposed (Agrawal & Shafer 1996; Zaki et al. 1996;
1997c).

Itemset Clustering
Consider the lattice shown in figure 1. Due to the down-
ward closure property of itemset support the frequent
itemsets (dashed circles) form a border (bold line), such
that all frequent itemsets lie below it. The border is
precisely determined by the sub-lattices induced by the
maximal frequent itemsets (bold circles). If we are given
the maximal frequent itemsets we can design an opti-
mal algorithm that gathers the support of all their sub-
sets in a single database pass. In general we cannot
precisely determ ine the maximal itemsets a priori. We
can however use intermediate results to obtain their
approximations, called the potential maximal frequent
itemsets.
Equivalence Class Clustering For any lc 1 2, we
can generate the set of potential maximal itemsets from
the set of frequent itemsets, Lk. We partition Lk into

Z&i 283

:

“8
‘, -’

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Lattice of Subsets of { L2.3.4.5) Sublattices Induced by Maximal Itemsets

Lattice of Subsets of {1,2,3,4)

Lattice of Subsets of [3,4,5)

F igure 1: Lattice of Subsets and Maximal Itemset Induced Sub-lattices

equivalence classes based on their common Ic - 1 length
prefix, given as, [a] = {b[k]la[l : k - l] = b[l : k - 11).
For example, consider the Lz and the resulting equiv-
alence classes shown in figure 2. Any frequent itemset
with the prefix 1, must consist of items in [ll, making
12345678 a potential maximal itemset. Each equiva-
lence class can thus be considered as a potential max-
imal frequent itemset. Note that for lc = 1 we end up
-with +ho ontirn itom r~nivorna sa thn mavimal itnmrat YYl”ll “&At., ..,LA”AIb LUtiLII UIAI”c.I”~ W ” Y11.., .IIu,ILIILIWI I”YIIIUU”.

However, for any Ic 2 2, we can extract more precise
knowledge, with increasing precision as k increases.

-I

Frequent 2-Itemsets
(12, 13,14,15, 16,17,18,23,25,27,28,34,35,36,45,46,56,58,68,78)

Equivalence Classes Maximal Cliques per Class Equivalence Class Graph

F igure 2: Clustering Schemes

Maximal Hypergraph Clique Clustering From
Lk, it is possible to generate a more refined set of po-
tential maximal itemsets. The key observation is that
given any frequent m-itemset, for m > Ic, all its L-
subsets must be frequent. In graph-theoretic terms,
if each item is a vertex in a hypergraph, and each k-
subset an edge, then the frequent m-itemset must form
a L-uniform hypergraph clique. Furthermore, the set
of maximal hypergraph cliques represents an approxi-
matinn nr nnner-hmmrl gpA t,b,e sp,f; of m+&md p&p- ~~*Y”-v-. v- -YY-- ------
tial frequent itemsets. All the true maximal frequent
itemsets are contained in the vertex set of the maximal
cliques, as stated formally in the lemma below.
Lemma 1 Let HL~ be the t-uniform hypergraph with
vertex set 1, and edge set Lk. Let C be the set of max-
imal hypergraph cliques in H, and let M be the set of

vertex sets of the cliques in C. Then for all maximal
frequent i temsets f, 3t E M, such that f C t.

An example of maximal hypergraph clique clustering
is given in figure 2. The figure shows all the equivalence
classes, the maximal cl iques per class, and the hyper-
graph for class [l]. It can be seen immediately that
clique clustering is more precise than equivalence class
clustering. For example, for the class [l], the former
generated the maximal element 12345678, while the lat-
ter a more refined set {1235,1258,1278,13456,1568}.
The maximal cl iques are discovered using a dynamic
programming algorithm; see (Zaki et al. 199713) for
details. As the edge density of the equivalence class
graph increases the cost for generat ing the cliques may
increase. Some of the factors affecting the edge density
include decreasing support and increasing transaction
size.

Lattice Traversal
Each potential maximal itemset generated by the above
clustering schemes, induces a sublattice on 1. We now
have to traverse each of these sub-lattices to determine
the true frequent itemsets.
Bottom-up Traversal A pure bottom-up lattice
traversal proceeds in a breadth-first manner generat-
ing all frequent itemsets of length Ic, before generat-
ing those of length k + 1. F igure 3 shows an exam-
ple of this scheme, with the potential maximal item-
set, 123456, and the true maximal frequent itemsets
1235 and 13456. Most current algorithms use this ap-
proach (Agrawal et al. 1996; Savasere et al. 1995;
Park et al. 1995).
Hybrid Top-down/Bottom-up Traversal The
bottom-up search may generate spurious candidates in
the iiiteiimedi& Stieps, SiiiCe the fact ihd dl SiibSeiS
of an itemset are frequent doesn’t guarantee that the
itemset is frequent. We can envision other traversal
techniques which quickly identify the set of true max-
imal frequent itemsets. If we are interested in all fre-
quent itemsets, we can then gather the support of all
their subsets as well. We rule out a pure top-down ap-

284 KDD-97

Cluster: Potential Maximal Frequent Itemset (123456) HYBRID -J--VERSAL
Itemset 12 1 13 1 14 1 15 1 16 Sort I temSetS by support

SUPPO 150~300~200 400~500 G3cacacsG3

True Maximal Frequent Itemsets: 1235, 13456 Top-Down Phase

BOTTOM-UP TRAVERSAL

F igure 3: Bottom-up and Hybrid Lattice Traversal

preach due to the inaccuracies in the clusters (Zaki et
al. 1997b), and propose a hybrid top-down/bottom-up
scheme that works well in practice. The basic idea is to
start with a single element from the itemset cluster, and
extend this by one more element till we generate an in-
frequent itemset. This comprises the top-down phase.
In the bottom-up phase, the remaining elements are
combined with the elements in the first set to generate
all the additional frequent itemsets. For the top-down
phase, we sort the cluster elements in descending order
of their support. We start with the element with max-
imum support, and extend it with the next element in
the sorted order. This is based on the intuition that the
larger the support the more likely is the itemset to be
part of a larger itemset. F igure 3 shows an example of
the hybrid scheme.

Transaction Clustering
There are two possible layouts of the database for as-
sociation m ining. The horizontal layout (Agrawal et al.
1996) consists of a list of transactions. Each transaction
has an identifier followed by a list of items. The verti-
cal layout (Holsheimer et aE. 1995) consists of a list of
items. Each item has a tid-list - the list of all the trans-
actions containing the item. The vertical format seems
more suitable for association m ining since the support
of a candidate k-itemset can be computed by simple tid-
list intersections. No complicated data structures need
to be ma intained. The tid-lists cluster relevant transac-
tions, and avoid scanning the whole database to com-
pute support, and the larger the itemset, the shorter
the tid-lists, resulting in faster intersections. Further-
more, the horizontal layout seems suitable only for the
bottom-up traversal. The inverted layout, however, has
a drawback. Intersecting 1-itemset tid-lists to deter-
m ine Ls can be very expensive (Zaki et al. 199710).
This can be solved by using sampl ing(Toivonen 1996;
Zaki et al. 1997a), or by using a preprocessing step
to gather the support all 2-itemsets. Since this infor-
mation is invariant, the pre-processing has to be per-
formed once initially, and the cost can be amort ized
over the number of times the data is m ined. Our current

implementation uses the pre-processing approach due
to its simplicity. Sampling requires an extra database
pass, while pre-processing requires extra storage. For
m items, O(m2) disk space is required, which can be
quite large for large m . However, for m = 1000 used in
our experiments this adds only a very small extra stor-
age overhead. Note that the database itself requires
the same amount of space in both the horizontal and
vertical formats.

New Association Algorithms
We present four new algorithms, depending on the clus-
tering and lattice traversal scheme used:
l Edat: equivalence class & bottom-up
l MaxEclat: equivalence class & hybrid
l Clique: maximal hypergraph clique & bottom-up
l MaxClique: maximal hypergraph clique & hybrid

The new algorithms use one of the itemset clustering
schemes to generate potential maximal itemsets. Each
such cluster induces a sublattice, which is traversed us-
ing bottom-up search to generate all frequent itemsets,
or using hybrid scheme to generate only the maximal
frequent itemsets. Each cluster is processed in its en-
tirety before moving on to the next cluster. Since the
transactions are clustered using the vertical format, this
involves a single database scan, resulting in huge I/O
savings. Frequent itemsets are determined using simple
tid-list intersections. No complex hash structures need
to be built or searched. The algorithms have low mem-
ory utilization, since only the frequent k-itemsets within
a single cluster need be kept in memory at any point.
The use of simple intersection operations also makes
the new algorithms an attractive option for direct im-
plementation on general purpose database systems.

Experiment al Results
Our experiments used a 1OOMHz M IPS processor
with 256MB ma in memory, with different benchmark
databases (Agrawal et al. 1996). For fair comparison,
all algorithms use 2-itemset supports from the prepro-
cessing step. See (Zaki et aE. 199713) for detailed ex-

Z&i 285

T20.l6.DiOOK T20.l&D100~
1000 1000 1000 1000

Tl0.14, Min support 0.25% TlO.14, Min suppcni 0.25%
Apriori c ’ Apriori c ’

Partition -+... Partition -+...
Edat ..n.... Edat -0

Clique .._, Clique ..x-,
100
100

MaxEcht -..--. MaxEclat -..--.
Maxclique -.w...- MaxClique -w.-.-

P

0.1 0.1
2% 2% 1.5% 1% 1.5% ‘1% 0.75% 0.75% 0.5% 0.5% 0.25% 0.25% 0.1 0.1 0.25 0.25 0.5

Minimum Support Minimum Support NuKber NuC.ber of Transactiok (millions)
0.5 Transac&k 2.5 2.5 5 5

of (millions)
L

[a) ‘Ibtal Execution ‘I’ime (b) Number or ‘lransactions Scale-up
F igure 4: Performance Comparison

periments. In figure 4 a), we compare our new algo-
rithms against Apriori and Partition (with 10 parti-
tions) on T20.16.DlOOK database. E&t outperforms
Apriori by a factor of 10, and Partition by a factor of
5. As the support decreases, the size and the num-
ber of frequent itemsets increases. Apriori has to make
mu ltiple passes over the database, and performs poorly.
Partition saves some I/O costs, but it spends time com-
puting redundant frequent itemsets in common among
different partitions. Among the new algorithms, CZique
provides a finer level of clustering, reducing the num-
ber of candidates considered, and performs better than
Eclat. Both the hybrid algorithms, MaxEcEat and Max-
Clique, outperform the bottom-up ones, since they only
find maximal itemsets, and thus perform fewer joins.
Table 1 gives the number of joins performed by the dif-
ferent algorithms. Compared to E&t, the hypergraph
clique clustering is able to cut down the joins by 25%
for Clique. Combined with the hybrid search, there
is a 75% reduction for MaxCZique, making it the best
algorithm. It outperforms Apriori by a factor of 40,
Partition by a factor of 20, and Eclat by a factor of 2.5.

Eclat Clique MaxEclat MaxClique
Joins 83606 61968 56908 20322
T ime (set) 46.7 42.1 28.5 18.5

Table 1: Number of Joins: T20.16.DlOOK (0.25%)

F igure 4 b) shows how the different algorithms scale
up as the number of transactions increases from 0.1 to
5 m illion (M). The times are normalized against the ex-
ecution time for MaxClique on O .lM transactions. The
number of partitions for Partition was varied from 1 to
50. Wh ile all the algorithms scale linearly, the slope is
much smaller for the new algorithms. The new algo-
rithms also scale well with transaction size, and have
very low memory utilization (Zaki et al. 199713).

Conclusions
We proposed new algorithms for fast association m in-
ing, using three ma in techniques. We first cluster item-

sets using equivalence classes or maximal hypergraph
cliques. We then generate the frequent itemsets from
each cluster using bottom-up or hybrid traversal. A
vertical database layout is used to cluster transactions,
enabl ing us to make only one database scan. Experi-
mental results indicate more than an order of magn i-
tude improvements over previous algorithms.

References
Avmiwn.l R & &&r, J. --0--“--‘) -_- 1996. P~allel mining of
association rules. In IEEE Knowledge & Data Engg.,
8(6):962-969.
Agrawal, R.; Mann ila, H.; Srikant, R.; Toivonen, H.;
& Verkamo, A. 1996. Fast discovery of association
rules. In Advances in KDD. M IT Press.
Holsheimer, M .; Kersten, M .; Mann ila, H.; & Toivo-
nen, H. 1995. A perspective on databases and data
m ining. In 1st KDD Conf.
Park, J.; Chen, M .; & Yu, P. 1995. An effective hash
based algorithm for m ining association rules. In SIG-
MOD Conf.
Savasere, A.; Om iecinski, E.; and Navathe, S. 1995.
An efficient algorithm for m ining association rules in
large databases. In 2ist VLDB Conf
Toivonen, H. 1996. Sampling large databases for as-
sociation rules. In 22nd VLDB Conf
Zaki, M .; Og ihara, M .; Parthasarathy, S.; & Li, W .
1996. Parallel data m ining for association rules on
shared-memory mu lti-processors. In Supercomputing.
Zaki, M .; Parthasarathy, S.; Li, W .; & Og ihara, M .
1997a. Evaluation of sampling for data m ining of as-
sociation rules. In 7th W lcshp. Resrch. Iss. Data Engg.
Zaki, M .; Parthasarathy, S.; Og ihara, M .; & Li, W .
199713. New algorithms for fast discovery of association
ntlw~ TR. 651. cs Ihnt,. TJniy, of ~-&&erG ----I. --” -*--, --r-7
Zaki, M .; Parthasarathy, S.; & Li, W . 1997c. A local-
ized algorithm for parallel association m ining. In 9th
ACM Symp. Parallel Algorithms & Architectures.

286 KDD-97

