
Fast&d Intuitive Clustering of Web Documents* 

Oren Zamir and Oren Etzioni and Omid Madani and Richard M. Karp 

Department of Computer Science & Engineering 
University of Washington Box 352350 

Seattle, WA 98195-2350 
zamir@cs.washington.edu 

Abstract 
Conventional document retrieval systems (e.g., 
Alta Vista) return long lists of ranked documents 
in response to user queries. Recently, document 
clustering has been put forth as an alternative 
method of organizing retrieval results (Cutting 
et al. 1992). A person browsing the clusters can 
discover patterns that could be overlooked in the 
traditional presentation. 
This paper describes two novel clustering meth- 
ods that intersect the documents in a cluster to 
determine the set of words (or phrases) shared 
h.. -11 thn ,l,,..,,,+, :n Chn nlrrd.nv IXTn ,.,x-A,.+ “J calA Yl lG u”buuta.L”u AU “LLG bIUU”GL. ““cj &r;p”r” 

on experiments that evaluate these intersection- 
based clustering methods on collections of snip- 
pets returned from Web search engines. First, we 
show that word-intersection clustering produces 
superior clusters and does so faster than standard 
techniques. Second, we show that our O(nlog n) 
time phrase-intersection clustering method pro- 
duces comparable clusters and does so more than 
two orders of magnitude faster than all methods 
tested. 

Introduction 
Conventional document retrieval systems return long 
lists of ranked documents that users are forced to 
sift through to find the relevant documents. On the 
Web, this problem is exacerbated by the high recall 
and low precision of search engines (e.g., Alta Vista). 
Moreover, the typical user has trouble formulating 
highly specific queries and does not take advantage of 
advanced search options. Finally, this problem gets 
worse as the Web continues to grow. 

Instead of attempting to reduce the number of doc- 
uments returned (e.g., by filtering methods (Shakes, 
Langheinrich, & Etzioni 1997)) we attempt to make 
search engine results easy to browse. We investigate 
document clustering as a method that enables users 
to efficiently navigate through a large collection of 
documents. In addition, clustering enables the user 
to discover patterns and structure in the collection 
that could be overlooked in the traditional ranked-list 

Copyright 1997, American Association for Artificial In- 
telligence (www.aaai.org). All rights reserved. 

presentation. In this context, a document clustering 
method requires: 

1. 

2. 
3. 

4. 

Ease-of-browsing: A user needs to determine at a 
glance whether a cluster’s contents are of interest. 
Speed: Web users expect results within seconds. 
Scalability: The method should be able to quickly 
cluster thousands of documents. 
Snippet-tolerance: The method should produce 
‘?easonable” clusters even when it only has access to 
the short document snippets returned by the search 

.--- ..--+ ~~--.~~ r.~- .-.---‘I,--~ ~. L- ~~ -z, c-.~ 11~ -~~- engines; mobr users dre unwilling 60 wan ror Tne sys- 
tern to download the original documents. 

In this paper we describe and experimentally evalu- 
ate two novel clustering methods that meet the above 
requirements to varying degrees. 

Document Clustering 
Document clustering has been traditionally investig- 
ated mainly as a means of improving document search 
and retrieval. Recently, a technique named Scat- 
ter/Gather (Cutting et al. 1992) introduced document 
clustering as a document browsing method. Our work 
follows the same paradigm. 

Hierarchical agglomerative clustering (HAC) al- 
gorithms are the most commonly used methods for 
document clustering (Willet 1988). These algorithms 
start with each document in a cluster of its own, it- 
erate by merging the two most similar clusters, and 
terminate when some halting criterion is reached. 

HAC algorithms require the definition of a similar- 
ity function between documents and between sets of 
documents. Each document is typically represented 
as a weighted attribute vector, with each word in the 
entire document collection being an attribute in this 
vector. The similarity of two documents is often taken 
as a normalized function of the dot product of their 
attribute vectors. 

Several halting criteria for HAC algorithms have 
been suggested (Milligan & Cooper 1985), but they are 
typically based on predetermined constants (e.g., halt 
when 5 clusters remain). Because the HAC algorithm 

Zamir 287 

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



does not backtrack it is very sensitive to the halting cri- 
terion - when the algorithm mistakenly merges two 
“good” clusters, the resulting cluster could be mean- 
ingless to the user. In the domain of search engines, we 
often receive many irrelevant snippets - snippets that 
do not have any correlation to the query or to other 
snippets. This sort of “noise” reduces even further the 
effectiveness of commonly-used halting criteria. 

HAC algorithms are typically slow when applied 
to large document collections. Single-link (Rijsber- 
gen 1971) and group-average methods typically take 
O(n2) timel, while complete-link methods typically 
take O(n3) time (Voorhees 1986b). In terms of qual- 
ity, on the other hand, complete-link algorithms have 
been shown to perform well in comparative studies of 
document retrieval (Voorhees 1986a), as they tend to 
produce “tight” clusters - clusters in which all the 
documents are similar to one another. Single-link, and 
to a lesser degree group-average methods, exhibit a 
tendency toward creating elongated clusters. Elong- 
ated clusters have the undesirable property that two 
documents can be in the same cluster even though the 
similarity between them is small. From our experience 
in the Web domain, algorithms that produce elong- 
ated clusters often result in one or two large clusters, 
plus many extremely small ones. This can lead to non- 
intuitive clusters. 

The above discussion suggests that traditional docu- 
ment clustering methods fail to meet the requirements 
listed in the introduction. Often, the methods generate 
elongated clusters that are not easy to browse - it’s 
difficult to determine at a glance what the contents of a 
given cluster are likely to be. Furthermore, O(n2) time 
clustering is likely to be too slow for Web users when 
n = 1,000 or more. Finally, our experience shows that 
standard techniques perform poorly on the short and 
“noisy” snippets of Web documents. 

Word-Intersection Clustering 
Word-intersection clzlstering (Word-IC) is a new 
method designed to address some of the problems men- 
tioned above. Word-IC results in “tight” clusters, has 
a well motivated halting criterion and captures a de- 
sirable trade-off between the number of clusters, their 
size and their cohesion. 

Word-IC is a HAC algorithm that relies on a novel 
Plnhnl flnrnlitsr ?i’wnntn’nm IC!nli’\ tn c-manfifv the s-mat- Guvvruv yti”““Y”y a L”r”““Y”r” ,.-.%A ] Y” yuw’.“AAJ “I_A/v yu”’ 
ity of a clustering. We use the G&F as the heuristic 
to guide the HAC algorithm and as the halting cri- 
terion. At each iteration of the HAC algorithm, the 

‘Throughout this paper n denotes the number of docu- 
ments to be clustered. The number of words per document 
is assumed to be bounded by a constant. 

two clusters whose union would result in the highest 
increase in the G&F are merged. The algorithm ter- 
minates when no merge increases the G&F. Next we’ll 
describe the G&F. 

The definition of a cluster’s cohesion is central to 
the G&F. We define the cohesion of a cluster c as 
the number of words common to all the documents in 
the cluster. We define the score s(c) of a single cluster 
c to be the product of its size ICI and its dampened 
cohesion. The score of a singleton cluster is defined to 
be 0. 

For a clustering C, the GQF(C) is a product of 
three components: (a) f(C) - A function propor- 
tional to the fraction of documents in non-singleton 
clusters. This component captures the notion that 
singleton clusters are “bad”. (b) l/g(lCl) - Where 
g(lCl) is an increasing function in the number of non- 
singleton clusters. This component captures the no- 
tion that the fewer clusters there are, the better. (c) 
CcEC s(c) - The sum of the scores of all clusters in 
the clustering. Thus: 

G&F(C) = a c 44 CEC 
Notice that the factors l/g(lCl) and CeEC s(c) create a 
tension between two extremes: having a small number 
of large clusters of low cohesion vs. having many small 
clusters of high cohesion. The G&F provides a trade- 
off between these two extremes. We have investigated 
different functional forms for the components of the 
G&F; our experiments have revealed that good results 
are obtained if f(C) is simply the ratio of the number 
of documents in non-singleton clusters to the overall 
number of documents, and g(lCl) is the number of non- 
singleton clusters raised to the power of 0.5. 

Word-IC can be performed in O(n2) time. The res- 
ult is a monothetic classification: all the documents in 
a given cluster must contain certain terms if they are 
to belong to it. In Word-IC, that set of common words 
- the centroid of the cluster - can be presented to 
the user as a concise description of its contents. We be- 
lieve that this approach results in high-quality clusters 
because all the documents in the cluster share at least 
the words in its centroid. 

Experimental results in section 5 show that Word-IC 
is faster and results in higher quality clusters than the 
commoniy used group-average HAC aigorithm using 
the cosine inter-document similarity function. 

Phrase-Intersection Clustering using 
Suffix Trees 

Following the standard document clustering paradigm, 
Word-IC treats a document as a set of words, disreg- 

288 KDD-97 



arding word sequences. We conjecture that word prox- 
imity information may be valuable in some cases. Fur- 
thermore, clusters whose centroid is a shared phrase 
would be particularly easy to browse. Based on these 
observations we formulate Phrase-intersection cluster- 
ing (Phrase-IC) - a novel intersection-based approach 
that looks at the phrases that are common to a group 
of documents as an indication of the group’s cohesion. 

The HAC algorithms mentioned previously have 
O(n2) time complexity, an obstacle to our speed and 
scalability goals. Phrase-IC using sufix trees (Weiner 
1973) is an O(nlogn) time algorithm that results in a 
large speedup without much degradation in quality. 

The suffix tree of a set of strings is a compact trie 
containing all the suffixes of all the strings. In our 
application, we construct a suffix tree of all the docu- 
ments. Each node of the suffix tree represents a group 
of documents and a phrase that is common to all of 
them; the label of the node represents the common 
phrase, and all the documents who have correspond- 
ing leaves that are descendants of the node make up 
the group. Therefore, each node can be viewed as a 
potential cluster. Each node is assigned a score that 
is a function of the length of the phrase, the words 
appearing in it, and the number of documents in that 
cluster. The nodes are sorted based on their score. 

Clusters are determined directly from this sorted list 
of potential clusters using a simple selection algorithm. 
Notice that the selected clusters may overlap. We be- 
lieve that this feature is advantageous to the user, as 
many topics do overlap. When selecting which clusters 
to display, we make sure the overlap between the selec- 
ted clusters is not high. We are currently exploring the 
option of merging potential clusters with high overlap. 

The space requirement of the suffix tree is O(n), and 
it can be constructed in O(n) time (Ukkonen 1995). 
The suffix tree can be built incrementally as the docu- 
ments arrive. This allows the use of “free” CPU cycles 
as the system waits for additional documents. The 
number of potential clusters is O(n), thus sorting them 
and selecting which to present to the user can be per- 
formed in O(n log n) time. 

Preliminary Experiments 
It is hard to measure the quality of a clustering al- 
gorithm, as one has to know the “correct” clustering 
of the test cases. We chose to apply the algorithms 
to snippet collections created by merging several dis- 
tinct base collections. We then scored the resulting 
clustering by measuring its deviation from the original 
partition of the snippets into base collections. 

We created 88 base collections from snippets re- 
turned by MetaCrawler (Selberg & Etzioni 1995) in 

response to 88 different queries. Each of the quer- 
ies contained between 1 and 4 keywords and defined 
a topic in computer science (e.g. kernel & architec- 
ture; biology & computational; compiler). Each base 
collection contained approximately 120 snippets; each 
snippet contained 40 words, on average. Test collec- 
tions were created by merging 1 to 8 randomly chosen 
base collections, giving us test collections ranging from 
120 to 1000 snippets in size. 20 test collections of each 
size were created, for a total of 200 test collections. 

We need a scoring method to compare the original 
partition of the snippets into base collections with the 
algorithm generated clustering. To do so, we look at 
all pairs of documents in a single cluster, and count 
the number of true-positive pairs (the two documents 
were also in the same base collection) and false-positive 
pairs. The quality of the clustering is a function of the 
difference between these two quantities, normalized by 
the size of the collection clustered. A quality score of 1 
means a perfect reproduction of the original partition. 

I 2 3 4 5 6 7 8 100 300 500 700 900 
number of base collections 

(a) 
number of snippets 

Ib) 

Figure 1: (a) The quality of the clusters produced by 
the different algorithms. (b) The execution time of the 
different algorithms. The execution time of the Phrase- 
IC algorithm cannot be seen on the scale shown, as it 
clusters 1000 snippets in less than 0.5 seconds. This 
algorithm exhibits a good tradeoff between quality and 
speed - it achieves high quality clusters in O(n log n) 
time. 

Figure l(a) compares the quality of the clusters pro- 
duced by the algorithms as a function of the number of 
base collections merged. We compare our clustering al- 
gorithms with the group-average HAC algorithm using 
the cosine inter-document similarity function (referred 
to as COS-GAVG), which is one of the most commonly 
used document clustering algorithms. 

Word-IC includes two principal components: the 
definition of cohesion and the GQF. To investigate 
how the definition of cohesion influences the cluster- 

Zamir 289 



ing, we measured the performance of a variation of 
the Word-IC algorithm that does not use the GQF. 
This algorithm defines the similarity of two clusters as 
the cohesion of the cluster that would be formed upon 
merging the two clusters, where cohesion is defined as 
in Word-IC. It performs a HAC algorithm, merging at 
each step the two most similar clusters, and terminates 
with the same halting criterion used in COS-GAVG. 
At the top of Figure l(a) we see that omitting GQF 
degrades the performance of Word-IC. 

All the algorithms show, as expected, a quality de- 
gradation as the number of merged base collections 
increases. The COS-GAVG algorithm performs poorly 
in our experiments. The fact that we are clustering 
short, “noisy” snippets, probably contributes to the 
poor quality of its results. Word-IC shows the highest 
quality results. The advantages of the G&F can be 
seen by comparing Word-IC without G&F with the 
regular Word-IC. We believe this is mainly due to the 
well-motivated halting criterion of the algorithm. The 
suffix tree clustering algorithm produces results that 
are not much worse than those produced by Word-IC. 

To compare the execution time of the algorithms, we 
clustered snippet collections of 100 to 1000 snippets 
using a DEC Alpha-station 500, 333 MHz, with 320M 
RAM. The algorithms were implemented in C++ and 
were optimized to the same degree. 

Figure l(b) presents the results of this experiment. 
The times measured are the actual times spent clus- 
tering, without including idle periods when the system 
was waiting for snippets to arrive. The COS-GAVG 
algorithm is slower than the intersection-based ones as 
it requires longer attribute vectors. Using GQF adds 
a constant factor to the execution time of Word-IC be- 
cause of the added complexity. The performance of the 
suffix tree clustering algorithm cannot be seen on the 
scale shown, as it clusters 1000 snippets in less than 
0.5 seconds. 

While experimenting with the system we have found 
that certain queries lend themselves very nicely to 
Phrase-IC, while other queries do not. We also found 
that Word-IC and Phrase-IC often yield complement- 
ary presentations of the collection and need not be 
viewed as alternatives; we could allow the user to view 
the results of both algorithms. An interesting ques- 
tion is whether users will find multiple sets of clusters 
worthwhile, and what visualization techniques would 
be best for this task. 

Finally, a question that has to be answered is how 
would the clustering results change if we download 
the original documents from the Web. Will this res- 
ult in a substantial improvement in quality, and will 
such an improvement outweigh the increased delay? 

We are currently deploying a clustering module on top 
of MetaCrawler, which will enable us to conduct user 
studies aimed at answering these questions empirically. 

Conclusion 
We have described and experimentally evaluated two 
novel clustering methods that enable users to quickly 
navigate through the results of Web search engines: 
word- and phrase- intersection ciustering. Phrase-iC 
using suffix trees is an O(nlogn) time algorithm that 
appears promising in terms of the stringent require- 
ments outlined in the introduction including ease of 
browsing, speed, and scalability. Of course, additional 
experiments and extensive user studies are necessary 
before definitive claims can be made about the per- 
formance of our algorithms in practice. 

Acknowledgments: We thank Ronen Feldman for early 
discussions and Erik Selberg for his help in integrating this 
system with MetaCrawler. Zhenya Sigal made important 
contributions to the implementation. This research was 
funded in part by Office of Naval Research grant 92-J-1946, 
by ARPA / Rome Labs grant F30602-95-1-0024, by a gift 
from Rockwell International Palo Alto Research, and by .e . . luatronai Science Foundation grant IRI-93577’72. 

References 
Cutting, D. R.; Karger, D. R.; Pedersen, J. 0.; and Tukey, 
J. W. 1992. Scatter/gather: a cluster-based approach to 
browsing large document collections. In 15th InternationaE 
ACM SIGIR Conference on Research and Development in 
Information Retrieval, 318-29. 
Milligan, G. W., and Cooper, M. C. 1985. An examination 
of procedures for detecting the number of ciusters in a 
data set. Psychometrika 50:159-79. 
Rijsbergen, C. V. 1971. An algorithm for information 
structuring and retrieval. Computer Journal 14:407-412. 
Selberg, E., and Etzioni, 0. 1995. Multi-service search 
and comparison using the metacrawler. In Proc. 4th World 
Wide Web Conf.: 195-208. 
Shakes, J.; Langheinrich, M.; and Etzioni, 0. 1997. Ahoy! 
the home page finder. In Proc. 6th World Wide Web Conf. 
Ukkonen, E. 1995. On-line construction of suffix-trees. 
Algorithmica 14:249-260. 
Voorhees, E. 1986a. The egectiveness and eficiency of 
agglomerative hierarchic clustering in document retrieval. 
Ph.D. Dissertation, Cornell University. 
Voorhees, E. 1986b. Implementing agglomerative hier- 
archical clustering algorithms for use in document re- 
trieval. Information Processing d Management 22:465- 
476. 
Weiner, P. 1973. Linear pattern matching algorithms. 
In 14th Annual Symposium on Foundations of Compzlter 
Science (FOCS), l-11. 
Willet, P. 1988. Recent trends in hierarchical document 
clustering: a critical review. Information Processing and 
Management 24:577-97. 

290 KDD-97 


