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Abstract it, and so should not be considered to be its cause. Con-

- ) N . sequently this paper is devoted to extending the theory to

g"%usat'(.m Is defined recursively: everis the cause of con- include a better account of contextual necessity.
ition ¢ in contextc iff e is the only sufficient cause af in ] . i o

¢, and removing: from ¢ either removes from ¢ or results Lewis (1973) formalizes Hume’s necessity definition us-
in some other event causing A logical language is then ing his possible-worlds theory of counterfactuals. The oc-
defined, in which it is possible to represent and reason about  currence of event, O(e), being counterfactually dependent
actual and counterfactual events in evolving partial contexts. on the occurrence of event O(c), iff O(c) andO(e) are
Axiomatic theories of events and causation are given, and a  poth true, and the counterfactuab(c) 0—-0(e) (‘If ¢
formal pragmatics is defined, making it possible to reason for- had not occurred, thenwould not have occurred”) is true.

mally about particular cases. By way of illustration, examples . . .

involving preemption and trumping preemption are given. LeW'SSf theory has been muqh discussed; see, for exam-
ple, (Lewis 1986, Ch. 21). A serious drawback of the theory
is the lack of a formal pragmatics; how, exactly, are particu-

Introduction lar counterfactuals evaluated? A further problem is posed by
Lewis (1973) observes that Hume defined causation “twice the phenomenon of trumping preemption (Schaffer 2000).
over”. Preemtion occurs when the effects of one event prevent an-

other event from having the same (or similar) effects. For
example (Wright 1988), suppose that two firdsand B ad-
vance toward a house from opposite directions, and that
if the first object had not been, the second never had existed e.lmves firstand bu”.‘s the house down. Thenﬂr@‘eempts
fire B from destroying the house, and is considered to be
(Hume 1975§VII, Part 1) , : g ;

] o . ) the cause of the house’s destruction, despite it being granted
Hume's first definition characterizes causes as being suf- that if A had not destroyed the house, thBrwould have
ficient for their effects, his second as being necessary for done so. Examples such as this can be dealt with by distin-

[W]e may define a cause to lam object followed by another,
and where all the objects, similar to the first, are followed
by objects similar to the secondr, in other wordswhere,

them. o _guishing between two events, the house’s actual destruction
In (Bell 2003), | suggest combining contextual necessity by A at timet, and its preempted later destruction Byat
and sufficiency. Event is sufficient for conditionp in con- timet’ > t, then A causes the house’s destructiont ass

textc iff e succeeds i and¢ is amonge’s effects. Event  otherwiseB would still not reach the house until. How-

e is necessary fop in c iff removing e from c also removes  ever, distinctions such as this don’'t work when one event
¢ from c. Thene is the (direct) cause o iff e is both trumpsanother. Lewis (2000) gives the following example;
necessary and sufficient fgrin contextc. | then develop suggested by Bas van Fraassen. Suppose that a sergeant and
a formal theory of contextual sufficiency, in which itis re- g major simultaneously order their soldiers to advance, and
duced to the elements of a common sense theory of natural that the soldiers do so. Their advance is redundantly caused,
(or defeasible) events. However, while the theory captures since either order would, on its own, have been sufficient.
many aspects of contextual sufficiency, it only captures con- However, the redundancy is asymmetric, since the soldiers
textual necessity in the special case in which the effects of opey the senior officer. The soldiers advance because the
an event change the context. The theory is thus too liberal in major orders them to, not because the sergeant does. The
attributing causal status to events. For example, whitewash- major’s order trumps the sergeant’s. Consequently Lewis
ing an already white wall may be contextually sufficient for  (2000) proposes a revised theory of causation as influence.
the wall’s being white, but is not contextually necessary for Causes can, he suggests, be distinguished by looking at the

1 am grateful to the reviewers and participants@smmon pattern of counterfactual dependence of alterations of the ef-

Sense 200andContext 2003the KR 2004reviewers, and Wilfrid fect upon alterations of the cause. Thus, in a case of trump-
Hodges for helpful discussions and comments. ing, the real cause can be distinguished from an event it
Copyright © 2004, American Association for Avrtificial Intelli- trumps by the fact that altering the cause slightly alters the
gence (www.aaai.org). All rights reserved. effect slightly, whereas altering the trumped event slightly
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does not alter the effect.

However, it seems to me that, given an account of contex-
tual sufficiency, Lewis’s original counterfactual-dependency
account can be retained, but with a refinement which makes
the definition of causation recursive:

Evente is the cause of condition in contextc iff e is
the only sufficient cause @fin ¢, and removing: from

c either remove® from c or results in some other event
causinggp.

Thus, on the parade ground, the sergeant’s order is inopera-
tive, because the soldiers are obliged to obey an order from
a more senior officer, and consequently the major’s order is
the only sufficient cause of the soldiers’ advance. However,
if the major’s order had not been given (or was not heard,
etc.), then the sergeant’s order would have caused the ad-
vance; as it would then be both contextually sufficient and
contextually necessary (being the only other order issued).
The recursive nature of the definition makes it capable of
dealing with serial trumping; as might occur, for example, if
the whole chain of command gave the same order simulta-
neously.

A formal version of the proposed definition is developed
in this paper. The formal sufficiency theory is defined in
a three-valued language of events, and is logico-pragmatic.
Models of the language are partially ordered according to
their chronological minimality. Roughly speaking, a model
is preferred to another if they agree up to some time point
(if they represent a common history up to that point) and
the preferred model contains less information at that point
(for example, if the history it represents is less eventful at
that point). The intended interpretation of a given theory is
then obtained by focussing on what is true in all of its most
preferred models. The key insight of the extension given
here (first essayed in (Bell 2001a)) is that the pragmatics of
the sufficiency theory can be used as the basis for a formal
theory of causal counterfactuals. Semantically, models of
the language of events can be thought of as possible partial
worlds, and the preference relation on them can be thought
of as an accessibility relation. The accessibility relation also
provides the basis of a formal pragmatics, as it orders worlds
(models) according to their comparative chronological sim-
ilarity; worlds above (below) a world in the ordering repre-
sent alternative histories which differ at some point because
of the addition (deletion) of certain facts or events.

However, in order to make this idea work, it is necessary
to develop an appropriate semantics for counterfactuals in
partial orders of the kind envisaged. It is also necessary to
refine the pragmatics, essentially by reordering the worlds in
a given frame so that the histories of related worlds represent
genuine alternative histories.

An appropriate semantics for conditionals is given in the
next section. The theory of events on which the sufficiency
theory is based is then recalled in Sectorirhe definition
of causation is given in Sectiofy and its formal pragmat-
ics is defined in Sectiof. In order to illustrate the theory,
formal versions of the two-fires and military-trumping ex-
amples are given in Sectign

The Causal LanguageC £

The causal languagél has been developed in order to be
able to represent and reason about actual and counterfactual
events in evolving partial contexts. This section begins with
an informal introduction t&€ £. The formal syntax and se-
mantics are then given.

We begin with the language of events,. £L is based
on Kleene’s (1952) strong three-valued language which pro-
vides a means for reasoning demi-classically with partial in-
formation and classically with complete information. Ac-
cordingly, the truth conditions for the propositional oper-
ators return a Boolean truth value wherever possible. An
atomic sentencg may be either true, false or undefined; the
sentence-¢ is true if ¢ is false, false ifp is true, and is unde-
fined otherwise; and the sentengg ¢ is true if  andy are
both true, false if either is false, and is undefined otherwise.
Further operators, such as inclusive disjunction, can be de-
fined as in classical logic: thusV ) =p¢ ~(—¢ A—1)). The
first-order extension is straightforward. Atomic sentences
may be true, false, or undefined; a universal sent&mgeds
true if ¢ is true for all assignments tg false if ¢ is false for
one such assignment, and is undefined otherwise; and the
existential quanitified is defined as in classical logic.

In order to represent and reason about partialityytiebe-
finedoperator U’ is added to Kleene’s language. The sen-
tenceU¢ is true if ¢ is undefined (is neither true nor false),
and is false otherwise. This operator is used to define the
classically-valued operators F, — and= as follows:

To =pr ~(UpV —9), Fo =pr ~(UpV ¢),
¢ — ¢ =pt “THV Ty,
¢ =1 =pr (TOATY)V (Fp AFp) V (Up A UY).

Thus, for sentenceg andy: T¢ is true if ¢ is true, and is

false otherwisef¢ is true if ¢ is false, and is false other-
wise; andp — 1 is true if ¢ is true or¢ is not, and is false

otherwise; and = v is true if  andy have the same truth
value, and is false otherwise.

In order to represent time, time points are added as a sec-
ond sort. For simplicity, time is assumed to be discrete and
linear, and relations between time points (identity and prece-
dence) are defined classically. The time-dependent nature
of facts is then represented by adding a temporal index to
atoms of the underlying language. Thugamain atonis an
atom of the formr(uy, ..., uy)(t), where theu; are terms
denoting objects in the domain, and tetrdenotes a time
point. Intuitively, a domain atom(us,...,u,)(t) states
that the relation- holds between the objects, ..., u, at
time (point)t, that the fact-(u1, ..., u,) Is true att. For-
mally, factsare defined to be the atemporal components of
temporal literals; thus i(t) is a domain atom, then and
-« are both facts.

In order to reason about inertia (the persistence of facts
over time) facts are added as a third sort and higher-order
quantification over them is introduced.

Finally, events are added as a fourth sort. For example, an
occurs atonis an atom of the fornDcde)(t), which states
that event (or, more precisely, a token of event tygeoc-
curs at timet. More generally, amvent atonis an atom of
the formr(eq, ..., e,)(t), where each; is an event term.
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In order to define causatio,L is extended to the full itively ¢ | 1 is true at worldw if ¢ is false atw and the
causal languagé, by adding quantification over formulas  complefactuab 1} ¢ is true at the closest worlds belawat
of ££, and the modal operators, 1, |}, and=-. which ¢ is not false. Accordingly the contrafactual|
The semantics of the modal operators is given by intro- is applicable at worldv if ¢ is false atw, in which case it
ducing partial worlds frames, each consisting of a set of pos- is true if the closest-F¢-worlds beloww are all¢ f -
sible partial worlds)V, and a partial ordex on YV which worlds, and false if one of these worlds isd (¢ f} ¥)-
represents accessibility among possible partial worlds. Pos- world. The evaluation of a contrafactual can thus be thought
sible partial worlds are like the possible worlds of normal of as involving an AGM revision operation (consisting of a
classical modal logics, except that the truth values of some contraction operation followed by an expansion operation).
atomic propositions may be undefined at them; thus a possi- Given that the contrafactual |} « is applicable atv, it is
ble partial world may be thought of as a set of (classical) pos- true atw iff all minimal contractions of the persistent infor-
sible worlds, or, more naturally, as a partially specified (clas- mation atw which make-F¢ true also make 1 ¢ true.
sical) possible world. In the sequel possible partial worlds By analogy with the classical analysiscaunterfactual
will be referred to simply as “worlds”, and a world at which  sentencep = ¢ should be true if the truth op A =T is,
sentence (set of sentence®) is true will be referred to as in some sense, a remoter possibility than the trutlkp of
a ¢-world (a©®-world). In this setting, the extensional event . At a worldw in a partial order with vertically persistent
languagef £ is used to describe individual worlds, while the  information there are two possibilities. d¢fis not false atv,
intensional (modal) operators 6f are used to refer across  then the counterfactud = ¢ should be true (false) at iff
worlds. the complefactuap 1} v is true (false) atw. Alternatively,
For a given set of worldsV, (¢ states thap is true at all if ¢ is false atw, then the counterfactual =+ should be
worlds inW, thatg is logically necessary given the truths of  true (false) atv just in case the contrafactuall ¢ is true
W. When, as in the intended use, these truths consist of a (false) atw. Consequently a counterfactua> v should be
set of physical lawd,1¢ can be understood as stating that true atw if either the complefactuas 1 ¢ is true atw or the
is physically necessary contrafactuab | v is true atw, and¢ = v should be false
The semantics of the conditional operatgts|, and=, atw if either¢ f} 1 or ¢ || ¢ is false atw.
is given in terms of the set of closest antecedent worlds to A formal account o€ £ is now given. The five sorts @i
any given world. As usual, define < ' iff either w < w’, are identified by the following letterdd for domain objects,
orw = w’ andw € W. Then, for worldsw, w’ € W, v’ is T for time points, and¥ for events,F for facts, and®d for

aclosestp-world abovew iff w < w’, w’ is a¢-world, and £ L-formulas.

1 " " / H H
there is nag-world w” such that =< w” < w’. Similarly, Definition 1. The vocabulary of £ consists of the symbols
for worldsw,w’ € W, v’ is aclosestp-world beloww iff U AL D A = Y, <, 1), and the

w' < w, w' is ag-world, and there is ng@-world w” such
thatw’ < w” =< w. Thus ifw is a¢-world, then it is also
the closest-world above and below itself. e Cp, Cr, Cg (constants of sort®, T"and E),

It is assumed.that thg accessibi_lity relat_ien refl_ec'gs e Vp, Vi, Vi, Vi, Vo (variables of each sort),
some f/orm ofv?rtlcal persistence of qurmaporlhat is, if e Fp, Fr, Fiz (function symbols of each arity > 1 of
w < w’, thenw’ contains more information, in some sense, sortsD, T, E), and
thanw. In particular, the ordex? defined in Section 5 is T . )
based on monotonically increasing support sets: that is con- ® Ep, Re, Rr, Re (relation symbols of each arity > 0
ditions which, together with the laws of a common causal ~ ©f SortsD, E, F', and®).
then the history ofuv’ is richer than (is perhaps better deter- o i
mined, or perhaps more eventful than) thaugfand so re- Definition 2. The terms of each sof are defined as fol-
quires more support than. Note that the particular details ~ 1OWS:
of vertical persistence may vary according to the application, e If S is of sort D or T thentermg = Cs U Vg U
it is thus a pragmatic condition, rather than a semantic one. {f(u1,...,uy) :n-ary f € Fs,u; € termg}.

A complefactuals a sentence of the form 1} ¢. Intu- o termp = Cp U Vg U {f(ur,...,un) : n-aryf e

itively ¢ 1 ¢ is true at worldw if + is true at the closest F
; . . . ,u €1 Ut Ut .
worlds abovew at which the vertically persistent informa- i, ui € termp Utermy Utermy}
o termp = Crp U Vg, WhereC’F = {TD(ul, R

tion atw is complemented by. Accordingly, the comple-
Y P v gy b n-aryrp € Rp,u; € termp}.

following, mutually disjoint, countable, sets of symbols:

) un) :

factual¢ 1 v is applicable at worldy if ¢ is not false atw,
in which case itis true if the closegtworlds abovew are all
1-worlds, and false if one of these worlds is-&1-world.

The evaluation of a complefactual can thus be thought of as

involving an AGM expansion operation &&lenfors 1988).
Given that the complefactual 1 ¢ is applicable atv, it is

true atw iff all minimal expansions of the persistent infor-

mation atw which makegp true also make true.
A contrafactualis a sentence of the form |} . Intu-
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e termae = Co U Vs, WhereCs = EL is defined in Defini-
tion 3.

Definition 3. ££ is the minimal set which satisfies the fol-
lowing conditions.
o Ift,t' etermp thent <t € EL.

e If SisofsortD, T, E or F, andu,u € terms, then
u=u €&L.



Table 1: Satisfaction and violation conditions tof (see Definition 7)

M,w,g =t<t iff (V,(t),V,t)) e <1
Mouw,gdt<t it (Vy(t),Vy(t)) ¢ <7
Mw,gEu=1u" iff V,(u)isVy(u')
M,w,g=gu=1u" iff Vy(u)isnotVy(u')
M,w,g Ers(ur,...,uy)(t) iff Vg(rg,w,vg(t))(v (u1),...,Vg(uy)) = true
Mow,g = rs(ur,. .., u,)(t) i VE(rs,w,Vy(t)(Vy(ur),. .., V,(u,)) = false
M,w,g =v(t) iff veVpandM,w,g k= Vy(v)(t)
M,w,g qv(t) iff vGVFandeg:H/( )(t)
M,w,g =re(ur,...,u,) iff Ra(re,w)Ve(ui),...,Vy(u,)) = true
M,w,g=ro(ur,...,un) iff Ro(re,w)(Ve(ui),...,Ve(u,)) = false
M,w,g Ev iff veV@andM,w,gFVg( )
M,w,g=v iff veVgandM,w,g=V,(v)
Mw, g~y iff Mw,g=v
M,w,g =5 iff M,w,gE
M,w,g E Uy iff neitherM,w,g E ¢ norM,w,g 5
M,w,g 94Uy iff either M ,w,g = orM,w,g=v
Mw,gEvAx ff Mw,gEvandM,w, g x
Mow,ggv Ay iff Mw,g=yorMw,g=x
M,w,g =0y iff M,w', gy foreveryw e W
M,w,g =5y iff M, w, g=yforsomew e W
Muw,gkEdtx it MuwgkE-Fpand T (v,w,g) C [x])
Mow,g ¢t x iff Mouwgl-Fpand T ($,w,g) e [~Tx])’
Mw,gE4 4 x iff Mw,gkEFpand | (-Fy,w,g) C [¢ 4 x],
M,w,g =4 bx it Maw,g b Fpand | (-Fp,w,g) e [-T( 1 x)])
Mw,gEvy=x iff MwgEyftxorMwgEylx
M,w,g=4¢=x iff Mw,g=H¢fxorMuwg={x
M,w,g EVvy iff M,w,g¢" v foreveryg’ such thay ~, ¢
M,w,g ={Vvy iff M, w,q = for someg’ such thay ~, ¢’
e If SisofsortD, Eor F, uy,...,u, € terms, rg is o Ifuy,...,u, €termgp andrg is ann-ary relation symbol
an n-ary relation symbol inRg, andt € termy, then in Re, thenre (uy, ..., u,) € CL.

7’5’(1.14, s 7un)(t) eEL.
e If v € Vp andt € termy thenu(t) € EL.

o If p,00 € EL,then—¢p € EL, Up € EL, and(p A ) €

EL.

o If SisofsortD, T, Eor F',v € Vg and¢ € £L, then

Yop € EL.

o If p,9p € CL,then—¢ € CL,Up € CL, (p NY) € CL,
OpeCL, (o) eCL,(¢pv)eCL,and(p=1) €
CL.

e If Sisany sorty € Vg and¢ € CL, thenVvgp € CL.

The members @£ are calledformulas(of CL£). Those for-
mulas in which no variable occurs free are callsghtences

The members @ are calledformulas(of ££). Those for- (of CL).

mulas in which no variable occurs free are callsgihtences

(of £L).

Models of CL consist of a possible partial worlds frame
(W, <), a setD of domain objects, a s&t of event types,

Definition 4. CL is the minimal set which satisfies the fol- a temporal frame7, <) (where7 is a set of time points

lowing conditions.

e ELCCL.
o If u,u’ € termg, thenu = v’ € CL.

and< 7 is the before-after relation on), and interpretation
functions for terms and relations. For simplicity, time is as-
sumed to be discrete and linear. The denotations of terms
are always defined and do not vary with time. By contrast
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relations are interpreted by time-dependent, partial, charac-

teristic functions; thus the interpretation of relations may be

partial and may vary with time.

Definition 5. A modelfor CL is a structure
M=(W,=<),D,E,{T,<1),F,R,V),

where

e Wis a setand is a partial order onW,

D, £ and7 are mutually disjoint, countable, non-empty

sets,

< is a binary relation oriZ which is discrete and linear,

o F = (Fp,Fr,Fg), where, for each pair(S,S) €

{(D,D),(T,T),(E,£)}, Fs is a set ofn-ary functions

of typeS™ — S for eachn > 1,

R = (Rp,RE,Rr,Re), where for each pai(S,S) €

{<D3D>a <E75>7 <Fa OF>v <(I)7 Cq>>}, Rs is a set of par-

tial n-ary functions of types™ — {true, false} for each

n > 0,

V = <<Vgavg’vgvvgvvg>’ <V5,V7E,Vg>, <V§,V§,

VE)) is an interpretation function such that

-V§ : Cs — SandVf : Fs — Fsfor (S,S) €
{<D7D>7 <T7T>7 <E?£>}'

V¢ Cp — CrpandV§ : Cp — Cyp are identity
functions,

- VE: RgxT — Rs.

Terms are interpreted in the standard way.

Definition 6. A variable assignmentor a C£-model is
a functiong = (gp,9r,98,9r), Where for (S,S) €
{(D,D),(T,T),(E,E),(F,Cr),(®,Cs)},9s : Vs — S.
For CL-modelM, interpretation functiory and variable as-
signmeny for M, theterm evaluation functio, is defined,
for eachCL-termw and sortS, as follows

Vs(u) if u e Cs,
gs(u) if ue Vs,
VE(f)(Vy(ur), ..., Vy(u,)) otherwise.

The truth and falsity of sentences at each world is defined
by means of the intermediary notions of the satisfaction and
violation of formulas at that world.

Definition 7. Let M = (W, <),D,&,(T,<r),F,R,V)
be aCL£-model,g be a variable assignment fdi/, and¢ be
aCL-formula. Thery satisfiesp at a worldw in M (written
M, w, g = ¢) or violates¢ at w in M (written M, w, g = ¢)
according to the clauses given in Table 1. In the table a num-
ber of abbreviations are usedj =, ¢’ indicates that the
variable assignmentg and ¢’ differ at most on the assign-
ment to variables; [¢])" denotes the s¢tw : M, w, g = ¢}
of all worlds in M at which g satisfiesy; for CL-formula
¢, world w and assignmeny, 1 (¢, w, g) denotes the set
{w w2 w AW € [[¢]]3{ A—Fuw" (w < w” <w Aw” €
[#],")} of closest worlds above at which g satisfies,
and | (¢,w,g) denotes the sefw’ : w' < wAw €
M]ng A (W < w 2 wAw’ € [[¢]]24)} of closest
worlds beloww at whichg satisfiesp; finally, for setsS and
T, SeT (“S overlapsT™) iff SNT # 0.

Vy(u)
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A formulag is trueat a possible partial worldv in aCL-
model M (written M, w = ¢) if M, w, g ¢ for all vari-
able assignmentg. A formulag is falseat w in M (written
M,w- ¢)if M,w,g= ¢ forall variable assignments. A
formula ¢ is truein a C£-modelM (written M = ¢) if ¢ is
true at all worlds inM. Formula¢ is falsein M (written
M S ¢) if ¢ is false at all worlds inM. These definitions
are extended to sets of formulas in the normal way. Thus
the set of formula® is true at a possible partial worldo
in a CL-model M (written M, w = 0) if M, w = ¢ for all
¢ € O, etc.

It can be proved (by means of a parallel induction on the
structure ofC £ formulas) that for any’ £-model M, world
w in M, andCL-sentence): eitherM,w | ¢ or M, w
—¢ or M,w = U¢. Consequently, as in classical logic, it
is sufficient to consider the truth relations on sentences (and
sets of sentences) 6iC.

Events

The theory of events begins wiltimary eventswhich can

be thought of as defeasibtrriPsevents (Fikes & Nilsson
1971). Primary event types are defined by specifying their
preconditions and effects; examples are given in Section 6.
The preconditions can be thought of as necessary conditions
for the success of an event of this type, and the effects as its
invariant effects. Consequently, the definition of an event (of
type) e is said to benatural if its preconditions do not suc-
ceed its occurrence (if the definition Bfe(e)(t) does not
imply any literal¢(¢) for any¢ > t) and its effects do (if

the definition ofEff(e) (¢) does not imply any literad(t') for
anyt’ < t). The preconditions of an event should normally
be sufficient, on its occurrence, for its effects, but will typi-
cally not logically guarantee them. Call the context in which
an event occurs itsontext of occurrenceThen the precon-
ditions of the event should be such that they are sufficient
in most contexts of occurrence, but need not be sufficient
in all of them. In order to represent thsiccess atomare
introduced. Intuitively thesuccess atonBSucde)(t), states
that evente succeeds at timg that is, thate occurs at;, its
preconditions are true on occurrence, and its effects are true
at¢ + 1. This is stated by the success axiom, Axi¢h) in
Table 2.

This axiom is intended to be used in order to infer change.
Given Ocde)(t) and Pre(e)(t), the success assumptipn
Sucge)(t), should be made whenever it is consistent to do
so (whenever it is consistent witfs context of occurrence),
and the axiom used to concluéf(e)(t + 1).

Primary events have the defeasibility of natural events,
but are unlike natural events in that their effects, when suc-
cessful, are invariant. This limitation is overcome by in-
troducingsecondary eventsSecondary events are defeasi-
ble sTRIPSevents which arénvokedby other (primary or
secondary) events in appropriate contexts, and their success
depends on that of the events which invoke them. A com-
mon sense event can thus be thought of as a tree-structured
object whose root is a primary event, and whose effects
are the combined effects of all successful events in its in-
vocation tree. Invocations are representedityocation



Table 2: The theory of event® g

Ve, t(Sucge)(t) = T(Ocde)(t) A Pre(e)(t) A Eff(e)(t + 1))) Q)
Ve, e’ t(Inv(e, e’)(t) — —Inv(e’,e)(t)) (2)
Ve, e, t(Inv(e, €')(t) — (Ocde)(t) A Ocde’)(t))) (3)
Ve, e’ t((Inv(e,€')(t) A Sucge’)(t)) — Je” (Inv(e”, e’)(t) A Sucge”)(t))) 4)
Ve, e’ e” t(Inv* (e, e’)(t) = (Inv(e, €')(t) V (Inv(e, ") (t) A Inv(e”,e')(t)))) (5)
Va, t(Inert(a)(t) = (a(t) = a(t + 1))) (6)

Table 3: The theory of causatio®,: (6)

Ve, e, t, p, 1 (PSCausk, ¢) = (e = Ocde)(t) A Sucge)(t) A0 — (Eff(e)(t +1) =) ADO®W — ¢))) @)
Ve, ¢, e, e, t(CSCausg, ¢) = (e = Ocde)(t) A ¢ = Ocde’)(t) A Sucde)(t)

ATInv(e, e")(t) A =T3e" (Inv*(e”,e)(t) A Inv(e”, e')(t)))) (8)
Ve, ¢, 1, x(SCausé, ¢) = (PSCausk, ¢) vV CSCausk, ¢) V (¢ = (¥ A x) A SCausée, ) A SCausé, x)))) 9
Ve, p(Causée, ¢) = (SCausé, ¢) A =T’ (=€’ = e A SCausé’, ¢)) A (= Te | (—=T¢ vV Ie'Causée’, ¢))))) (20)
Ve, €, ¢,, x(Causet, ¢) = (Causée, ¢) V (Causée, €') A Causes’, ¢))

V(¢ = (¥ A x) A Causete, ¢) A Causese, x)))) (11)
atoms thus the atoninv(e, e’)(t) states that evertinvokes together with the modal notions of physical and contextual
evente’ at timet, and by invocation axioms of the form:  necessity.

Ve, ', t((Oce)(t) A ®(e,e’)(t)) — Inv(e,e’)(t)); where Axiom (7) states that any eveatvhich succeeds at time

(e, e')(t) is a formula which distinguishes those contexts is aprior sufficient causéaPSCauskof its (direct posterior)
in which e invokese’ att. In keeping with the suggested  effects. Thus: is aPSCausef ¢ if e succeeds at and ¢

properties of secondary events, the invocation relation is re- is a physically necessary consequence'®effects att + 1

quired to satisfy axiom$2)-(4) in Table 2. In particular, according to the background laws

Axiom (4) ensures that a secondary event succeeds only ifit  Axiom (8) states that the occurrence of everis acon-

is directly invoked by a successful event. temporaneous sufficient caugée CSCausg of the occur-

It is also necessary to represent inertia, or what is not rence of event’ att iff ¢ succeeds and invoke$ at ¢, and
changed by events. Intuitively, thiwertia atom Inert(«)(t), it is not true that there is an eveit which (directly or in-
states that the truth value of fagtdoes not change at time directly) invokese and which also (directly) invokes' at
t; thatis, that it persists to+ 1. This is stated by the inertia ¢, This requirement ensures that contemporaneous sufficient

axiom, Axiom (6). The intention is that the inertia axiom  causation is attributed to the earliest invoking event in an
should be used to infer persistence of facts whenever possi- invocation chain.

ble. Givena(t), theinertia assumptionlnert(a)(t), should More abstractly, Axiom(9) states that event occurrence
be made whenever it is consistent to do so (given the context ¢ js g (contextuallyufficient caus¢an SCausgof effect

of occurrence af), and the axiom used to concludé’ +1). iff ¢ is a prior sufficient cause af, or a contemporaneous
Definition 8. Thetheory of eventsO g, consists of the ax- sufficient cause of, or a sufficient cause of both and x
ioms in Table 2; thu® g = {(1),...,(6)}. Anevent theory whose conjunction ig.

is any set of £ sentences which contaifsz. An event the- The occurrenceis adirect caus€aCausé of effect¢ iff

ory is naturalif every event definition it contains is natural. ¢ is the only sufficient cause of effe¢tin the context, and
This theory is capable of representing inertia, ramifi- "€movinge from the context either removesor results in

cations, qualifications, and non-determinism (Bell 2000; Some other (trumped, premempted) occurrence causing
2003), and can readily be extended in order to represent con-Axiom (10).

flicting simultaneous events (Bell 2001b). Indirect causation results from causally linked chains of
events, each of which may terminate in a fact. Accordingly,
Causation the indirect-causation relatioGausesis defined to be the

transitive closure of the direct-causation relati©ause and

Causation is defined formally in Table 3 relative to&f- is closed under conjunction of effects; Axiafhi ).

sentencd, which represents a set of background laws; in-
cluding the definitions of the preconditions and effects of Definition 9. The theory of causatiorrelative to ££-
events, and domain constraints. The definition assumes thesentence), ©(f), consists of) together with the axioms
background of the theory of events, and reduces the notion given in Table 3; thu® ¢ () = {6, (7),...,(11)}. If©" =

of causation to its terms (event occurrences, preconditions, © g U© ;UG g is a finite event theory with background laws
effects, success, failure, invocations, facts, inertia, change), © ;, and boundary condition® 3, then® = ©'U0 (A © 1)
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Table 4: Properties of th€ausegelation (see Proposition 1)
Bivalence: Ve, ¢(Causeste, ¢) V ~Causeg, ¢))
Transitivity: Ve, €/, ¢((Causeste, €¢') A Causeée’, ¢)) — Causese, ¢))
Asymmetry: Ve, ¢(Causese, ¢p) — ~Causesp,e))
Actuality: Ve, p(Causese, @) — (e A @))
Consistency: Ve, ¢(Causeée, ¢p) — —Causese, - T¢))
Conjunction: Ve, ¢, ((Causese, ¢) A Causese, ) — Causeée, ¢ A )

is acausal theoryand Law$O) = {0 U0 ,UO (A OL)} 1. at least one more domain atom or occurs atom is defined
is the set ofaws of ©. (is either true or false) at’ att, or

The definition of causation has appropriate general prop- 2. w andw’ agree on the interpretation of domain and oc-
erties. curs atoms at, and at least one more invocation atom is

1 !
Proposition 1. Let © be a consistent causal theory whose defined at’ att, or

constituent event theory is natural. Then each of the sen-3. w andw’ agree on the interpretation of domain, occurs
tences listed in Table 4 is true in every mode®of and invocation atoms at and at least one more success

. . . atom is false atv’ at¢, or
Proof Sketch. The case for Conjunction follows directly

from the definition; Axiom(11). For Transitivity, suppose 4 w andw’ agree on the interpretation of domain, occurs,

Causet, ¢'), Cause’, ¢) and—e = ¢. If Causée, '), invocation and success/ atomstaand at least one more
then the conclusion follows by Axionill). Otherwise, inertia atom is false at’ att, or

there is some” such thatCausée, ¢”’) andCausese”, €'). 5. w andw’ agree on the interpretation of domain, occurs,
SupposingCausete”, ¢) as induction hypothesis, we con- invocation, success, and inertia atomstatnd at least
clude by Axiom(11). Actuality follows from the definition one moref L-formula atom or event atom is definecdut

of SCausefor if SCausé:, ¢) is true, then so are bothand att.

¢ (axioms(1), (3), (7), (8) (9)). Consistency follows from
Actuality and the assumption thét is consistent. For Bi-
valence, note first the®Causes bivalent. If SCausé, ¢)

is false, then so i€ausée, ¢); Axiom (10). Otherwise,

e is actual and s&—Te is true. The contrafactual of Ax-
iom (10) is thus applicable and is consequently either true

World w is an E-preferred worldfor a sentence in M iff
M, w = ¢ and there is no other world’ such thath, w’ =
¢ andw’ < w. Similarlyw is an E-preferred world for a
set of sentences in M iff M, w = © and there is no other
world w’ such thatM, v’ = © andw’ <¥ w.

or false. Finally, Asymmetry follows because the natural- We turn now to the definition of theausal modefor a
ness assumption and axiorf®y and(9) ensure thaBCause causal theory. As we are not concerned with the interpre-
is asymmetric. O tation of terms, we can simply stipulate that they are inter-
preted autonymously (as themselves). This fixes their mean-
Causal Models ing an allows us to consider a single model of the causal
theory.

We begin by defining the set of preferred worlds for an event
theory in aC£-model M; intuitively these are the worlds in

M at which the event theory is interpreted as intended, and
events unfold according to the theory. The definition refines
Shoham'’s (1988) idea of chronological minimization. The
preferred worlds of an event theory are those in which de-
fined atomic sentences are minimized chronologically with
type-defined priority at each time point. The effect is that at
each preferred world the event theory is interpreted chrono-
logically. At each time point in a preferred world the con-
text of occurrence is first fixed (by minimizing the facts and
event structures which are defined at that point), then the
events occurring in the context are assumed to succeed wher-
ever possible (success assumptions are maximized), and fi-
nally the facts in the context are assumed to persist whenever
possible (inertia assumptions are maximized); further moti-
vation and justification is given in (Bell 2000).

Intitively, the causal model for causal theofy =
Lawg©) U © 5 should contain alLawg ©)-worlds at which
the laws are interpreted as intended and at which the bound-
ary conditions may vary, and these worlds should be or-
dered according to their similarity to the actual world. Con-
sequently the model should contain the settispreferred
worlds for each causal theoy = Lawg©) U ©';. More-
over, if w is an E-preferred®’-world, then the closesp-
worlds abovew in the model should be those at whiels
boundary condition®’; are changed as little as possible in
order thaty is true, and similarly for the closestl ¢-worlds
below w. However, closeness in this sense cannot simply
be defined in terms of the) order, because neighbour-
ing worlds may change in arbitrary ways, reflecting arbitrary
changes in boundary conditions. For example, suppose that
evente invokes event’ at world w and thate is the only
event which does so. Then, as the occurrencé dépends

Definition 10. Let M be aCL model with world sedV. on the occurrence af, the closest worlds below at which
Then theevent preference relation fa, <%/, is definedas ¢ does not occur should also be worlds at whitkdoes not
follows. For allw,w’ € W, putw <¥ w' iff there is a time occur. However the<} -closest worlds below at whiche
pointt¢ such thatw andw’ agree on the interpretation of all does not occur are worlds at whiehdoes occur. In effect,
atomic sentences at any earlier time point and either the occurrence of’ is an additional boundary condition at
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these worlds. This consideration leads to the idea s
port setfor a world. Intuitively, a support set for world is a
minimal set of ground L-literals which support the bound-
ary conditions atw.

Definition 11. A ground £L-literal is an atomic £L£-
sentencex(t) or the (strong) negatiorma(t) of an atomic
EL-sentence. LeB be the set of all subsets of groudd-
literals, M be aCL-model with event preference relation
<M and letw be a world inM. Then setB € B supports
w iff w is an E-preferred B-world in M and there is no set
B’ C B such thatw is an E-preferred B’-world in M.

©-world, © is nondeterminisitiaf M contains more than
one E-preferred®-world, and© causally entails sentence
¢, written © K, ¢, iff every E-preferred©-world in M is
also ag-world.

Thus counterfactual reasoning in a causal model consists
of using its event-preference relation to find the actual world
(or, if the theory is nondeterministic, the set of worlds which
represent the actual world), and then using the accessiblity
relation to find closest antecedent worlds.

Examples

The subset relation on support sets gives the closeness re-In order to illustrate the workings of the theory, and partic-

lation we desire.

Definition 12. Let® = Lawg®©) U ©p be a causal the-
ory. Thecausal modefor © is the model in which terms are
interpreted autonymously, with world set

W= {w: B e Bandw is a LawgO) U B-world},

whereB is as in Definition 11, and with accessibility relation
<& onW defined as follows

w <& w' iff there existB, B’ € B such thatB C B,
B supportsw, and B’ supportsw’.

Clearly any causal theor§ has a unique causal model
M. Note that the world set a¥/ may be empty iLawg©)
is inconsistent. Note also that if ahawg©) U B is incon-
sistent, ther\/ contains nd.awg©) U B-world. Moreover,
as allworlds inM areLawg ©)-worlds, it follows that allE-
preferredB-worlds in M are alsab-preferred.awg ©)U B-
worlds.

The following proposition follows straightforwardly from
the definitions, and relates the evaluation of conditionals in
causal models to the AGM expansion and contraction oper-
ations. Thus if=F¢ is true atw, then, a closesp-world w’
abovew is obtained by adding a minimal set of literals to the
support set ofv such thatp is true. And ifF¢ is true atw,
then, a closest-world w’ beloww is obtained by removing
a minimal set of literals from the support setwfsuch that
—F¢ is true.

Proposition 2. Let© be a causal theory with causal model
M with event preference relation! and accessibility re-
lation <&.. Then, for worldw in M and € L-sentence,

1. if =F¢ is true atw, then worldw’ is a<2-closest-world
abovew iff w has support se3, w’ is a ¢-world with
support setB’ such thatB C B’, and there is n@-world
w’ with support seB” such thatB C B” C B'.

2. if F¢ is true atw, then worldw’ is a <&-closest-F¢-
world beloww iff w has support seB, v’ is a—F¢-world
with support setB’ such thatB’ C B, and there is no
—F¢-world w” with support seB” such thatB’ ¢ B” C
B.

Causal entailment can now be defined as follows.

Definition 13. Let© be a causal theory with causal model
M, event preference relatior’. Then® is pragmatically
consistenif M contains at least on&’-preferred®-world,
O is determinisiticif M contains exactly oné’-preferred

ularly the contextual necessity condition, examples are how
given of preemption and trumping preemption.

Example 1. Wright's (1988) two-fires example can be
stated more specifically as follows. Firésand B break
out at opposite ends of a terrace of four houggs,. . ., Hy.
A starts inH; and spreads té/,. Simultaneouslyp starts
in Hy and spreads té/3. ConsequenthA destroysH, be-
fore B can reach it. In the circumstances it seems natural to
conclude thatd is the cause off,’s destruction, depite the
fact that, if A had not occurred, theB would have spread
from Hs to H, and caused{,’s destruction at a later time.
This version of the example can be represented by adding
the axiomg(12)-(18) from Table 5. Axiomg12)-(15) state
(simplified) preconditions and effects f&ire and Spreads
events. In particular the preconditions for a fire spreading
from location! to location!’ are that the fire is currently
burning at/, that/ and!’ are adjacent, thdt has not already
been burnt (that is, that whatever is @& combustible), and
that there is not currently a fire burninglat Axiom (16) is
an invocation axiom which states thafFae event invokes
a Spreadsevent if the preconditions of th8preadsevent
are true in the context in which tHére event occurs. Fi-
nally, axioms(17) and (18) state the boundary conditions.
In Axiom (17), the notationUN[u1, . ..,u,] indicates that
each of the names;, ..., u,, refers to a distinct individual:
UN[ut, ..., un] =pf A—w; =ujforl <i<j<n.
Let © be the causal theory with background laws
©, = {(12),...,(16)} and boundary condition®p =
{(17),(18)}. Then

OfCausesOcqFire(A, H))(1),Burnt(Hz)(3))
A (= TOcdFire(A, Hy))(1) |
Cause$OcdFire(B, Hy))(1), Burnt(Hz)(4))).

Proof. Let M be the causal model fa&® with event pref-
erence relatiork? and accessibility relatior. There is

a single E-preferred®-world, w, in M; © is thus deter-
ministic. By axioms(12) and (18), OcdFire(A, Hy))(1)
andPre(Fire(A, H1))(1) are true (atv). It follows from ax-
ioms (14), (17), (18), and the minimization of occurrences
at time 1 that Pre(Spread$A, H,, H»))(1) is true. So it
follows by axioms(3) and (16) that bothinv(Fire(A, H;),
Spread§A, Hy, H>))(1) and OcqSpreadsA, Hy, Hs))(1)
are true. It follows from the maximization of successes at
time 1 thatSuccFire(A, H;))(1) is true. And so it follows
from axioms(8) and(9) thatSCaus&0cdFire(A, Hy))(1),
OcdSpread§A, Hy, H»))(1)) is true. Moreover, it follows
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Table 5: Axioms for the examples

Va, 1, t(Pre(Fire(z,1))(t) = —-Burnt(l)(¢))
Va, 1, t(Eff(Fire(z, 1)) (t) = Burnt(l)(¢))
Va1, t(Pre(Spreadéz, 1,1'))(t) =

(OcdFire(z,1))(t) A Adj(l,1")(t) A Pre(Fire(z,1"))(t) A =TIy OcaFire(y,1'))(t)))

Va1, ', t(Eff(Spreadér, ,1"))(t) = OcqFire(z,1"))(t))

Va, 1,1, t((OcoFire(x,1))(t) A Pre(Spreadér, 1,1'))(t)) — Inv(Fire(x, 1), Spreadsgr, 1,1"))(t))

3
UN[H], . ..
=1

OcdFire(A, H1))(1) A OcdFire(B, Hy))(1)

Va,y, e, t(Pre(Ord(z, y,e))(t) = (OutRankér, y)(t) AVz, e ((—mz = A Ord(z,y,€')(t)) — OutRanksér, z)(t))))

Va,y, e, t(Eff(Ord(x, y, e))(t) = Ocde)(t))

UN[Sl, Ss, 53} A\ OutRank(sSl, Sg)(l) AN OutRank(SSl, 53)(1
0cqOrd(S1, s, AdUS5)))(1) A OcqOrd(Ss, Ss, AdUS5))) (1)

from the definition ofSCauseand the minimization of oc-
currences at timé, that no other occurreneds anSCause
of A spreading td4; attimel; thus—3e(—e = OcqFire(A,
H,))(1) A SCausée, Oca Spread§A, Hy, H2))(1))) is true
atw.

The support set forw, B, consists of the ground lit-
erals which support axiomél7) and (18). In particu-
lar, the event literals inB consist of the twoFire events
in the latter axiom. So, in view of Proposition 2,
the <&-closest ~TOcqFire(A, Hy))(1)-world below w
is obtained by removingOcqFire(4, H1))(1) from B.
Doing so leavednv(Fire(A, H;), Spread§A, Hy, Hs))(1)
andOcdSpread§B, Hy, H3))(1) unsupported, and hence,
by minimization of occurrences;TOcq SpreadéB, H,
H,))(1) is true atw’. It follows that —=TOcqFire(A,
Hy))(1) |} —TOcdSpread$A, Hy, Hy))(1) is true at
w. So, by Axiom (10), Caus€OcdqFire(A, Hy))(1),
OcdSpread§A, Hy, H2))(1)) is true atw.

Similar reasoning shows th@tcqFire(A, Hy))(1) is the
Causeof OcoSpreadéB, Hy, H3))(1) atw.

It follows from the success ofOcdqFire(A, Hy))(1)
and maximization of successes thatqSpreadsA, H,
H,))(1) succeeds atv at time 1, and so by axiomg1)
and (15), that OcqFire(A, H»))(2) is true atw. By
axioms (7) and (9), OcqSpreads$A, Hy, Hz))(1) is an
SCauseof OcdFire(4, H2))(2)) at w, and by the above
unigueness argument, it is the ol8Cause

Now the <&-closest—TOcqSpread$A, Hy, Hz))(1))-
world beloww is the worldw’ referred to above. Remov-
ing the occurrence of thEire( A, H, )-event fromB leaves
OcdSpread§A, Hy, H2))(1) and its effectOcqFire(A,
H,))(2) unsupported. It follows by minimization of oc-
currences at timé@ that -TOcdFire(A4, H2))(2) is true at
w’. So it follows atw, as above, that the occurrence of
the Spread$A, Hq, Hy) event at timel is the Causeof the
Fire(A, Hy) event at time2.

Similarly, it follows at w that the occurrence of the
Spread§A, Hy, H3) event at timel is the Causeof the
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JHa A\ (Adi(Hy, Hig) (1) AAdi(Hig, Hi))(1) A\ ~Bumt(H;) (1)

)
1

(12)
(13)

(14)
(15)
(16)

7
i=1

(18)
(19)
(20)
(21)
(22)

A OutRanksS,, S3)(1)

Fire(A, H3) event at time.

It follows from the maximization of inertia atoms at tirhe
and Axiom(6) that—Burnt(H; )(2) is true atw. As the pre-
condition ofOcqFire( A, H»)(2) is true, it follows by max-
imization of successes at tildghat the event succeeds, and
consequently that its effe@urnt(H:)(3) is true atw; ax-
ioms (1), (12) and(13). Reasoning similar to that above
shows that thé-ire(A, Hy) event is theCauseof H, being
burnt.

The first conjunct to be proved now follows by Ax-
iom (11).

The second conjunct is established by reasoning similar
to that above. Let’ be the<&-closest-TOcqFire(A,
Hy))(1)-world beloww; the support set for’, B’, being
obtained by removin@cqFire(A, H,)(1) from B. At v’

we use event-theory reasoning, as above, to establish that fire

B spreads td{3 at time2 and toH, at time3, leaving H,
burnt at time4. Establishing a chain of uniqugCauss is
straightforward. Establishing that each event in this chain is
contextually necessary is done by reasoning contrafactually
in the <@-closest-TOcdFire(B, Hy))(1)-world w” below
w’; whose support set is obtained by removideg( Fire(B,
Hy))(1) from B'. O

Example 2. van Fraassen’s military-trumping example
(Lewis 2000) can be represented by adding axidfts-
(22) from Table 5. Soldier: can order soldiey to doe at
timet iff x outranksy and anyone else who givgsan order
att; Axiom (19). Orders are normally carried out without
question; Axiom(22). SoldierS; outranks soldie5;, who
in turn outranks soldiefs; Axiom (21). Finally, S; and.Ss
simultaneously ordef; to advance; Axion(22).

Let © be the causal theory with background la@g =
{(19), (20)} and boundary condition®p = {(21), (22)}.
Then

(CD) hCCauseﬁOCqOrd(Sl, S3, AdV(Sg)))(].),
Oco(AdV(S5))(2))-

Proof. Let M be the causal model fa&® with event pref-



erence relatiork?/ and accessibility relatior®. There is
a single E-preferred®-world, w, in M; © is thus deter-
ministic. By maximization of successes (aj} at timel,
and axiomg(1), (9), (19), (20) and(22), we conclude that
the Ord(S1, S3, AdVS3)) event succeeds at tinlg and that
consequently it is aCauseof the occurrence ofdu(Ss)
time 2. It also follows, from axiomg1), (19) and (21),
that Ord(Ss, S5, Ad\V(S3)) fails at time1; becausesS; out-
ranks, and so trumps,. So it follows from the definition
of SCauseand the minimization of occurrences at tirhg
that theOrd(S1, S5, AdW(S3)) event is the uniqu8Causef
the subsequemtdv(Ss) event.

The support set forw, B, consists of the literals in
axioms (21) and (22). It follows from Proposition 2
that removingOcqOrd(S1, S5, AdV(S3)))(1) from S, gives
the support sets’, of the <&-closest-TOcOrd(S;, Ss,
AdVv(Ss5)))(1)-world, w’ below w. RemovingS;'s order
makes the preconditions ddcqOrd(Sz, S5, AdU(S3))(1)
true atw’; Axiom (19). So it follows by maximization of
successes (ab’) that S»’s order succeeds at’, and con-
sequently that this event is @Causeof the occurrence of
Adv(S3) at time2. Its unigueness as @Causeds estab-
lished as above.

Removing OcqOrd(Ss, S35, AdSs)))(1) from S’
gives support setS” and closest—=TOcqOrd(S5, Ss,
Adv(S3)))(1)-world w” below w’; Proposition 2. It
follows by minimization of events (at’’) at time 1 that
-~ TOcdAdV(S3))(2) is true atw”.

So ~TOrd(Ss, 3, AdV(S3))(1) | ~TOCAAY(S;))(2)
is true atw’. It follows by Axiom (10) that OcqOrd(Ss,
S3), AdV(S5))(1) is theCauseof OcqAd\(S3))(2) atw’.

Therefore ~TOrd(S1, S, AdV(S3)) || Caus€Ord(Ss,
Sz, AdV(S5))(1), OcdAdV(S5))(2)) is true atw. And so it
follows by Axiom (10) that OcqOrd(S1, S5, Adu(S3)))(1)
is theCauseof OcqAdv(S3))(2) atw. O

Concluding Remarks

The proposed definition of causation is concerned with ac-
tual causation. This is naturally combined with the condi-
tionals ofCL to represent counterfactual causation; as illus-
trated by Example 1. As suggested in (Bell 2001a), comple-

factuals can also be used to generate explanations. Explana-

tion can now be defined as follows

Ve, ¢, P (Expl(e, ,9) = ((€ A ¢) I Causese, 1))).

Thus occurrence together with conditiong explainy at
actual worldw iff € causeg) at all closest A ¢-worlds above
w. These ideas will be developed further in future work.

Future work will also include a more extensive empirical
evaluation of the proposed theory of causation and a com-
parison with related work, particularly that of Halpern and
Pearl (2001).

Finally, Proposition 2 suggests that it may be possible
to extend the model-building implementation of primary
events (White, Bell, & Hodges 1998) in order to implement
the evaluation of causal counterfactuals. For example, in the
simple case in which occurreneés not true at actual world
w constructed by the algorithm for causal the@rythe clos-

este-worlds abovew can be generated simply by running the
algorithm on®© U {e}.
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