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Abstract 
The three distinct data handling cultures (statistics, data base 
management and artificial intelligence) fInally show signs of 
convergence. Whether you name their common area “data 
analysis” or “knowledge discovery”, the necessary ingredients 
for success with ever larger data sets are identical: good data, 
subject areaexpertise, access to technicalknow-how in all three 
cultures, and a good portion of common sense. Curiously, all 
three cultures have been trying to avoid common sense and 
hide its lack behind a smoke-screen of technical formalism. 
Huge data sets usually are notjust more of the same, they have 
to be huge because they are heterogeneous, with more internal 
structure, such that smaller sets would not do. As a conse- 
quence, subsamples and techniques based on them, like the 
bootstrap, may no longer make sense. The complexity of the 
data regularly forces the data analyst to fashion simple, but 
problem- and data-specific tools from basic building blocks, 
taken from data base management and numerical mathematics. 
Scaling-up of algorithms is problematic, computational com- 
plexity of many procedures explodes with increasing data size; 
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unfeasible. The human ability to inspect a dataset, or even only 
a meaningful of part it, breaks down far below terabyte sixes. 
I believe that attempts to circumvent this by “automating” some 
aspects of exploratory analysis are futile. The available success 
stories suggest that the real function of data mining and KDD 
is not machine discovery of interesting structures by itself, but 
targeted extraction and reduction of data to a size and format 
suitable for human inspection. By necessity, such pre- 
processing is ad hoc, data specific and driven by working 
hypotheses based on subject matter expertise and on trial and 
error. Statistical common sense - which traps to avoid, 
handling of random and systematic errors, and where to stop 
- is more important than specific techniques. The machine 
assistance we need to step from large to huge sets thus is an 
integrated computing environment that allows easy improvi- 
sation and retooling even with massive data. 

1. Copyright Q 1997. American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved. 

Introduction 
Knowledge Discovery in Databases (KDD) and Data Anal- 
ysis (DA) share a common goal, namely to extract meaning 
from dam. The only discernible difference is that the former 
commonly is regarded as machine centered, the latter as 
centered on statistical techniques and probability. But there 
are signs of convergence towards a common, human-centered 
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Note the comment by Brachman and Anand (1996, p.38): 
“Overall, then, we see a clear need for more emphasis on a 
human-centered, process-oriented analysis of KDD”. One is 
curiously reminded of Tukey’s (1962) plea, emphasizing the 
role of human judgment over that of mathematical proof in 
DA. It seems that in different periods each professional group 
has been trying to squeeze out human common sense and to 
hide its lack behind a smoke screen of its own technical 
formalism. The statistics community appears to be further 
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that DA ought to be a human-centered process, and I hope 
the Al community will follow suit towards a happy reunion 
of resources. 

About Data 
Data can be experimental (from a designed experiment), 
observational (with little or no control over the process 
generating the data), or opportunistic (the data have been 
collected for an unrelated purpose; such data are sometimes 
called “samples of convenience”). Massive data sets rarely 
belong to the first category, since by a clever design the data 
flow often can be reduced already before it is recorded. But 
they often belong to the third category for plain reasons of 
economy. 

On the whole, thedata mining community, mostly coming 
from data base management and logic backgrounds, does not 
yet seem to be sensitized to the specific problems arising with 
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statistical data, where relationships hold only on average, and 
where that average can be distorted by selection bias or 
similar effects. 

Retrospective analyses of opportunistic data sets are beset 
with particularly ugly statistical pitfalls. Not all statisticians 
are aware of them, and hardly any non-statisticians. Few 
textbooks even mention the problem; a notable exception is 
Freedman et al. (1991), p. 506ff. Standard errors and tests of 
significance usually do not make sense with a sample of 
convenience, so watch out. In other words: if you try to assess 
the accuracy and reliability of a fitted model by the usual 
statistical techniques, you may fool yourself and others. As 
adata analyst, you need a healthy dose of statistical common 
sense to recognize the problem, to assess its severity, and to 
avoid being fooled by it. It also takes stamina (and profes- 
sional honesty), if you have to tell your sponsor that certain 
questions cannot be answered with the data at hand, since he 
can easily find somebody else who will answer them anyway. 

Sometimes, data sets are massive because their collection 
is mandated by law (e.g. census and certain health data), or 
because they are collected anyway for other purposes (e.g. 
financial data). Often, however, they have to be massive 
because smaller sets will not do, and the predominant reason 
why they will not do is that the data in question are highly 
structured and heterogeneous for intrinsic reasons. In most 
cases, structural complexity has to do with the fact that there 
are many objects, observed by several observers, and the 
observations are located in space and time. Often, complexity 
is accompanied by inhomogeneity: standards for measure- 
ments, the set of observed variables, and protocols for their 
recording may change over space and time, between 
observers and between objects. In addition, there may be 
unnoticed local, and sometimes even global, lapses of quality 
control. 

As a rule, the data analyst will be confronted not with the 
data, but primarily with a task (or tasks), hopefully to be 
solved with the data. Usually, those tasks are, at least initially, 
poorly formulated and understood. 

The following illustrative examples have been slightly styl- 
ized, but are based on actual consulting experiences. The first 
one exemplifies pure structural complexity. 

Example 1: Air traffic radar data. A typical situation 
is: half a dozen radar stations observe several hundred 
aircraft, producing a 64-byte record per radar per aircraft 
per antenna turn, approximately a megabyte of data per 
minute. If one is to investigate a near collision, one 
extracts a subset, defined by a window in space and time 
surrounding the critical event. If one is to investigate 
reliability and accuracy of radars under real-life air 
traffic conditions, one must differentiate between gross 
errors, systematic errors, and random measurement 
errors. Outlier detection and interpretation is highly 
non-triviaL Essentially, onemust first connect thousands 

of dots to individual flight paths (technically, this 
amounts to sometimes tricky prediction and identifica- 
tion problems). The remaining dots are outliers, which 
then must be sorted out and identified according to their 
likely causes (a swarm of birds, a misrecorded azimuth 
measurement, etc. etc.). In order to assess the measure- 
ment accuracy with regard to both systematic and ran- 
dom errors, one must compare measurements of 
individual radars to flight paths determined from all 
radars, interpolated for that particular moment of time. 
The error structure is quite inhomogeneous, depending 
on the range and topographic features, as well as on 
crowding conditions. Summary statistics do not enter at 
all, except at the very end, when the results, say the 
frequency and pattern of different types of errors, are 
summarized for presentation. This example also illus- 
trates the role of ancillary data sets: radar installation 
data, locations of airports, air traffic routes, national and 
traffic control boundaries, etc. 

The next example illustrates problems of inhomogeneity. 
Example 2: Highway maintenance. The available data 
are maintenance records and measurements of road 
quality in the Federal Republic and Germany, spanning 
several decades. The ultimate task is to provide a rational 
basis (a decision support system) for highway mainte- 
nance policies. In particular one ought to be able to 
predict long-range consequences of maintenance 
decisions. For that, one should find the relationships 
between road construction, repairs, traffic volume and 
surface deterioration. Because of the time frame 
involved, and because of distributed administrative 
responsibilities, such a dab, collection cannot possibly 
be homogeneous. Both the maintenance records and the 
measurements of road quality are uneven. Most of the 
data are crude. The same terms may mean different 
things to different people at different times. Some test 
routes have been measured in great detail, but only for 
alimited time. The statistical fluctuations are enormous. 
Unsuspected gaps in the data (e.g. missing records of 
maintenance interventions) are far from obvious and 
may escape even a painstaking scrutiny. It is easier to 
decide which statistical techniques to use (say between 
regression and survival analysis) than to decide whether 
the available data is good enough or whether it needs to 
be supplemented by additional, targeted measurement 
programs. 

There may be indirect cross-linking between originally 
unrelated data sets, as in the following example. Typically, 
such cross-links are not explicit in the data sets and may be 
difficult to establish. 
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Example 3: Health and environmental hazards. The 
task is to investigate long-range health effects of pesti- 
cides. The available data are retrospective and consist of 
several, originally unrelated, opportunistic sets. 
l Patient data: hospital, diagnosis, treatment, . . . 
l Pesticide application data: what? when? where? how 

much? . . . 
l Cross-linking: who was potentially exposed to what? 

when? . . . 

Summaries and random subsamples may be worse than 
useless, as illustrated by the following example. 

Example 4: Radon levels. It was found (through 
exploratory data analysis of a large environmental data 
set) that very high radon levels were tightly localized 
and occurred in houses sitting on the locations of old 
mine shafts. Neither the existence nor the location of 
such shafts was deducible from the data set, they were 
found by on-site inquiries. In this case, indiscriminate 
grouping and averaging would have hidden the problem 
and would have made it impossible to investigate causes 
and necessary remedies. Random samples would have 
been useless, too: either they would have missed the 
exceptional values altogether, or one would have thrown 
them out as outliers. A traditional statistician, looking 
for a central tendency, a measure of variability, measures 
of pairwise association between a number of variables, 
or the like, would have missed the essential issue. 

Naive data mining, that is: grinding a pile of data in a 
semi-automatic, untutored fashion through a black box, 
almost inevitablv will m!-! into the GIGO-syndrome - Gar- 
bage In, Garbage Out. Unfortunately, you may not recognize 
the output as such. The more opaque a black “data mining” 
box is, the less likely it is that one will recognize potential 
problems, A case story from a data analysis exam may serve 
as a warning. 

Example 5: Discriminant analysis. The data exam 
problem was to distinguish between carriers and non- 
carriers of a certain genetic disease on the basis of 
enzyme and other data. A student found that age was the 
variable that discriminated best between carriers and 
controls. This was entirely correct, but useless. What he 
had discovered, but misinterpreted, was that in the 
process of data collection, carriers and controls had not 
been properly matched with regard to age. Would you 
have spotted the problem if the result had been presented 
not verbally but in the form of a duly cross-validated 
black box (e.g. a neural network)? 

Data Size and Scaling 
By now, we believe to understand the issues involved in the 
interactive analysis of data sets in the megabyte range, and 
perhaps a little beyond. Somewhere around data sizes of 100 
megabytes or so, qualitatively new, very serious scaling 
problems begin to arise, both on the human and on the 
algorithmic side. In concrete terms, we thus must be con- 
cerned with stepping to gigabyte sizes and beyond. 

Human Limitations. 
The human ability to inspect the whole of a data set, or even 
only a meaningful part of it, breaks down for datasets in the 
gigabyte range. This is most emphatically not a problem of 
the display devices (as some authors seem to believe, cf. 
Butler and Quarrie 1996), but one of the human visual system. 
See Wegman 1995. The conclusion is that human inspection 
of terabyte sets forever will be restricted to very thin subsets 
or very crude summaries. As mentioned before, with highly 
structured sets neither random subsamples nor any of the 
customary summaries or density estimates will be of use. 

Computational Complexity. 
Scaling up of algorithms is problematic, the computational 
complexity of many fashionable computer intensive proce- 
dures explodes with increasing data size. Computations 
taking up toabout 1015floatingpointoperations arejust about 
feasible nowadays (one gigaflop per second, sustained for 
two weeks). If computer performance doubles every two 
years, as in the past, this will go up to lo’* in 20 years, but 
by then, somewhere near sustained teraflop performance, 
just-in-time management of massive data sets will become 
problematic @era = 1012, and in lo-l2 seconds, light moves 
merely 0.3 mm). This means that algorithms supposed to 
work for gigabyte sets and above better do not take more than 
about O(n”) operations for 12 items. To illustrate the practical 
consequences, assume that a data set containing n items is 
structured as a matrix with r rows and c columns, r>c. Then, 
for example, regression or principal component algorithms 
are feasible, they use O(rc2) operations, but clustering algo- 
rithms, using O(r%) operations, are out. See Huber 1994, 
1996, Wegman 1995. 

Workarounds? 
Since it is humanly impossible to inspect more than a very 
limited number of very thin slices of a huge data set, we must 
select such slices, at least initially, either on the basis of prior 
model considerations, or assisted by machine search. The 
idea to have a robot search for interesting, but otherwise 
unspecified features is alluring, but in my opinion (influenced 
by experiences with manual and automated projection pur- 
suit) it is a mere day-dream, bound to fail for several separate 
reasons. First, already for moderately large data sets, blind 
machine searches appear to have excessive computational 
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complexity. Second, after we have found some interesting 
looking features (with structured data, there may be overly 
many), it is too hard for us to interpret them, unless we are 
guided by some goals or working hypotheses. But if we 
already have a goal or working hypothesis, then it makes 
more sense to search in a targeted fashion. In practical terms, 
this amounts to targeted extraction and reduction of data to 
asizeandformatsuitableforhumaninspection.Bynecessity, 
any such pre-processing is ad hoc, data and task specific, and 
driven by working hypotheses, first based on subject matter 
expertise and then amended by trial and error. Both the 
formulation of the goals and the interpretation of the finds is 
a task for a human mind, not for a machine. The problem, as 
I see it, is not one of replacing human ingenuity by machine 
intelligence, but one of assisting human ingenuity by all 
conceivable tools of computer science and artificial intelli- 
gence, in particular aiding with the improvisation of search 
tools and with keeping track of the progress of an analysis. 
That is, the data analyst needs foremost a good, integrated 
computing environment. 

The following example, which is of historical interest as the 
first big success story of data mining, may serve as an 
illustration of targeted pre-processing. 

Example 6: Lunar Mascons. The surprising discovery 
of mass concentrations (Mascons) under the lunar sur- 
face is due to Muller and Sjogren (1968), who found 
them by extracting structure from the residual noise of 
a Doppler radar ranging experiment. They did this work 
on their own time, because their superiors at JPL (Jet 
Propulsion Laboratory) felt they were going to waste 
their efforts on garbage. I remember Muller joking that 
evidently one person’s junk pile was another’s gold 
mine, so the invention of data mining ought to be credited 
to them. Their success was due not to a black box 
approach, but to a combination of several thoughtful 
actions: First, acareful inspection of residuals, revealing 
that these did not behave like white noise. Second, a 
tentative causal interpretation: the cause might be an 
irregular distribution of lunar mass. Third, modelling this 
distribution by expanding it into spherical harmonics 
with unknown coefficients and then estimating these 
coefficients by least squares. Fourth, a graphical com- 
parison of isodensity contours of the estimated mass 
distribution with a map of lunar surface features. The 
discovery literally happened at the moment when the plot 
emerged from the plotter: it revealed systematic mass 
concentrations, beneath the lunar maria. Interestingly, 
the persuasive argument in favor of correctness of the 
result was not probabilistic (i.e. a significance level, or 
the like), but the convincing agreement between calcu- 
lated mass concentrations and visible surface features. 

Data Structure and Strategy 
Almost every major data analysis requires considerable 
initial data massage. First, it is necessary to bring data from 
different sources into aconsistent format; this is a prerequisite 
for any efficient analysis. Often, particularly in the Data 
Warehousing literature, this initial massage is regarded 
mainly as an issue of data cleaning. However, cleaning often 
distorts the internal stochastic structure of the data, and with 
cleaneddataitis no longer possible to investigate dataquality, 
so watch out. 

Whenever the data have a complex structure, most of the 
traditional statistical approaches, based on summaries and 
subsamples, will not work. For example, resampling methods 
(bootstrap) rarely are applicable. In almost every case, ad 
hoc, data and task specific pre-processing and rearranging of 
the data is needed (cf. in particular Examples 1 and 6). 
Usually, some sophisticated, but simple, statistical ideas and 
algorithms will be built into the pre-processing and pro- 
cessing of the data, combined with tools from numerical 
analysis and data base operations. All these should therefore 
be available in the form of reusable modules or building 
blocks. The traditional packages, offering such tools in 
canned form, are much too heavy-handed and not flexible 
enough. 

The overall issue is one of strategy, that is: the free use 
of the prepared means for the purposes of a campaign, 
adapting them to individual needs (Huber 1997, quoting 
Clausewitz). To facilitate such a combination of tools, they 
must be presented in the form of an integrated, extensible, 
high-level dam analysis language. 

Presentation of Results 
The larger the data sets are, the more difficult it is to present 
the conclusions. With massive data sets, the sets of conclu- 
sions become massive too, and it is simply no longer possible 
to answer all potentially relevant questions. We found that a 
kind of sophisticated decision support system (DSS), that is: 
a customized software system to generate answers to ques- 
tions of the customers, almost always is a better solution than 
a thick volume of precomputed tables and graphs. It is 
straightforward to design a system duplicating the functions 
of such a volume, and it is easy to go a little beyond, for 
example by providing hypertext features or facilities for 
zooming in on graphs. But the appetite grows with the eating, 
trickier problems will arise, and the DSS then begins to 
develop into a full-fledged, sophisticated, customized data 
analysis system adapted to the particular data set(s). 

Actually, with massive data sets the need for customized 
data analysis systems arises already earlier in the analysis, 
namely whenever several people with similar needs must 
work with the same data, or the same kind of data, over an 
extended period of time. It is humanly impossible to pre- 
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specify a customized system in advance, one must learn by 
trial and error. Close cooperation and feedback between data 
analysts, subject area specialists and end-users are required, 
and whenever possible, the latter must be involved from the 
very beginning. Th. Huber and M. Nagel (1996) have 
described the methodology for preparing such systems under 
the name Data Based Prototyping. The process is driven by 
the data and by its on-going, evolving analysis; it is a task 
which must be done by people analyzing the data, and it 
cannot be left to mere programmers. 

Conclusions 
The following list of conclusions appears already in Huber 
(1996): 

With the analysis of massive data sets, one has to expect 
extensive, application- and task-specific pre-processing. 
We need tools for efficient ad hoc programming. 
It is necessary to provide a high-level data analysis 
language, a programming environment and facilities for 
data-based prototyping. 
Subset manipulation and other data base operations, in 
particular the linking of originally unrelated data sets, are 
very important. We need a data base management system 
with characteristics rather different from those of a 
tmditional DBMS. 
The need for summaries arises not at the beginning, but 
toward the end of the analysis. 
Individual massive data sets require customized data 
analysis systems tailored specifically toward them, first 
for the analysis, and then for the presentation of results. 
Pay attention to heterogeneity in the data. 
Pay attention to computational complexity; keep it below 
O(n”/“>, or forget about the algorithm. 
The main software challenge: we should buildapilot data 
analysis system working according to the above princi- 
ples on massively parallel machines. 
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