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Abstract

Causation is defined recursively: evente is the cause of con-
dition φ in contextc iff e is the only sufficient cause ofφ in
c, and removinge from c either removesφ from c or results
in some other event causingφ. A logical language is then
defined, in which it is possible to represent and reason about
actual and counterfactual events in evolving partial contexts.
Axiomatic theories of events and causation are given, and a
formal pragmatics is defined, making it possible to reason for-
mally about particular cases. By way of illustration, examples
involving preemption and trumping preemption are given.

Introduction
Lewis (1973) observes that Hume defined causation “twice
over”:

[W]e may define a cause to bean object followed by another,
and where all the objects, similar to the first, are followed
by objects similar to the second. Or, in other wordswhere,
if the first object had not been, the second never had existed.
(Hume 1975,§VII, Part II)

Hume’s first definition characterizes causes as being suf-
ficient for their effects, his second as being necessary for
them.

In (Bell 2003), I suggest combining contextual necessity
and sufficiency. Evente is sufficient for conditionφ in con-
text c iff e succeeds inc andφ is amonge’s effects. Event
e is necessary forφ in c iff removing e from c also removes
φ from c. Then e is the (direct) cause ofφ iff e is both
necessary and sufficient forφ in contextc. I then develop
a formal theory of contextual sufficiency, in which it is re-
duced to the elements of a common sense theory of natural
(or defeasible) events. However, while the theory captures
many aspects of contextual sufficiency, it only captures con-
textual necessity in the special case in which the effects of
an event change the context. The theory is thus too liberal in
attributing causal status to events. For example, whitewash-
ing an already white wall may be contextually sufficient for
the wall’s being white, but is not contextually necessary for
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it, and so should not be considered to be its cause. Con-
sequently this paper is devoted to extending the theory to
include a better account of contextual necessity.

Lewis (1973) formalizes Hume’s necessity definition us-
ing his possible-worlds theory of counterfactuals. The oc-
currence of evente,O(e), being counterfactually dependent
on the occurrence of eventc, O(c), iff O(c) andO(e) are
both true, and the counterfactual¬O(c) �→¬O(e) (“If c
had not occurred, thene would not have occurred”) is true.

Lewis’s theory has been much discussed; see, for exam-
ple, (Lewis 1986, Ch. 21). A serious drawback of the theory
is the lack of a formal pragmatics; how, exactly, are particu-
lar counterfactuals evaluated? A further problem is posed by
the phenomenon of trumping preemption (Schaffer 2000).
Preemtion occurs when the effects of one event prevent an-
other event from having the same (or similar) effects. For
example (Wright 1988), suppose that two fires,A andB ad-
vance toward a house from opposite directions, and thatA
arrives first and burns the house down. Then fireA preempts
fire B from destroying the house, and is considered to be
the cause of the house’s destruction, despite it being granted
that if A had not destroyed the house, thenB would have
done so. Examples such as this can be dealt with by distin-
guishing between two events, the house’s actual destruction
by A at timet, and its preempted later destruction byB at
time t′ > t, thenA causes the house’s destruction att, as
otherwiseB would still not reach the house untilt′. How-
ever, distinctions such as this don’t work when one event
trumpsanother. Lewis (2000) gives the following example;
suggested by Bas van Fraassen. Suppose that a sergeant and
a major simultaneously order their soldiers to advance, and
that the soldiers do so. Their advance is redundantly caused,
since either order would, on its own, have been sufficient.
However, the redundancy is asymmetric, since the soldiers
obey the senior officer. The soldiers advance because the
major orders them to, not because the sergeant does. The
major’s order trumps the sergeant’s. Consequently Lewis
(2000) proposes a revised theory of causation as influence.
Causes can, he suggests, be distinguished by looking at the
pattern of counterfactual dependence of alterations of the ef-
fect upon alterations of the cause. Thus, in a case of trump-
ing, the real cause can be distinguished from an event it
trumps by the fact that altering the cause slightly alters the
effect slightly, whereas altering the trumped event slightly
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does not alter the effect.
However, it seems to me that, given an account of contex-

tual sufficiency, Lewis’s original counterfactual-dependency
account can be retained, but with a refinement which makes
the definition of causation recursive:

Evente is the cause of conditionφ in contextc iff e is
the only sufficient cause ofφ in c, and removinge from
c either removesφ from c or results in some other event
causingφ.

Thus, on the parade ground, the sergeant’s order is inopera-
tive, because the soldiers are obliged to obey an order from
a more senior officer, and consequently the major’s order is
the only sufficient cause of the soldiers’ advance. However,
if the major’s order had not been given (or was not heard,
etc.), then the sergeant’s order would have caused the ad-
vance; as it would then be both contextually sufficient and
contextually necessary (being the only other order issued).
The recursive nature of the definition makes it capable of
dealing with serial trumping; as might occur, for example, if
the whole chain of command gave the same order simulta-
neously.

A formal version of the proposed definition is developed
in this paper. The formal sufficiency theory is defined in
a three-valued language of events, and is logico-pragmatic.
Models of the language are partially ordered according to
their chronological minimality. Roughly speaking, a model
is preferred to another if they agree up to some time point
(if they represent a common history up to that point) and
the preferred model contains less information at that point
(for example, if the history it represents is less eventful at
that point). The intended interpretation of a given theory is
then obtained by focussing on what is true in all of its most
preferred models. The key insight of the extension given
here (first essayed in (Bell 2001a)) is that the pragmatics of
the sufficiency theory can be used as the basis for a formal
theory of causal counterfactuals. Semantically, models of
the language of events can be thought of as possible partial
worlds, and the preference relation on them can be thought
of as an accessibility relation. The accessibility relation also
provides the basis of a formal pragmatics, as it orders worlds
(models) according to their comparative chronological sim-
ilarity; worlds above (below) a world in the ordering repre-
sent alternative histories which differ at some point because
of the addition (deletion) of certain facts or events.

However, in order to make this idea work, it is necessary
to develop an appropriate semantics for counterfactuals in
partial orders of the kind envisaged. It is also necessary to
refine the pragmatics, essentially by reordering the worlds in
a given frame so that the histories of related worlds represent
genuine alternative histories.

An appropriate semantics for conditionals is given in the
next section. The theory of events on which the sufficiency
theory is based is then recalled in Section3. The definition
of causation is given in Section4, and its formal pragmat-
ics is defined in Section5. In order to illustrate the theory,
formal versions of the two-fires and military-trumping ex-
amples are given in Section6.

The Causal LanguageCL
The causal languageCL has been developed in order to be
able to represent and reason about actual and counterfactual
events in evolving partial contexts. This section begins with
an informal introduction toCL. The formal syntax and se-
mantics are then given.

We begin with the language of events,EL. EL is based
on Kleene’s (1952) strong three-valued language which pro-
vides a means for reasoning demi-classically with partial in-
formation and classically with complete information. Ac-
cordingly, the truth conditions for the propositional oper-
ators return a Boolean truth value wherever possible. An
atomic sentencep may be either true, false or undefined; the
sentence¬φ is true ifφ is false, false ifφ is true, and is unde-
fined otherwise; and the sentenceφ∧ψ is true ifφ andψ are
both true, false if either is false, and is undefined otherwise.
Further operators, such as inclusive disjunction, can be de-
fined as in classical logic: thusφ∨ψ =Df ¬(¬φ∧¬ψ). The
first-order extension is straightforward. Atomic sentences
may be true, false, or undefined; a universal sentence∀xφ is
true ifφ is true for all assignments tox, false ifφ is false for
one such assignment, and is undefined otherwise; and the
existential quanitifier∃ is defined as in classical logic.

In order to represent and reason about partiality, theunde-
finedoperator ‘U’ is added to Kleene’s language. The sen-
tenceUφ is true ifφ is undefined (is neither true nor false),
and is false otherwise. This operator is used to define the
classically-valued operatorsT, F,→ and≡ as follows:

Tφ =Df ¬(Uφ ∨ ¬φ), Fφ =Df ¬(Uφ ∨ φ),
φ→ ψ =Df ¬Tφ ∨ Tψ,
φ ≡ ψ =Df (Tφ ∧ Tψ) ∨ (Fφ ∧ Fψ) ∨ (Uφ ∧ Uψ).

Thus, for sentencesφ andψ: Tφ is true if φ is true, and is
false otherwise;Fφ is true if φ is false, and is false other-
wise; andφ → ψ is true ifψ is true orφ is not, and is false
otherwise; andφ ≡ ψ is true ifφ andψ have the same truth
value, and is false otherwise.

In order to represent time, time points are added as a sec-
ond sort. For simplicity, time is assumed to be discrete and
linear, and relations between time points (identity and prece-
dence) are defined classically. The time-dependent nature
of facts is then represented by adding a temporal index to
atoms of the underlying language. Thus adomain atomis an
atom of the formr(u1, . . . , un)(t), where theui are terms
denoting objects in the domain, and termt denotes a time
point. Intuitively, a domain atomr(u1, . . . , un)(t) states
that the relationr holds between the objectsu1, . . . , un at
time (point)t, that the factr(u1, . . . , un) is true att. For-
mally, factsare defined to be the atemporal components of
temporal literals; thus ifα(t) is a domain atom, thenα and
¬α are both facts.

In order to reason about inertia (the persistence of facts
over time) facts are added as a third sort and higher-order
quantification over them is introduced.

Finally, events are added as a fourth sort. For example, an
occurs atomis an atom of the formOcc(e)(t), which states
that evente (or, more precisely, a token of event typee) oc-
curs at timet. More generally, anevent atomis an atom of
the formr(e1, . . . , en)(t), where eachei is an event term.
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In order to define causation,EL is extended to the full
causal languageCL by adding quantification over formulas
of EL, and the modal operators�, ⇑, ⇓, and⇒.

The semantics of the modal operators is given by intro-
ducing partial worlds frames, each consisting of a set of pos-
sible partial worlds,W, and a partial order≺ onW which
represents accessibility among possible partial worlds. Pos-
sible partial worlds are like the possible worlds of normal
classical modal logics, except that the truth values of some
atomic propositions may be undefined at them; thus a possi-
ble partial world may be thought of as a set of (classical) pos-
sible worlds, or, more naturally, as a partially specified (clas-
sical) possible world. In the sequel possible partial worlds
will be referred to simply as “worlds”, and a world at which
sentenceφ (set of sentencesΘ) is true will be referred to as
aφ-world (aΘ-world). In this setting, the extensional event
languageEL is used to describe individual worlds, while the
intensional (modal) operators ofCL are used to refer across
worlds.

For a given set of worldsW, �φ states thatφ is true at all
worlds inW, thatφ is logically necessary given the truths of
W. When, as in the intended use, these truths consist of a
set of physical laws,�φ can be understood as stating thatφ
is physically necessary

The semantics of the conditional operators⇑, ⇓, and⇒,
is given in terms of the set of closest antecedent worlds to
any given world. As usual, definew � w′ iff eitherw ≺ w′,
orw = w′ andw ∈ W. Then, for worldsw,w′ ∈ W, w′ is
a closestφ-world abovew iff w � w′, w′ is aφ-world, and
there is noφ-world w′′ such thatw � w′′ ≺ w′. Similarly,
for worldsw,w′ ∈ W, w′ is aclosestφ-world beloww iff
w′ � w, w′ is aφ-world, and there is noφ-world w′′ such
thatw′ ≺ w′′ � w. Thus ifw is aφ-world, then it is also
the closestφ-world above and below itself.

It is assumed that the accessibility relation≺ reflects
some form ofvertical persistence of information; that is, if
w ≺ w′, thenw′ contains more information, in some sense,
thanw. In particular, the order≺Θ

C defined in Section 5 is
based on monotonically increasing support sets; that is con-
ditions which, together with the laws of a common causal
theory, determine the evolution of worlds. Thus ifw ≺Θ

C w′,
then the history ofw′ is richer than (is perhaps better deter-
mined, or perhaps more eventful than) that ofw, and so re-
quires more support thanw. Note that the particular details
of vertical persistence may vary according to the application,
it is thus a pragmatic condition, rather than a semantic one.

A complefactualis a sentence of the formφ ⇑ ψ. Intu-
itively φ ⇑ ψ is true at worldw if ψ is true at the closest
worlds abovew at which the vertically persistent informa-
tion atw is complemented byφ. Accordingly, the comple-
factualφ ⇑ ψ is applicable at worldw if φ is not false atw,
in which case it is true if the closestφ-worlds abovew are all
ψ-worlds, and false if one of these worlds is a¬Tψ-world.
The evaluation of a complefactual can thus be thought of as
involving an AGM expansion operation (Gärdenfors 1988).
Given that the complefactualφ ⇑ ψ is applicable atw, it is
true atw iff all minimal expansions of the persistent infor-
mation atw which makeφ true also makeψ true.

A contrafactualis a sentence of the formφ ⇓ ψ. Intu-

itively φ ⇓ ψ is true at worldw if φ is false atw and the
complefactualφ ⇑ ψ is true at the closest worlds beloww at
which φ is not false. Accordingly the contrafactualφ ⇓ ψ
is applicable at worldw if φ is false atw, in which case it
is true if the closest¬Fφ-worlds beloww are allφ ⇑ ψ-
worlds, and false if one of these worlds is a¬T(φ ⇑ ψ)-
world. The evaluation of a contrafactual can thus be thought
of as involving an AGM revision operation (consisting of a
contraction operation followed by an expansion operation).
Given that the contrafactualφ ⇓ ψ is applicable atw, it is
true atw iff all minimal contractions of the persistent infor-
mation atw which make¬Fφ true also makeφ ⇑ ψ true.

By analogy with the classical analysis, acounterfactual
sentenceφ⇒ψ should be true if the truth ofφ ∧ ¬Tψ is,
in some sense, a remoter possibility than the truth ofφ ∧
ψ. At a worldw in a partial order with vertically persistent
information there are two possibilities. Ifφ is not false atw,
then the counterfactualφ⇒ψ should be true (false) atw iff
the complefactualφ ⇑ ψ is true (false) atw. Alternatively,
if φ is false atw, then the counterfactualφ⇒ψ should be
true (false) atw just in case the contrafactualφ ⇓ ψ is true
(false) atw. Consequently a counterfactualφ⇒ψ should be
true atw if either the complefactualφ ⇑ ψ is true atw or the
contrafactualφ ⇓ ψ is true atw, andφ⇒ψ should be false
atw if eitherφ ⇑ ψ or φ ⇓ ψ is false atw.

A formal account ofCL is now given. The five sorts ofCL
are identified by the following letters:D for domain objects,
T for time points, andE for events,F for facts, andΦ for
EL-formulas.

Definition 1. The vocabulary ofCL consists of the symbols
‘<’, ‘ =’, ‘¬’, ‘ U’, ‘∧’, ‘ �’, ‘ ⇑’, ‘ ⇓’, ‘⇒’, ‘ ∀’, ‘ (’, ‘ )’, and the
following, mutually disjoint, countable, sets of symbols:

• CD, CT , CE (constants of sortsD, T andE),

• VD, VT , VE , VF , VΦ (variables of each sort),

• FD, FT , FE (function symbols of each arityn ≥ 1 of
sortsD, T , E), and

• RD, RE , RF , RΦ (relation symbols of each arityn ≥ 0
of sortsD, E, F , andΦ).

The constants of sortsF andΦ are defined below.

Definition 2. The terms of each sortS are defined as fol-
lows:

• If S is of sort D or T then termS = CS ∪ VS ∪
{f(u1, . . . , un) : n-ary f ∈ FS , ui ∈ termS}.

• termE = CE ∪ VE ∪ {f(u1, . . . , un) : n-ary f ∈
FE , ui ∈ termD ∪ termT ∪ termE}.

• termF = CF ∪ VF , whereCF = {rD(u1, . . . , un) :
n-ary rD ∈ RD, ui ∈ termD}.

• termΦ = CΦ ∪ VΦ, whereCΦ = EL is defined in Defini-
tion 3.

Definition 3. EL is the minimal set which satisfies the fol-
lowing conditions.

• If t, t′ ∈ termT thent < t′ ∈ EL.

• If S is of sortD, T , E or F , andu, u′ ∈ termS , then
u = u′ ∈ EL.
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Table 1: Satisfaction and violation conditions forCL (see Definition 7)

M,w, g |= t < t′ iff 〈Vg(t),Vg(t′)〉 ∈≺T

M,w, g =| t < t′ iff 〈Vg(t),Vg(t′)〉 /∈≺T

M,w, g |= u = u′ iff Vg(u) is Vg(u′)
M,w, g =|u = u′ iff Vg(u) is notVg(u′)

M,w, g |= rS(u1, . . . , un)(t) iff VR
S (rS , w,Vg(t))(Vg(u1), . . . ,Vg(un)) = true

M,w, g =| rS(u1, . . . , un)(t) iff VR
S (rS , w,Vg(t))(Vg(u1), . . . ,Vg(un)) = false

M,w, g |= v(t) iff v ∈ VF andM,w, g |= Vg(v)(t)
M,w, g =| v(t) iff v ∈ VF andM,w, g =| Vg(v)(t)

M,w, g |= rΦ(u1, . . . , un) iff RΦ(rΦ, w)(Vg(u1), . . . ,Vg(un)) = true

M,w, g =| rΦ(u1, . . . , un) iff RΦ(rΦ, w)(Vg(u1), . . . ,Vg(un)) = false

M,w, g |= v iff v ∈ VΦ andM,w, g |= Vg(v)
M,w, g =| v iff v ∈ VΦ andM,w, g =| Vg(v)

M,w, g |= ¬ψ iff M,w, g =|ψ
M,w, g =| ¬ψ iff M,w, g |= ψ

M,w, g |= Uψ iff neitherM,w, g |= ψ norM,w, g =|ψ
M,w, g =|Uψ iff eitherM,w, g |= ψ orM,w, g =|ψ

M,w, g |= ψ ∧ χ iff M,w, g |= ψ andM,w, g |= χ

M,w, g =|ψ ∧ χ iff M,w, g =|ψ orM,w, g =|χ
M,w, g |= �ψ iff M,w′, g |= ψ for everyw′ ∈ W
M,w, g =|�ψ iff M,w′, g =|ψ for somew′ ∈ W

M,w, g |= ψ ⇑ χ iff M,w, g |= ¬Fψ and ↑(ψ,w, g) ⊆ [[χ]]Mg
M,w, g =|ψ ⇑ χ iff M,w, g |= ¬Fψ and ↑(ψ,w, g) • [[¬Tχ]]Mg
M,w, g |= ψ ⇓ χ iff M,w, g |= Fψ and ↓(¬Fψ,w, g) ⊆ [[ψ ⇑ χ]]Mg
M,w, g =|ψ ⇓ χ iff M,w, g |= Fψ and ↓(¬Fψ,w, g) • [[¬T(ψ ⇑ χ)]]Mg
M,w, g |= ψ⇒χ iff M,w, g |= ψ ⇑ χ orM,w, g |= ψ ⇓ χ
M,w, g =|ψ⇒χ iff M,w, g =|ψ ⇑ χ orM,w, g =|ψ ⇓ χ
M,w, g |= ∀vψ iff M,w, g′ |= ψ for everyg′ such thatg ≈v g

′

M,w, g =| ∀vψ iff M,w, g′ =|ψ for someg′ such thatg ≈v g
′

• If S is of sortD, E or F , u1, . . . , un ∈ termS , rS is
an n-ary relation symbol inRS , and t ∈ termT , then
rS(u1, . . . , un)(t) ∈ EL.

• If v ∈ VF andt ∈ termT thenv(t) ∈ EL.

• If φ, ψ ∈ EL, then¬φ ∈ EL, Uφ ∈ EL, and(φ ∧ ψ) ∈
EL.

• If S is of sortD, T , E or F , v ∈ VS andφ ∈ EL, then
∀vφ ∈ EL.

The members ofEL are calledformulas(of EL). Those for-
mulas in which no variable occurs free are calledsentences
(of EL).

Definition 4. CL is the minimal set which satisfies the fol-
lowing conditions.

• EL ⊆ CL.

• If u, u′ ∈ termΦ, thenu = u′ ∈ CL.

• If u1, . . . , un ∈ termΦ andrΦ is ann-ary relation symbol
in RΦ, thenrΦ(u1, . . . , un) ∈ CL.

• If φ, ψ ∈ CL, then¬φ ∈ CL, Uφ ∈ CL, (φ ∧ ψ) ∈ CL,
�φ ∈ CL, (φ ⇑ ψ) ∈ CL, (φ ⇓ ψ) ∈ CL, and(φ⇒ψ) ∈
CL.

• If S is any sort,v ∈ VS andφ ∈ CL, then∀vφ ∈ CL.

The members ofCL are calledformulas(of CL). Those for-
mulas in which no variable occurs free are calledsentences
(of CL).

Models ofCL consist of a possible partial worlds frame
〈W,≺〉, a setD of domain objects, a setE of event types,
a temporal frame〈T ,≺T 〉 (whereT is a set of time points
and≺T is the before-after relation onT ), and interpretation
functions for terms and relations. For simplicity, time is as-
sumed to be discrete and linear. The denotations of terms
are always defined and do not vary with time. By contrast
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relations are interpreted by time-dependent, partial, charac-
teristic functions; thus the interpretation of relations may be
partial and may vary with time.

Definition 5. A modelfor CL is a structure

M = 〈〈W,≺〉,D, E , 〈T ,≺T 〉,F ,R,V〉,
where

• W is a set and≺ is a partial order onW,
• D, E andT are mutually disjoint, countable, non-empty

sets,
• ≺T is a binary relation onT which is discrete and linear,
• F = 〈FD,FT ,FE〉, where, for each pair〈S,S〉 ∈
{〈D,D〉, 〈T, T 〉, 〈E, E〉}, FS is a set ofn-ary functions
of typeSn → S for eachn ≥ 1,

• R = 〈RD,RE ,RF ,RΦ〉, where for each pair〈S,S〉 ∈
{〈D,D〉, 〈E, E〉, 〈F,CF 〉, 〈Φ, CΦ〉}, RS is a set of par-
tial n-ary functions of typeSn → {true, false} for each
n ≥ 0,

• V = 〈〈VC
D ,VC

T ,VC
E ,VC

F ,VC
Φ 〉, 〈VF

D ,VF
T ,VF

E 〉, 〈VR
D ,VR

E ,
VR

F 〉〉 is an interpretation function such that

– VC
S : CS → S and VF

S : FS → FS for 〈S,S〉 ∈
{〈D,D〉, 〈T, T 〉, 〈E, E〉},

– VC
F : CF → CF andVC

Φ : CΦ → CΦ are identity
functions,

– VR
S : RS × T → RS .

Terms are interpreted in the standard way.

Definition 6. A variable assignmentfor a CL-model is
a function g = 〈gD, gT , gE , gF 〉, where for 〈S,S〉 ∈
{〈D,D〉, 〈T, T 〉, 〈E, E〉, 〈F,CF 〉, 〈Φ, CΦ〉}, gS : VS → S.
For CL-modelM , interpretation functionV and variable as-
signmentg forM , theterm evaluation functionVg is defined,
for eachCL-termu and sortS, as follows

Vg(u) =

 VS(u) if u ∈ CS ,
gS(u) if u ∈ VS ,
VF

S (f)(Vg(u1), . . . ,Vg(un)) otherwise.

The truth and falsity of sentences at each world is defined
by means of the intermediary notions of the satisfaction and
violation of formulas at that world.

Definition 7. LetM = 〈〈W,≺〉,D, E , 〈T ,≺T 〉,F ,R,V〉
be aCL-model,g be a variable assignment forM , andφ be
a CL-formula. Theng satisfiesφ at a worldw inM (written
M,w, g |=φ) or violatesφ atw in M (writtenM,w, g =|φ)
according to the clauses given in Table 1. In the table a num-
ber of abbreviations are used:g ≈v g′ indicates that the
variable assignmentsg andg′ differ at most on the assign-
ment to variablev; [[φ]]Mg denotes the set{w : M,w, g |= φ}
of all worlds inM at whichg satisfiesφ; for CL-formula
φ, world w and assignmentg, ↑ (φ,w, g) denotes the set
{w′ : w � w′ ∧w′ ∈ [[φ]]Mg ∧ ¬∃w′′(w � w′′ ≺ w′ ∧w′′ ∈
[[φ]]Mg )} of closest worlds abovew at which g satisfiesφ,
and ↓ (φ,w, g) denotes the set{w′ : w′ � w ∧ w′ ∈
[[φ]]Mg ∧ ¬∃w′′(w′ ≺ w′′ � w ∧ w′′ ∈ [[φ]]Mg )} of closest
worlds beloww at whichg satisfiesφ; finally, for setsS and
T , S •T (“ S overlapsT ”) iff S ∩ T 6= ∅.

A formulaφ is trueat a possible partial worldw in a CL-
modelM (written M,w |=φ) if M,w, g |=φ for all vari-
able assignmentsg. A formulaφ is falseatw in M (written
M,w=| φ) if M,w, g=| φ for all variable assignmentsg. A
formulaφ is true in a CL-modelM (writtenM |=φ) if φ is
true at all worlds inM . Formulaφ is false in M (written
M =| φ) if φ is false at all worlds inM . These definitions
are extended to sets of formulas in the normal way. Thus
the set of formulasΘ is true at a possible partial worldw
in a CL-modelM (writtenM,w |=Θ) if M,w |=φ for all
φ ∈ Θ, etc.

It can be proved (by means of a parallel induction on the
structure ofCL formulas) that for anyCL-modelM , world
w in M , andCL-sentenceφ: eitherM,w |= φ or M,w |=
¬φ or M,w |= Uφ. Consequently, as in classical logic, it
is sufficient to consider the truth relations on sentences (and
sets of sentences) ofCL.

Events
The theory of events begins withprimary events, which can
be thought of as defeasibleSTRIPSevents (Fikes & Nilsson
1971). Primary event types are defined by specifying their
preconditions and effects; examples are given in Section 6.
The preconditions can be thought of as necessary conditions
for the success of an event of this type, and the effects as its
invariant effects. Consequently, the definition of an event (of
type)e is said to benatural if its preconditions do not suc-
ceed its occurrence (if the definition ofPre(e)(t) does not
imply any literal`(t′) for any t′ > t) and its effects do (if
the definition ofEff(e)(t) does not imply any literal̀(t′) for
anyt′ < t). The preconditions of an event should normally
be sufficient, on its occurrence, for its effects, but will typi-
cally not logically guarantee them. Call the context in which
an event occurs itscontext of occurrence. Then the precon-
ditions of the event should be such that they are sufficient
in most contexts of occurrence, but need not be sufficient
in all of them. In order to represent this,success atomsare
introduced. Intuitively thesuccess atom, Succ(e)(t), states
that evente succeeds at timet; that is, thate occurs att, its
preconditions are true on occurrence, and its effects are true
at t + 1. This is stated by the success axiom, Axiom(1) in
Table 2.

This axiom is intended to be used in order to infer change.
Given Occ(e)(t) and Pre(e)(t), the success assumption,
Succ(e)(t), should be made whenever it is consistent to do
so (whenever it is consistent withe’s context of occurrence),
and the axiom used to concludeEff(e)(t+ 1).

Primary events have the defeasibility of natural events,
but are unlike natural events in that their effects, when suc-
cessful, are invariant. This limitation is overcome by in-
troducingsecondary events. Secondary events are defeasi-
ble STRIPSevents which areinvokedby other (primary or
secondary) events in appropriate contexts, and their success
depends on that of the events which invoke them. A com-
mon sense event can thus be thought of as a tree-structured
object whose root is a primary event, and whose effects
are the combined effects of all successful events in its in-
vocation tree. Invocations are represented byinvocation
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Table 2: The theory of events,ΘE

∀e, t(Succ(e)(t) ≡ T(Occ(e)(t) ∧ Pre(e)(t) ∧ Eff(e)(t+ 1))) (1)

∀e, e′, t(Inv(e, e′)(t) → ¬Inv(e′, e)(t)) (2)

∀e, e′, t(Inv(e, e′)(t) → (Occ(e)(t) ∧Occ(e′)(t))) (3)

∀e, e′, t((Inv(e, e′)(t) ∧ Succ(e′)(t)) → ∃e′′(Inv(e′′, e′)(t) ∧ Succ(e′′)(t))) (4)

∀e, e′, e′′, t(Inv∗(e, e′)(t) ≡ (Inv(e, e′)(t) ∨ (Inv(e, e′′)(t) ∧ Inv∗(e′′, e′)(t)))) (5)

∀α, t(Inert(α)(t) ≡ (α(t) ≡ α(t+ 1))) (6)

Table 3: The theory of causation,ΘC (θ)

∀ε, e, t, φ, ψ(PSCause(ε, φ) ≡ (ε = Occ(e)(t) ∧ Succ(e)(t) ∧�(θ → (Eff(e)(t+ 1) ≡ ψ)) ∧�(ψ → φ))) (7)

∀ε, φ, e, e′, t(CSCause(ε, φ) ≡ (ε = Occ(e)(t) ∧ φ = Occ(e′)(t) ∧ Succ(e)(t)
∧ TInv(e, e′)(t) ∧ ¬T∃e′′(Inv∗(e′′, e)(t) ∧ Inv(e′′, e′)(t)))) (8)

∀ε, φ, ψ, χ(SCause(ε, φ) ≡ (PSCause(ε, φ) ∨ CSCause(ε, φ) ∨ (φ = (ψ ∧ χ) ∧ SCause(ε, ψ) ∧ SCause(ε, χ)))) (9)

∀ε, φ(Cause(ε, φ) ≡ (SCause(ε, φ) ∧ ¬∃ε′(¬ε′ = ε ∧ SCause(ε′, φ)) ∧ (¬Tε ⇓ (¬Tφ ∨ ∃ε′Cause(ε′, φ))))) (10)

∀ε, ε′, φ, ψ, χ(Causes(ε, φ) ≡ (Cause(ε, φ) ∨ (Cause(ε, ε′) ∧ Causes(ε′, φ))
∨ (φ = (ψ ∧ χ) ∧ Causes(ε, ψ) ∧ Causes(ε, χ)))) (11)

atoms, thus the atomInv(e, e′)(t) states that evente invokes
evente′ at time t, and by invocation axioms of the form:
∀e, e′, t((Occ(e)(t) ∧ Φ(e, e′)(t)) → Inv(e, e′)(t)); where
Φ(e, e′)(t) is a formula which distinguishes those contexts
in which e invokese′ at t. In keeping with the suggested
properties of secondary events, the invocation relation is re-
quired to satisfy axioms(2)-(4) in Table 2. In particular,
Axiom (4) ensures that a secondary event succeeds only if it
is directly invoked by a successful event.

It is also necessary to represent inertia, or what is not
changed by events. Intuitively, theinertia atom, Inert(α)(t),
states that the truth value of factα does not change at time
t; that is, that it persists tot+ 1. This is stated by the inertia
axiom, Axiom (6). The intention is that the inertia axiom
should be used to infer persistence of facts whenever possi-
ble. Givenα(t), theinertia assumption, Inert(α)(t), should
be made whenever it is consistent to do so (given the context
of occurrence att), and the axiom used to concludeα(t+1).
Definition 8. Thetheory of events, ΘE , consists of the ax-
ioms in Table 2; thusΘE = {(1), . . . , (6)}. Anevent theory
is any set ofEL sentences which containsΘE . An event the-
ory isnaturalif every event definition it contains is natural.

This theory is capable of representing inertia, ramifi-
cations, qualifications, and non-determinism (Bell 2000;
2003), and can readily be extended in order to represent con-
flicting simultaneous events (Bell 2001b).

Causation
Causation is defined formally in Table 3 relative to anEL-
sentenceθ, which represents a set of background laws; in-
cluding the definitions of the preconditions and effects of
events, and domain constraints. The definition assumes the
background of the theory of events, and reduces the notion
of causation to its terms (event occurrences, preconditions,
effects, success, failure, invocations, facts, inertia, change),

together with the modal notions of physical and contextual
necessity.

Axiom (7) states that any eventewhich succeeds at timet
is aprior sufficient cause(aPSCause) of its (direct posterior)
effects. Thuse is a PSCauseof φ if e succeeds att andφ
is a physically necessary consequence ofe’s effects att+ 1
according to the background lawsθ.

Axiom (8) states that the occurrence of evente is acon-
temporaneous sufficient cause(a CSCause) of the occur-
rence of evente′ at t iff e succeeds and invokese′ at t, and
it is not true that there is an evente′′ which (directly or in-
directly) invokese and which also (directly) invokese′ at
t. This requirement ensures that contemporaneous sufficient
causation is attributed to the earliest invoking event in an
invocation chain.

More abstractly, Axiom(9) states that event occurrence
ε is a (contextually)sufficient cause(anSCause) of effectφ
iff ε is a prior sufficient cause ofφ, or a contemporaneous
sufficient cause ofφ, or a sufficient cause of bothψ andχ
whose conjunction isφ.

The occurrenceε is adirect cause(aCause) of effectφ iff
ε is the only sufficient cause of effectφ in the context, and
removingε from the context either removesφ or results in
some other (trumped, premempted) occurrence causingφ;
Axiom (10).

Indirect causation results from causally linked chains of
events, each of which may terminate in a fact. Accordingly,
the indirect-causation relationCausesis defined to be the
transitive closure of the direct-causation relationCause, and
is closed under conjunction of effects; Axiom(11).

Definition 9. The theory of causationrelative to EL-
sentenceθ, ΘC (θ), consists ofθ together with the axioms
given in Table 3; thusΘC (θ) = {θ, (7), . . . , (11)}. If Θ′ =
ΘE ∪ΘL∪ΘB is a finite event theory with background laws
ΘL and boundary conditionsΘB , thenΘ = Θ′∪ΘC (

∧
ΘL)
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Table 4: Properties of theCausesrelation (see Proposition 1)
Bivalence: ∀ε, φ(Causes(ε, φ) ∨ ¬Causes(ε, φ))
Transitivity: ∀ε, ε′, φ((Causes(ε, ε′) ∧ Causes(ε′, φ)) → Causes(ε, φ))
Asymmetry: ∀ε, φ(Causes(ε, φ) → ¬Causes(φ, ε))
Actuality: ∀ε, φ(Causes(ε, φ) → (ε ∧ φ))
Consistency: ∀ε, φ(Causes(ε, φ) → ¬Causes(ε,¬Tφ))
Conjunction: ∀ε, φ, ψ((Causes(ε, φ) ∧ Causes(ε, ψ)) → Causes(ε, φ ∧ ψ))

is acausal theory, and Laws(Θ) = {ΘE∪ΘL∪ΘC (
∧

ΘL)}
is the set oflaws of Θ.

The definition of causation has appropriate general prop-
erties.

Proposition 1. Let Θ be a consistent causal theory whose
constituent event theory is natural. Then each of the sen-
tences listed in Table 4 is true in every model ofΘ.

Proof Sketch. The case for Conjunction follows directly
from the definition; Axiom(11). For Transitivity, suppose
Causes(ε, ε′), Causes(ε′, φ) and¬ε = ε′. If Cause(ε, ε′),
then the conclusion follows by Axiom(11). Otherwise,
there is someε′′ such thatCause(ε, ε′′) andCauses(ε′′, ε′).
SupposingCauses(ε′′, φ) as induction hypothesis, we con-
clude by Axiom(11). Actuality follows from the definition
of SCause, for if SCause(ε, φ) is true, then so are bothε and
φ (axioms(1), (3), (7), (8) (9)). Consistency follows from
Actuality and the assumption thatΘ is consistent. For Bi-
valence, note first thatSCauseis bivalent. IfSCause(ε, φ)
is false, then so isCause(ε, φ); Axiom (10). Otherwise,
ε is actual and soF¬Tε is true. The contrafactual of Ax-
iom (10) is thus applicable and is consequently either true
or false. Finally, Asymmetry follows because the natural-
ness assumption and axioms(2) and(9) ensure thatSCause
is asymmetric. �

Causal Models
We begin by defining the set of preferred worlds for an event
theory in aCL-modelM ; intuitively these are the worlds in
M at which the event theory is interpreted as intended, and
events unfold according to the theory. The definition refines
Shoham’s (1988) idea of chronological minimization. The
preferred worlds of an event theory are those in which de-
fined atomic sentences are minimized chronologically with
type-defined priority at each time point. The effect is that at
each preferred world the event theory is interpreted chrono-
logically. At each time point in a preferred world the con-
text of occurrence is first fixed (by minimizing the facts and
event structures which are defined at that point), then the
events occurring in the context are assumed to succeed wher-
ever possible (success assumptions are maximized), and fi-
nally the facts in the context are assumed to persist whenever
possible (inertia assumptions are maximized); further moti-
vation and justification is given in (Bell 2000).

Definition 10. Let M be a CL model with world setW.
Then theevent preference relation forM ,≺M

E , is defined as
follows. For allw,w′ ∈ W, putw ≺M

E w′ iff there is a time
point t such thatw andw′ agree on the interpretation of all
atomic sentences at any earlier time point and either

1. at least one more domain atom or occurs atom is defined
(is either true or false) atw′ at t, or

2. w andw′ agree on the interpretation of domain and oc-
curs atoms att, and at least one more invocation atom is
defined atw′ at t, or

3. w andw′ agree on the interpretation of domain, occurs
and invocation atoms att, and at least one more success
atom is false atw′ at t, or

4. w andw′ agree on the interpretation of domain, occurs,
invocation and success atoms att, and at least one more
inertia atom is false atw′ at t, or

5. w andw′ agree on the interpretation of domain, occurs,
invocation, success, and inertia atoms att, and at least
one moreEL-formula atom or event atom is defined atw′

at t.

Worldw is anE-preferred worldfor a sentenceφ in M iff
M,w |= φ and there is no other worldw′ such thatM,w′ |=
φ andw′ ≺M

E w. Similarlyw is anE-preferred world for a
set of sentencesΘ in M iff M,w |= Θ and there is no other
worldw′ such thatM,w′ |= Θ andw′ ≺M

E w.

We turn now to the definition of thecausal modelfor a
causal theory. As we are not concerned with the interpre-
tation of terms, we can simply stipulate that they are inter-
preted autonymously (as themselves). This fixes their mean-
ing an allows us to consider a single model of the causal
theory.

Intitively, the causal model for causal theoryΘ =
Laws(Θ)∪ΘB should contain allLaws(Θ)-worlds at which
the laws are interpreted as intended and at which the bound-
ary conditions may vary, and these worlds should be or-
dered according to their similarity to the actual world. Con-
sequently the model should contain the set ofE-preferred
worlds for each causal theoryΘ′ = Laws(Θ) ∪ Θ′

B . More-
over, if w is anE-preferredΘ′-world, then the closestφ-
worlds abovew in the model should be those at whichw’s
boundary conditionsΘ′

B are changed as little as possible in
order thatφ is true, and similarly for the closest¬Tφ-worlds
beloww. However, closeness in this sense cannot simply
be defined in terms of the≺M

E order, because neighbour-
ing worlds may change in arbitrary ways, reflecting arbitrary
changes in boundary conditions. For example, suppose that
evente invokes evente′ at worldw and thate is the only
event which does so. Then, as the occurrence ofe′ depends
on the occurrence ofe, the closest worlds beloww at which
e does not occur should also be worlds at whiche′ does not
occur. However the≺M

E -closest worlds beloww at whiche
does not occur are worlds at whiche′ does occur. In effect,
the occurrence ofe′ is an additional boundary condition at
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these worlds. This consideration leads to the idea of asup-
port setfor a world. Intuitively, a support set for worldw is a
minimal set of groundEL-literals which support the bound-
ary conditions atw.

Definition 11. A ground EL-literal is an atomic EL-
sentenceα(t) or the (strong) negation¬α(t) of an atomic
EL-sentence. LetB be the set of all subsets of groundEL-
literals, M be a CL-model with event preference relation
≺M

E , and letw be a world inM . Then setB ∈ B supports
w iff w is anE-preferredB-world inM and there is no set
B′ ⊂ B such thatw is anE-preferredB′-world inM .

The subset relation on support sets gives the closeness re-
lation we desire.

Definition 12. Let Θ = Laws(Θ) ∪ ΘB be a causal the-
ory. Thecausal modelfor Θ is the model in which terms are
interpreted autonymously, with world set

W = {w : B ∈ B andw is a Laws(Θ) ∪B-world},

whereB is as in Definition 11, and with accessibility relation
≺Θ

C onW defined as follows

w ≺Θ
C w′ iff there existB,B′ ∈ B such thatB ⊂ B′,

B supportsw, andB′ supportsw′.

Clearly any causal theoryΘ has a unique causal model
M . Note that the world set ofM may be empty ifLaws(Θ)
is inconsistent. Note also that if anyLaws(Θ) ∪B is incon-
sistent, thenM contains noLaws(Θ)∪B-world. Moreover,
as all worlds inM areLaws(Θ)-worlds, it follows that allE-
preferredB-worlds inM are alsoE-preferredLaws(Θ)∪B-
worlds.

The following proposition follows straightforwardly from
the definitions, and relates the evaluation of conditionals in
causal models to the AGM expansion and contraction oper-
ations. Thus if¬Fφ is true atw, then, a closestφ-world w′

abovew is obtained by adding a minimal set of literals to the
support set ofw such thatφ is true. And ifFφ is true atw,
then, a closestφ-worldw′ beloww is obtained by removing
a minimal set of literals from the support set ofw such that
¬Fφ is true.

Proposition 2. LetΘ be a causal theory with causal model
M with event preference relation≺M

E and accessibility re-
lation≺Θ

C . Then, for worldw in M andEL-sentenceφ,

1. if¬Fφ is true atw, then worldw′ is a≺Θ
C-closestφ-world

abovew iff w has support setB, w′ is a φ-world with
support setB′ such thatB ⊆ B′, and there is noφ-world
w′′ with support setB′′ such thatB ⊆ B′′ ⊂ B′.

2. if Fφ is true atw, then worldw′ is a ≺Θ
C-closest¬Fφ-

world beloww iff w has support setB,w′ is a¬Fφ-world
with support setB′ such thatB′ ⊂ B, and there is no
¬Fφ-worldw′′ with support setB′′ such thatB′ ⊂ B′′ ⊂
B.

Causal entailment can now be defined as follows.

Definition 13. Let Θ be a causal theory with causal model
M , event preference relation≺M

E . ThenΘ is pragmatically
consistentif M contains at least oneE-preferredΘ-world,
Θ is determinisiticif M contains exactly oneE-preferred

Θ-world, Θ is nondeterminisiticif M contains more than
oneE-preferredΘ-world, andΘ causally entailsa sentence
φ, written Θ |≈C φ, iff everyE-preferredΘ-world in M is
also aφ-world.

Thus counterfactual reasoning in a causal model consists
of using its event-preference relation to find the actual world
(or, if the theory is nondeterministic, the set of worlds which
represent the actual world), and then using the accessiblity
relation to find closest antecedent worlds.

Examples
In order to illustrate the workings of the theory, and partic-
ularly the contextual necessity condition, examples are now
given of preemption and trumping preemption.

Example 1. Wright’s (1988) two-fires example can be
stated more specifically as follows. FiresA andB break
out at opposite ends of a terrace of four houses,H1, . . . ,H4.
A starts inH1 and spreads toH2. Simultaneously,B starts
in H4 and spreads toH3. ConsequentlyA destroysH2 be-
foreB can reach it. In the circumstances it seems natural to
conclude thatA is the cause ofH2’s destruction, depite the
fact that, ifA had not occurred, thenB would have spread
fromH3 toH2 and causedH2’s destruction at a later time.

This version of the example can be represented by adding
the axioms(12)-(18) from Table 5. Axioms(12)-(15) state
(simplified) preconditions and effects forFire andSpreads
events. In particular the preconditions for a fire spreading
from location l to location l′ are that the fire is currently
burning atl, thatl andl′ are adjacent, thatl′ has not already
been burnt (that is, that whatever is atl is combustible), and
that there is not currently a fire burning atl′. Axiom (16) is
an invocation axiom which states that aFire event invokes
a Spreadsevent if the preconditions of theSpreadsevent
are true in the context in which theFire event occurs. Fi-
nally, axioms(17) and(18) state the boundary conditions.
In Axiom (17), the notationUN[u1, . . . , un] indicates that
each of the namesu1, . . . , un refers to a distinct individual:
UN[u1, . . . , un] =Df

∧
¬ui = uj for 1 ≤ i < j ≤ n.

Let Θ be the causal theory with background laws
ΘL = {(12), . . . , (16)} and boundary conditionsΘB =
{(17), (18)}. Then

Θ|≈CCauses(Occ(Fire(A,H1))(1),Burnt(H2)(3))
∧ (¬TOcc(Fire(A,H1))(1) ⇓

Causes(Occ(Fire(B,H4))(1),Burnt(H2)(4))).

Proof. Let M be the causal model forΘ with event pref-
erence relation≺M

E and accessibility relation≺Θ
C . There is

a singleE-preferredΘ-world, w, in M ; Θ is thus deter-
ministic. By axioms(12) and (18), Occ(Fire(A,H1))(1)
andPre(Fire(A,H1))(1) are true (atw). It follows from ax-
ioms (14), (17), (18), and the minimization of occurrences
at time 1 that Pre(Spreads(A,H1,H2))(1) is true. So it
follows by axioms(3) and(16) that bothInv(Fire(A,H1),
Spreads(A,H1,H2))(1) and Occ(Spreads(A,H1,H2))(1)
are true. It follows from the maximization of successes at
time 1 thatSucc(Fire(A,H1))(1) is true. And so it follows
from axioms(8) and(9) thatSCause(Occ(Fire(A,H1))(1),
Occ(Spreads(A,H1,H2))(1)) is true. Moreover, it follows
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Table 5: Axioms for the examples

∀x, l, t(Pre(Fire(x, l))(t) ≡ ¬Burnt(l)(t)) (12)

∀x, l, t(Eff(Fire(x, l))(t) ≡ Burnt(l)(t)) (13)

∀x, l, l′, t(Pre(Spreads(x, l, l′))(t) ≡
(Occ(Fire(x, l))(t) ∧ Adj(l, l′)(t) ∧ Pre(Fire(x, l′))(t) ∧ ¬T∃yOcc(Fire(y, l′))(t))) (14)

∀x, l, l′, t(Eff(Spreads(x, l, l′))(t) ≡ Occ(Fire(x, l′))(t)) (15)

∀x, l, l′, t((Occ(Fire(x, l))(t) ∧ Pre(Spreads(x, l, l′))(t)) → Inv(Fire(x, l),Spreads(x, l, l′))(t)) (16)

UN[H1, . . . ,H4] ∧
3∧

i=1

(Adj(Hi,Hi+1)(1) ∧ Adj(Hi+1,Hi))(1)) ∧
4∧

i=1

¬Burnt(Hi)(1) (17)

Occ(Fire(A,H1))(1) ∧Occ(Fire(B,H4))(1) (18)

∀x, y, e, t(Pre(Ord(x, y, e))(t) ≡ (OutRanks(x, y)(t) ∧ ∀z, e′((¬z = x ∧Ord(z, y, e′)(t)) → OutRanks(x, z)(t)))) (19)

∀x, y, e, t(Eff(Ord(x, y, e))(t) ≡ Occ(e)(t)) (20)

UN[S1, S2, S3] ∧OutRanks(S1, S2)(1) ∧OutRanks(S1, S3)(1) ∧OutRanks(S2, S3)(1) (21)

Occ(Ord(S1, S3,Adv(S3)))(1) ∧Occ(Ord(S2, S3,Adv(S3)))(1) (22)

from the definition ofSCauseand the minimization of oc-
currences at time1, that no other occurrenceε is anSCause
ofA spreading toH1 at time1; thus¬∃ε(¬ε = Occ(Fire(A,
H1))(1)∧SCause(ε,Occ(Spreads(A,H1,H2))(1))) is true
atw.

The support set forw, B, consists of the ground lit-
erals which support axioms(17) and (18). In particu-
lar, the event literals inB consist of the twoFire events
in the latter axiom. So, in view of Proposition 2,w′,
the ≺Θ

C-closest ¬TOcc(Fire(A,H1))(1)-world below w
is obtained by removingOcc(Fire(A,H1))(1) from B.
Doing so leavesInv(Fire(A,H1),Spreads(A,H1,H2))(1)
andOcc(Spreads(B,H4,H3))(1) unsupported, and hence,
by minimization of occurrences,¬TOcc(Spreads(B,H1,
H2))(1) is true atw′. It follows that ¬TOcc(Fire(A,
H1))(1) ⇓ ¬TOcc(Spreads(A,H1,H2))(1) is true at
w. So, by Axiom (10), Cause(Occ(Fire(A,H1))(1),
Occ(Spreads(A,H1,H2))(1)) is true atw.

Similar reasoning shows thatOcc(Fire(A,H4))(1) is the
Causeof Occ(Spreads(B,H4,H3))(1) atw.

It follows from the success ofOcc(Fire(A,H1))(1)
and maximization of successes thatOcc(Spreads(A,H1,
H2))(1) succeeds atw at time 1, and so by axioms(1)
and (15), that Occ(Fire(A,H2))(2) is true at w. By
axioms (7) and (9), Occ(Spreads(A,H1,H2))(1) is an
SCauseof Occ(Fire(A,H2))(2)) at w, and by the above
uniqueness argument, it is the onlySCause.

Now the ≺Θ
C-closest¬TOcc(Spreads(A,H1,H2))(1))-

world beloww is the worldw′ referred to above. Remov-
ing the occurrence of theFire(A,H1)-event fromB leaves
Occ(Spreads(A,H1,H2))(1) and its effect Occ(Fire(A,
H2))(2) unsupported. It follows by minimization of oc-
currences at time2 that¬TOcc(Fire(A,H2))(2) is true at
w′. So it follows atw, as above, that the occurrence of
theSpreads(A,H1,H2) event at time1 is theCauseof the
Fire(A,H2) event at time2.

Similarly, it follows at w that the occurrence of the
Spreads(A,H4,H3) event at time1 is the Causeof the

Fire(A,H3) event at time2.
It follows from the maximization of inertia atoms at time1

and Axiom(6) that¬Burnt(H1)(2) is true atw. As the pre-
condition ofOcc(Fire(A,H2)(2) is true, it follows by max-
imization of successes at time2 that the event succeeds, and
consequently that its effectBurnt(H2)(3) is true atw; ax-
ioms (1), (12) and (13). Reasoning similar to that above
shows that theFire(A,H2) event is theCauseof H2 being
burnt.

The first conjunct to be proved now follows by Ax-
iom (11).

The second conjunct is established by reasoning similar
to that above. Letw′ be the≺Θ

C-closest¬TOcc(Fire(A,
H1))(1)-world beloww; the support set forw′, B′, being
obtained by removingOcc(Fire(A,H1)(1) from B. At w′

we use event-theory reasoning, as above, to establish that fire
B spreads toH3 at time2 and toH2 at time3, leavingH2

burnt at time4. Establishing a chain of uniqueSCauses is
straightforward. Establishing that each event in this chain is
contextually necessary is done by reasoning contrafactually
in the≺Θ

C-closest¬TOcc(Fire(B,H4))(1)-worldw′′ below
w′; whose support set is obtained by removingOcc(Fire(B,
H4))(1) fromB′. �

Example 2. van Fraassen’s military-trumping example
(Lewis 2000) can be represented by adding axioms(19)-
(22) from Table 5. Soldierx can order soldiery to doe at
time t iff x outranksy and anyone else who givesy an order
at t; Axiom (19). Orders are normally carried out without
question; Axiom(22). SoldierS1 outranks soldierS2, who
in turn outranks soldierS3; Axiom (21). Finally,S1 andS2

simultaneously orderS3 to advance; Axiom(22).
Let Θ be the causal theory with background lawsΘL =

{(19), (20)} and boundary conditionsΘB = {(21), (22)}.
Then

Θ2|≈CCause(Occ(Ord(S1, S3,Adv(S3)))(1),
Occ(Adv(S3))(2)).

Proof. Let M be the causal model forΘ with event pref-
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erence relation≺M
E and accessibility relation≺Θ

C . There is
a singleE-preferredΘ-world, w, in M ; Θ is thus deter-
ministic. By maximization of successes (atw) at time 1,
and axioms(1), (9), (19), (20) and(22), we conclude that
theOrd(S1, S3,Adv(S3)) event succeeds at time1, and that
consequently it is anSCauseof the occurrence ofAdv(S3)
time 2. It also follows, from axioms(1), (19) and (21),
that Ord(S2, S3,Adv(S3)) fails at time1; becauseS1 out-
ranks, and so trumps,S2. So it follows from the definition
of SCauseand the minimization of occurrences at time1,
that theOrd(S1, S3,Adv(S3)) event is the uniqueSCauseof
the subsequentAdv(S3) event.

The support set forw, B, consists of the literals in
axioms (21) and (22). It follows from Proposition 2
that removingOcc(Ord(S1, S3,Adv(S3)))(1) from S, gives
the support set,S′, of the≺Θ

C-closest¬TOcc(Ord(S1, S3,
Adv(S3)))(1)-world, w′ below w. RemovingS1’s order
makes the preconditions ofOcc(Ord(S2, S3,Adv(S3))(1)
true atw′; Axiom (19). So it follows by maximization of
successes (atw′) that S2’s order succeeds atw′, and con-
sequently that this event is anSCauseof the occurrence of
Adv(S3) at time2. Its uniqueness as anSCauseis estab-
lished as above.

Removing Occ(Ord(S2, S3,Adv(S3)))(1) from S′

gives support setS′′ and closest¬TOcc(Ord(S2, S3,
Adv(S3)))(1)-world w′′ below w′; Proposition 2. It
follows by minimization of events (atw′′) at time 1 that
¬TOcc(Adv(S3))(2) is true atw′′.

So ¬TOrd(S2, S3,Adv(S3))(1) ⇓ ¬TOcc(Adv(S3))(2)
is true atw′. It follows by Axiom (10) that Occ(Ord(S2,
S3),Adv(S3))(1) is theCauseof Occ(Adv(S3))(2) atw′.

Therefore¬TOrd(S1, S3,Adv(S3)) ⇓ Cause(Ord(S2,
S3,Adv(S3))(1),Occ(Adv(S3))(2)) is true atw. And so it
follows by Axiom (10) thatOcc(Ord(S1, S3,Adv(S3)))(1)
is theCauseof Occ(Adv(S3))(2) atw. �

Concluding Remarks
The proposed definition of causation is concerned with ac-
tual causation. This is naturally combined with the condi-
tionals ofCL to represent counterfactual causation; as illus-
trated by Example 1. As suggested in (Bell 2001a), comple-
factuals can also be used to generate explanations. Explana-
tion can now be defined as follows

∀ε, φ, ψ(Expl(ε, φ, ψ) ≡ ((ε ∧ φ) ⇑ Causes(ε, ψ))).

Thus occurrenceε together with conditionsφ explainψ at
actual worldw iff ε causesψ at all closestε∧φ-worlds above
w. These ideas will be developed further in future work.

Future work will also include a more extensive empirical
evaluation of the proposed theory of causation and a com-
parison with related work, particularly that of Halpern and
Pearl (2001).

Finally, Proposition 2 suggests that it may be possible
to extend the model-building implementation of primary
events (White, Bell, & Hodges 1998) in order to implement
the evaluation of causal counterfactuals. For example, in the
simple case in which occurrenceε is not true at actual world
w constructed by the algorithm for causal theoryΘ, the clos-

estε-worlds abovew can be generated simply by running the
algorithm onΘ ∪ {ε}.
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