
KDD PROCESS PLANNING

Ning Zhong* C hunnian Liu Yoshitsueru Kakemoto Setsuo Ohsuga
Dept. of C. S. & SYS. EnE. Dept. of C. S.

qamaguchi University - Beijing-Polytechnic
Rt AST Dept. of Infor. &?. S.

Univ. The University of Tokyo Waseda University

Abstract

KDD (Knowledge Discovery in Databases) process has
become a new and important research area. Within
the framework of KDD process and the GLS (Global
Learning Scheme) system recently proposed by us, this
paper concentrates on the issue of KDD process plan-
ning. In our method, the KDD process is modeled
as an organized society of intelligent agents (called
KDD agents), and planning is a meta-agent. We pro-
pose a formalism to describe KDD agents, in the style
of OOER (Object Oriented Entity Relationship data
model). Based on this representation of KDD agents
as operators, we apply AI planning techniques to or-
ganize dynamically the KDD process so that the GLS
system increases both autonomy and versatility.

Introduction
Recently, it has been recognized in the KDD (Knowl-
edge Discovery in Databases) community that the
KDD process for real-world applications is extremely
complicated (Brachman 1996; Fayyad 1996; Zhong &
Ohsuga 1995; Zhong et al 1997). There are several lev-
els, phases and large number of steps and alternative
KDD techniques in the process, iteration can be seen
in anywhere and at any time, and the process may
repeat at different intervals when new/updated data
comes. In many aspects, a KDD process resembles a
Software Development Process (Liu 1991; Liu & Con-
radi 1993). In (Zhong et al 1997), we propose a KDD
process framework as an organized society of intelli-
gent agents. There are two meta-levels (for planning
and controlling), and the meta-agents are called plan-
ner and controller respectively in this paper. There is
.x1,, om nh:,,+ l,..,l+h th,,, lz,.xmn;nm ,hm,o Inr,z CUU” au ““JGb” IGYcjl ““IUII “IIIc;C I.xuIIIu~ yucw~u \y’b-

processing, knowledge elicitation, and knowledge re-
finement) of actual KDD activities with each modeled
as an intelligent agent (called KDD agent). We also
design a general-purpose KDD system - GLS (Global
Learning Scheme) based on the framework, which in-
creases both autonomy and versatility. In this paper,

‘Email: zhongOai.csse.yamaguchi-u.ac.jp. COPY-
right01997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

we focus on issues of KDD process planning, that is,
the meta-agent planner.

Though research on KDD process in general has got
some results, KDD process planning is a brand-new
area. So far we have seen in the KDD literature only
one paper (Engels 1996) devoted to this topic, em-
phasizing user-guided task-decomposition. In contrast,
we apply various AI planning techniques to the area
of KDD, taking much broader view, including formal
specification of KDD process, its planning, controlling,
and evolution.

To be able to apply AI planning techniques, each
KDD agent should be regarded as an operator, and
formally described. We introduce a formalism for this
purpose in the style of OOER (Object-Oriented En-
tity Relationship data model). For each type of KDD
agents, the types of its input/output, the precondition
and effect of its execution, and its functionality are
explicitly specified in the data model. The most diffi-
cult problem in a general-purpose KDD system is that
how to choose appropriate KDD techniques to achieve
a particular discovery goal in a particular domain. In
our method, the combination of the formal description
of KDD agents and the planning mechanism gives an
automatic solution to this problem (to some extent, at
least). In such a KDD system, both autonomy and
versatility are increased.

An Architecture of KDD Process
KDD process is a multi-step process centered on data
mining algorithms to identify what is deemed knowl-
edge from database. In (Zhong et al 1997), we model
the KDD process as an organized society of KDD
agents. Based on this modei, we have been deveioping
a multi-strategy and cooperative KDD system called
GLS (Global Learning Scheme). Here we give a brief
summary of the architecture of the GLS system.

The system is divided into three levels: two meta-
levels and one object level. On the first meta-level,
the planning meta-agent (planner, for short) sets the
discovery process plan that will achieve the discovery
goals when executed. On the second meta-level, the
KDD agents are dynamically generated, executed, and

Zhong 291

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

controlled by the controlling meta-agent (controller,for
short). Planning and controlling dynamically the dis-
covery process is a key component to increase both
autonomy and versatility of our system. On the object
level, the KDD agents are grouped into three learning
phases:

Pre-processing agents include: agents to collect in-
formation from global information sources to generate
a central large database; agents to clean the data; and
agents to decompose the large database into several lo-
cal information sources (subdatabases), such as CBK
(attribute oriented clustering using background knowl-
edge), QDR (q uantkation by the division of ranges),
FSN (forming scopes/clusters by nominal or symbolic
attributes), and SCT (stepwise Chow test to discover
structure changes in time-series data).

Knowledge-elicitation agents include: agents such as
KOSI (knowledge oriented statistic inference for dis-
covering structural characteristics - regression mod-
els), DBI (decomposition based induction for discov-
ering concept clusters), and GGDT (generalization-
distribution-table based generalization for discovering
if-then rules).

Knowledge-refinement agents acquire more accurate
~~~~!~~w fhvnot,hesis\ frnm C.Q~TS~ knowje@e @y- o- \--J r - --- ----, -- - --- 
pothesis) according to data change and/or the domain 
knowledge. KDD agents such as IIBR (inheritance- 
inference based refinement) and HML (hierarchical 
model learning) are commonly used for this purpose. 

In terms of AI planning, no matter how many KDD 
agents we have, each of them is an operator. Each op- 
erator by itself can only do some simple thing, only 
when they are organized into a society, we can accom- 
plish more complex discovery tasks. The KDD planner 
reasons on these operators to build KDD process plans 
- networks of KDD agents that will achieve the overall 
discovery goals when executed. But to apply AI plan- 
ning techniques, we must be able to formally describe 
the KDD agents as operators. This is the subject of 
the next section. 

Formal Description of KDD Agents 
The KDD planner, as any AI planner, needs a World 
State Description (WSD) and a pool of Operators 
(0~s). We use the OOER (Object-Oriented Entity 
Relationship) data model to describe them. The tra- 
ditional ER model has concepts of entity/relation, 
type/instance, instance-level attributes, and so on. 
The OOER model further incorporates object-oriented 
concepts such as subtyping, multiple inheritance, pro- 
cedures, and type-level attributes/procedures, and so 
on. There are two kinds of types, D&‘ii’ types and 
Agent types, for passive and active objects respectively. 
Figure 1 shows the (simplified) type hierarchy used in 
the GLS system: 

The D&K types describe various data and knowl- 
edge presented in a KDD system. On the data part, 
we have RawData from the global information source, 

Figure 1: The type hierarchy of the GLS system 

CleanData from the central large database, Selected- 
Data (Scope or Cluster) from the subdatabases, and 
so on. On the knowledge part, we first distinguish 
among Kdomain (the background knowledge), Kdis- 
covered (the discovered knowledge) and Krefined (the 
refined Imnwied_ge)i The type Kdisconered h&3 SlJh- __... -__ _ -. -.. 
types: Regression (structural characteristics), CClus- 
ter (conceptual clusters), Rule (if-then rules), Clause 
(predicate definitions), and so on. Krefined has sub- 
types RegreTbee (family of regression models) and so 
on. 

The Agent types describe various KDD techniques 
used in the GLS system. We distinguish Auto- 
matic (KDD algorithms) from Interactor (KDD tech- 
niques that need human assistance). Kdiscover 
means the overall KDD task, while Preprocess, Ke- 
licit and KreJine stand for the three learning phases: 
pre-processing, knowledge-elicitation, and knowledge- 
refinement, respectively. Collect, Clean and Select are 
activities in Preprocess. Most agent types take the 
same technical names as mentioned above, such as 
CBK, QDR, FSN, SCT, KOSI, DBI, GGDT, IIBR, 
HML. 

Note that in Figure 1, we show only the subtype 
relations among KDD objects (a subtype is-a special 
case of the supertype). For example, all of Kdiscover, 
Preprocess, Kelicit, Krefine are subtypes of Interactor, 
We will see below how to express the subagent relation, 
for example, Preprocess, Kelicit, Krejhe are three sub- 
agents of Kdiscover. 

Types have the ordinary instance-level attributes. 
For example, D&K has the attribute status describing 
the current processing status of the datajknowiedge 
(created, cleaned, reviewed, stored, etc.), and this at- 
tribute is inherited by all subtypes of D&K, Kdiscov- 
ered has the attribute timestamps recording the time 
when the knowledge is discovered, and this attribute 
is inherited by all subtypes of Kdiscover (Regression, 
CCluster, Rule, and Clause). 

292 KDD-97 



As for Agent types, there are additional properties 
defined. For example, we may have type/instance-level 
nl.cnf-.a Arvna ~vnwa~;nm nn,mat.;nm nn t.hm t.vnea or in- yrv\ruuuruu U~tJ’““Ulll~ “y”.cu”~“YY V.I YII” “J y-A.. 
stances (creation, deletion, modification, etc.). How- 
ever, the most interesting properties of Agent types 
are the following type-level attributes with information 
that is used by the planning meta-agent: 

In/Out: specifying the types of the input/output 
of an agent type. The specified types are some 
subtypes of D&K, and the types of the actual in- 
put/output of any instance of the agent type must 
be subtypes of the specified types. 
Precond/Effect: specifying the preconditions for an 
agent (an instance of the agent iypej to execute, 
and the effects when executed. Precond/Effect are 
logic formulas with the restrictions as in the classical 
STRIPS (see (Russell 1995), for example). A large 
part of the Precond/Effect, concerning constraints 
on input/output of the agent type, has been speci- 
fied implicitly by the In/Out attribute. At planning 
time, the In/Out specification will be transformed 
into conjunctions of literals, then added to the Pre- 
cond/Effect on which the planner reasons. 
Action: a sequential program performing real KDD 
actions upon agent execution, e.g. to call the un- 
derlying KDD algorithms. It is empty for high-level 
agents. 
Decomp: describing possible subtasking. High-level 
agents are allowed and should be decomposed into 
a network of subagents. Decomp specifies the can- 
didate agent types for the subagents. For example, 
the Decomp for agent type Kdiscover is: Preprocess, 
Kelicit, Icrefine. Next section will explain how the 
hierarchical planning utilizes this property to realize 
the task decomposition. 

KDD Process Planning 
The planning meta-agent (the planner) has three lay- 
ers as shown in Figure 2. The inner layer is a domain- 
independent non-linear planner, the middle layer deals 
with KDD-specific issues, and the out layer interacts 
with another meta-agent, the controller, to realize hi- 
erarchical planning. In the following subsections we 
will discuss these three layers separately, and give an 
example of KDD process planning. 

Non-Linear Pianning 
The inner layer as shown in Figure 2 is a domain- 
independent non-linear planner. Given the initial 
world state, the discovery goal and the pool of op- 
erators (KDD agents), it starts with a dummy par- 
tial plan (Russell 1995), then expands the partial plan 
until finds a complete and consistent plan that solves 
the problem. The process can be implemented by a 
production system (Liu 1991), or a nondeterministic 
algorithm (Russell 1995). 

r-l The pool of 
Operators 
flhe Tvnes of \...- -ar-- -- 

IPlan I 

Discovered/ Y Relined 
Knowledge 

Figure 2: Coupling of the planning and controlling 
meta-agents 

Hierarchical Planning 
As we are deaiing with reai worid KDD appiicaiions, 
a hierarchy of abstractions is essential. The process 
of alternatively adding detailed steps to the plan and 
actually executing some steps should continue until the 
goal is achieved. In GLS, this hierarchical planning 
is accomplished by the cooperation of the two meta- 
agents - planner and controller. The interface between 
them is the outer layer of Figure 2. The two meta- 
agents interact as follows. 

At the beginning, the controller generates a high- 
level KDD agent HA (K&cover, for example) with the 
,-I;PF~,,PIv annl SE ;t.z pffppt. ‘This .&,& n.crent, HA CR,n he uIuLu*.AJ 6”cuL w IVY “L&U”“. AA&&V h.“‘o’” “d-A-” ---- --- - - 

regarded as the first coarse plan. When the controller 
tries to execute HA, it calls the planner to decompose 
it into a more detailed subplan. The planner works as 
described in the above subsection, taking the current 
world state as its initial-state, the effect of HA as its 
goal, and searching the types of subagents specified in 
the DECOMP attribute of HA, instead of the whole 
pool of operators, to achieve the goal. The produced 
subplan is added to the original plan, with each node 
linked to HA by a subagent relationship. Then the 
controller resumes its work (generating, executing, and 
controlling KDD agents according to the dpianj. 

Obviously this mechanism can work in multi-levels: 
if the controller meets another high-level agent when 
it executes the subplan, it will call the planner again. 

KDD Specific Issues 
Because the core of the planner is domain-independent, 
we provide a middle layer as shown in Figure 2 to deal 
with all KDD specific issues: 

Zhong 293 



1. 

2. 

3. 

4. 

Figure 3: A sample KDD process plan 

To transform the KDD goals into STRIPS goals 
(logic formulas in the style of STRIPS, that is, con- 
junctions of literals), especially to translate the in- 
put/output constraints specified in the In/Out, at- . . 
tribute into PrecondjEffect. 

To search the pool of operators (or more exactly, to 
search the types of subagents specified in the DE- 
COMP attribute of a high level agent HA in the 
decomposition process) to introduce suitable KDD 
agents into the plan. 

To consult the world state description to see if a pre- 
condition is already satisfied by the WSD, and/or 
help to transform the In/Out specification into con- 
junction of literals as part of Precond/Effect. 

To represent, the resulting plan as a network of KDD 
agents, so the controller can dynamically generate 
and execute the KDD agents according to the net- 
wnrlr Thea n~twnrk ,-can ho aim me,4 hv t.hn IIEPI. nf VI-**.. A**” *.YY,.v**. “_I “V -*“v U”“U “J Y-l” UYYI v* 
the GLS system as a visualization tool. 

An Example 

Assume that we have a central, large space science 
database, each record (tuple) describing a star. The 
interesting attributes inciude CD (cluster designationj, 
ET (effective temperature), LU (luminosity), B-V and 
U-B (color indexes). The facts such as we have already 
had a central, large database with CleanData, and the 
nominal attribute CD can be used for forming Scopes, 
etc. are explicitly stated in the initial-state (WSD). 
The discovery goal is to find structural characteristics 
hidden in the database and to refine them upon data 
change. Based on the specifications of WSD, goal, and 
KDD agent, types, the planner and the controller co- 
operate in the manner as described above, and come 
up with a full KDD process plan as shown in Figure 3. 

Conclusions 
As the KDD process for real-world applications is ex- 
tremely complicated, it has become a new and im- 
portant research area, in addition to the traditional 
study on individual KDD techniques. In this paper, 
following our framework of KDD process and within 
the GLS system, we discussed in detail one of the 
meta-agents in GLS, the KDD process planning. We 
proposed a formalism to describe KDD agents, in the 
style of OOER (Object Oriented Entity Relationship 
data model). Based on this representation of KDD 
agents as operators, we apply several AI planning tech- 
niques: non-linear planning (partial-order planning) as 
the basic reasoning mechanism; hierarchical planning 
(task-decomposition) to tackle the complexity of KDD 
process; and repianning (or integration of pianning and 
execution) to support data/knowledge/process evolu- 
tion. The GLS system, as a general-purpose KDD sys- 
tem based on the framework and using the planning 
mechanism, increases both autonomy and versatility. 

References 
Brachman, R.J. and Anand, T. 1996. “The Process of 
Knowledge Discovery in Databases: A Human-Centered 
Approach”, in Advances in Knowledge Discovery and 
Data Mdnkng, MIT Press, 37-58. 
Fayyad, U.M., Piatetsky-Shapiro, G, and Smyth, P. 
1996. ‘From Data Mining to Knowledge Discovery: an 
Overview”, in Advances in Knowledge Discovery and Data 
Ma’ndng, MIT Press, l-36. 
Liiq C, 1991, “Software Process Planninn and Fxecu- 
tion: Coupling vs. Integration”, Proc. the 3rd Inter- 
national Conjerence on Advanced Information Systems 
(CAiSE91), LNCS 498, Springer, 356-374. 
Liu, c. and Conradi, R. 1993. ‘(Automatic Replan- 
ning of Task Networks for Process Evolution in EPOS”, 
Proc. the 4th European Software Engineering Conference 
(ESEC’93), LNCS 717, Springer, 437-450. 
Minsky, M. 1986. The Society of Mind, Simon and Schus- 
ter. 
Russell, S.J. and Norvig, P. 1995. Artificial Intelligence - 
A Modern Approach Prentice Hall, Inc. 
Engels, R. 1996. “Planning Tasks for Knowledge Dis- 
covery in Databases - Performing Task-Oriented User- 
Guidance”, Proc. Second Inter. Conf. on Knowledge Dis- 
covery and Data Mining (KDD-96), AAAI Press, 170-175. 
Zhong, N. al?d Qhsnga, Se 1995. “Tnwarrl A Mm1t.L .&-.,-*- ** ..&...“_ 
Strategy and Cooperative Discovery System”, Proc. First 
Inter. Conf. on Knowledge Discovery and Data Mining 
(KDD-95), AAAI Press, 337-342. 
Zhong, N., Kakemoto, Y., and Ohsuga, S. 1997. “An 
Organized Society of Autonomous Knowledge Discov- 
ery Agents”, Proc. First Inter. Workshop on Coopera- 
tive Information Agents - DAI meets Database Systems 
(CIA’97), LNAI 1202, Springer, 183-194. 
Zytkow, J.M. 1993. ‘Introduction: Cognitive Autonomy 
in Machine Discovery”, Machine Learning, KAP, 12(1-3) 
7-16. 

294 KDD-97 


