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Abstract

A careful analysis of conditioning in theSleeping Beauty
problem is done, using the formal model for reasoning about
knowledge and probability developed by Halpern and Tuttle.
While the Sleeping Beauty problem has been viewed as re-
vealing problems with conditioning in the presence of imper-
fect recall, the analysis done here reveals that the problems
are not so much due to imperfect recall as toasynchrony.
The implications of this analysis for van Fraassen’sReflection
Principleand Savage’sSure-Thing Principleare considered.

1 Introduction
The standard approach to updating beliefs in the probabil-
ity literature is by conditioning. But it turns out that con-
ditioning is somewhat problematic if agents haveimperfect
recall. In the economics community this issue was brought
to the fore by the work of Piccione and Rubinstein [1997]
(to which was dedicated a special issue of the journalGames
and Economic Behavior). There has also been a recent surge
of interest in the topic in the philosophy community, inspired
by a re-examination by Elga [2000] of one of the problems
considered by Piccione and Rubinstein, the so-calledSleep-
ing Beauty problem.1 (Some recent work on the problem
includes [Arntzenius 2003; Dorr 2002; Lewis 2001; Monton
2002].)

I take the Sleeping Beauty problem as my point of depar-
ture in this paper too. I argue that the problems in updating
arise not just with imperfect recall, but also inasynchronous
systems, where agents do not know exactly what time it is, or
do not share a global clock. Since both human and computer
agents are resource bounded and forget, imperfect recall is
the norm, rather than an unusual special case. Moreover,
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1So named by Robert Stalnaker.

there are many applications where it is unreasonable to as-
sume the existence of a global clock. Thus, understanding
how to do updating in the presence of asynchrony and imper-
fect recall is a significant issue in knowledge representation.

The Sleeping Beauty problem is described by Elga as fol-
lows:

Some researchers are going to put you to sleep. During
the two days that your sleep will last, they will briefly
wake you up either once or twice, depending on the
toss of a fair coin (heads: once; tails: twice). After
each waking, they will put you back to sleep with a
drug that makes you forget that waking. When you are
first awakened, to what degree ought you believe that
the outcome of the coin toss is heads?

Elga argues that there are two plausible answers. The first
is that it is1/2. After all, it was1/2 before you were put
to sleep and you knew all along that you would be woken
up. Thus, it should still be1/2 when you are actually woken
up. The second is that it is1/3. Clearly if this experiment is
carried out repeatedly, then in the long run, at roughly one
third of the times that you are woken up, you are in a trial in
which the coin lands heads.

Elga goes on to give another argument for1/3, which he
argues is in fact the correct answer. Suppose you are put
to sleep on Sunday, so that you are first woken on Monday
and then possibly again on Tuesday if the coin lands tails.
Thus, when you are woken up, there are three events that
you consider possible:

• e1: it is Monday and the coin landed heads;

• e2: it is Monday and the coin landed tails;

• e3: it is Tuesday and the coin landed tails.

Here is Elga’s argument: Clearly if, after waking up, you
learn that it is Monday, you should considere1 and e2

equally likely. Since, conditional on learning that it is Mon-
day, you considere1 ande2 equally likely, you should con-
sider them equally likely unconditionally. Now, conditional
on the coin landing tails, it also seems reasonable thate2 and
e3 should be equally likely; after all, you have no reason to
think Monday is any more or less likely that Tuesday if the
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coin landed tails. Thus, unconditionally,e2 ande3 should
be equally likely. But the only way fore1, e2, ande3 to
be equally likely is for them all to have probability1/3. So
heads should have probability1/3.

Note that if the story is changed so that (1) heads has prob-
ability .99 and tails has probability .01, (2) you are woken up
once if the coin lands heads, and (3) you are woken up 9900
times if the coin lands tails, then Elga’s argument would say
that the probability of tails is .99. Thus, although you know
you will be woken up whether the coin lands heads or tails,
and you are initially almost certain that the coin will land
heads, when you are woken up (according to Elga’s analy-
sis) you are almost certain that the coin landed tails!

To analyze these arguments, I use a formal model for
reasoning about knowledge and probability that Mark Tut-
tle and I developed [Halpern and Tuttle 1993] (HT from
now on), which in turn is based on the “runs and systems”
framework for reasoning about knowledge in computing
systems, introduced in [Halpern and Fagin 1989] (see [Fa-
gin, Halpern, Moses, and Vardi 1995] for motivation and
discussion). Using this model, I argue that Elga’s argument
is not as compelling as it may seem. The analysis also re-
veals that, despite the focus of the economics community
on imperfect recall, the real problem is not imperfect recall,
but asynchrony: the fact that Sleeping Beauty does not know
exactly what time it is.

Finally, I consider other arguments and desiderata tra-
ditionally used to justify probabilistic conditioning, such
as frequency arguments, betting arguments, van Fraassen’s
[1984]Reflection Principle, and Savage’s [1954]Sure-Thing
Principle. I show that our intuitions for these arguments are
intimately bound up with assumptions such as synchrony
and perfect recall.

The rest of this paper is organized as follows. In the next
section I review the basic runs and systems framework. In
Section 3, I describe the HT approach to adding probability
to the framework when the system is synchronous, and then
consider two generalizations to the case that the system is
asynchronous. In the Sleeping Beauty problem, these two
generalizations give the two solutions discussed by Elga. In
Section 4, I consider other arguments and desiderata.

2 The framework

2.1 The basic multi-agent systems framework

In this section, we briefly review the multiagent systems
framework; see [Fagin, Halpern, Moses, and Vardi 1995]
for more details.

A multiagent systemconsists ofn agents interacting over
time. At each point in time, each agent is in somelocal
state. Intuitively, an agent’s local state encapsulates all the
information to which the agent has access. For example,
in a poker game, a player’s state might consist of the cards
he currently holds, the bets made by the other players, any

other cards he has seen, and any information he may have
about the strategies of the other players (e.g., Bob may know
that Alice likes to bluff, while Charlie tends to bet conser-
vatively). In the Sleeping Beauty problem, we can assume
that the agent has local states corresponding to “just woken
up” and “sleeping”. We could also include local states corre-
sponding to “just before the experiment” and “just after the
experiment”.

Besides the agents, it is also conceptually useful to have
an “environment” (or “nature”) whose state can be thought
of as encoding everything relevant to the description of the
system that may not be included in the agents’ local states.
In many ways, the environment can be viewed as just an-
other agent. For example, in the Sleeping Beauty problem,
the environment state can encode the actual day of the week
and the outcome of the coin toss. We can view the whole
system as being in someglobal state, a tuple consisting of
the local state of each agent and the state of the environment.
Thus, a global state has the form(se, s1, . . . , sn), wherese

is the state of the environment andsi is agenti’s state, for
i = 1, . . . , n.

A global state describes the system at a given point in
time. But a system is not a static entity. It is constantly
changing over time. Arun captures the dynamic aspects of
a system. Intuitively, a run is a complete description of one
possible way in which the system’s state can evolve over
time. Formally, a run is a function from time to global states.
For definiteness, I take time to range over the natural num-
bers. Thus,r(0) describes the initial global state of the sys-
tem in a possible execution,r(1) describes the next global
state, and so on. A pair(r, m) consisting of a runr and time
m is called apoint. If r(m) = (se, s1, . . . , sn), then define
re(m) = se and ri(m) = si, i = 1, . . . , n; thus, ri(m)
is agenti’s local state at the point(r, m) andre(m) is the
environment’s state at(r, m). I write (r, m) ∼i (r′,m′) if
agenti has the same local state at both(r, m) and(r′,m′),
that is, if ri(m) = r′i(m

′). Let Ki(r, m) = {(r′,m′) :
(r, m) ∼i (r′,m′)}. Intuitively,Ki(r, m) is the set of points
thati considers possible at(r, m). Sets of the formKi(r, m)
are sometimes calledinformation sets.

In general, there are many possible executions of a sys-
tem: there could be a number of possible initial states and
many things that could happen from each initial state. For
example, in a draw poker game, the initial global states could
describe the possible deals of the hand by having playeri’s
local state describe the cards held by playeri. For each
fixed deal of the cards, there may still be many possible bet-
ting sequences, and thus many runs. Formally, asystemis a
nonempty set of runs. Intuitively, these runs describe all the
possible sequences of events that could occur in the system.
Thus, I am essentially identifying a system with its possible
behaviors.

The obvious system for the Sleeping Beauty problem con-
sists of two runs, the first corresponding to the coin land-
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ing heads, and the second corresponding to the coin landing
tails. However, there is some flexibility in how we model the
global states. Here is one way: At time 0, a coin is tossed;
the environment state encodes the outcome. At time 1, the
agent is asleep (and thus is in a “sleeping” state). At time 2,
the agent is woken up. If the coin lands tails, then at time 3,
the agent is back asleep, and at time 4, is woken up again.
Note that I have assumed here that time in both of these runs
ranges from 0 to 5. Nothing would change if I allowed runs
to have infinite length or a different (but sufficiently long)
finite length.

Alternatively, we might decide that it is not important to
model the time that the agent is sleeping; all that matters is
the point just before the agent is put to sleep and the points
where the agent is awake. Assume that Sleeping Beauty is
in stateb before the experiment starts, in statea after the
experiment is over, and in statew when woken up. This
leads to a model with two runsr1 and r2, where the first
three global states inr1 are(H, b), (H,w), and(H, a), and
the first four global states inr2 are (T, b), (T,w), (T,w),
(T, a). Let R1 be the system consisting of the runsr1 and
r2. This system is shown in Figure 1 (where only the first
three global states in each run are shown). The three points
where the agent’s local state isw, namely,(r1, 1), (r2, 1),
and(r2, 2), form what is traditionally called in game theory
an information set. These are the three points that the agent
considers possible when she is woken up. For definiteness,
I useR1 in my analysis of Sleeping Beauty.

Figure 1: The Sleeping Beauty problem, captured usingR1.

Notice thatR1 is also compatible with a somewhat differ-
ent story. Suppose that the agent is not aware of time pass-
ing. At time 0 the coin is tossed, and the agent knows this. If
the coin lands heads, only one round passes before the agent
is told that the experiment is over; if the coin lands tails,
she is told after two rounds. Since the agent is not aware of
time passing, her local state is the same at the points(r1, 2),
(r2, 1), and(r2, 2). The same analysis should apply to the
question of what the probability of heads is at the informa-
tion set. The key point is that here the agent does not forget;
she is simply unaware of the time passing.

Various other models are possible:

• We could assume (as Elga does at one point) that the coin
toss happens only after the agent is woken up the first
time. Very little would change, except that the environ-
ment state would be∅ (or some other way of denoting that
the coin hasn’t been tossed) in the first two global states
of both runs. Call the two resulting runsr′1 andr′2.

• All this assumes that the agent knows when the coin is
going to be tossed. If the agent doesn’t know this, then
we can consider the system consisting of the four runs
r1, r

′
1, r2, r

′
2.

• Suppose that we now want to allow for the possibility
that, upon wakening, the agent learns that it is Monday
(as in Elga’s argument). To do this, the system must in-
clude runs where the agent actually learns that it is Mon-
day. For example, we can consider the systemR2 =
(r1, r2, r

∗
1 , r∗2), wherer∗i is the same asri except that on

Monday, the agent’s local state encodes that it is Mon-
day. Thus, the sequence of global states inr∗1 is (H, b),
(H,M), (H, a), and the sequence inr∗2 is (T, b), (T,M),
(T,w). R2 is described in Figure 2. Note that on Tues-
day inr∗2 , the agent forgets whether she was woken up on
Monday. She is in the same local state on Tuesday inr∗2
as she is on both Monday and Tuesday inr2.

Figure 2: An alternate representation of the Sleeping Beauty
problem, usingR2.

Yet other representations of the Sleeping Beauty problem
are also possible. The point that I want to emphasize here
is that the framework has the resources to capture important
distinctions about when the coin is tossed and what agents
know.

2.2 Synchrony and perfect recall
One advantage of the runs and systems framework is that it
can be used to easily model a number of important assump-
tions. I focus on two of them here:synchrony, the assump-
tion that agents know the time, andperfect recall, the as-
sumption that agents do not forget [Fagin, Halpern, Moses,
and Vardi 1995; Halpern and Vardi 1989]
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Formally, a systemR is synchronous for agenti if for all
points(r, m) and(r′,m′) in R, if (r, m) ∼i (r′,m′), then
m = m′. Thus, ifR is synchronous for agenti, then at time
m, agenti knows that it is timem, because it is timem at
all the points he considers possible.R is synchronousif it is
synchronous for all agents. Note that the systems that model
the Sleeping Beauty problem are not synchronous. When
Sleeping Beauty is woken up on Monday, she does not know
what day it is.

Consider the following example of a synchronous system,
taken from [Halpern 2003]:

Example 2.1: Suppose that Alice tosses two coins and sees
how the coins land. Bob learns how the first coin landed af-
ter the second coin is tossed, but does not learn the outcome
of the second coin toss. How should this be represented as a
multi-agent system? The first step is to decide what the lo-
cal states look like. There is no “right” way of modeling the
local states. What I am about to describe is one reasonable
way of doing it, but clearly there are others.

The environment state will be used to model what actually
happens. At time 0, it is〈 〉, the empty sequence, indicating
that nothing has yet happened. At time 1, it is either〈H〉 or
〈T 〉, depending on the outcome of the first coin toss. At time
2, it is either〈H,H〉, 〈H,T 〉, 〈T,H〉, or 〈T, T 〉, depending
on the outcome of both coin tosses. Note that the environ-
ment state is characterized by the values of two random vari-
ables, describing the outcome of each coin toss. Since Alice
knows the outcome of the coin tosses, I take Alice’s local
state to be the same as the environment state at all times.

What about Bob’s local state? After the first coin is
tossed, Bob still knows nothing; he learns the outcome of
the first coin toss after the second coin is tossed. The first
thought might then be to take his local states to have the
form 〈 〉 at time 0 and time 1 (since he does not know the
outcome of the first coin toss at time 1) and either〈H〉 or
〈T 〉 at time 2. This choice would not make the system syn-
chronous, since Bob would not be able to distinguish time
0 from time 1. If Bob is aware of the passage of time, then
at time 1, Bob’s state must somehow encode the fact that
the time is 1. I do this by taking Bob’s state at time 1 to be
〈tick〉, to denote that one time tick has passed. (Other ways
of encoding the time are, of course, also possible.) Note that
the time is already implicitly encoded in Alice’s state: the
time is 1 if and only if her state is either〈H〉 or 〈T 〉.

Under this representation of global states, there are seven
possible global states:

• (〈 〉, 〈 〉, 〈 〉), the initial state,

• two time-1 states of the form(〈X1〉, 〈X1〉, 〈tick〉), for
X1 ∈ {H,T},

• four time-2 states of the form
(〈X1, X2〉, 〈X1, X2〉, 〈tick, X1〉), for X1, X2 ∈ {H,T}.

In this simple case, the environment state determines the
global state (and is identical to Alice’s state), but this is not

always so.
The system describing this situation has four runs,

r1, . . . , r4, one for each of the time-2 global states. The
runs are perhaps best thought of as being the branches of the
computation tree described in Figure 3.
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Figure 3: Tossing two coins.

Modeling perfect recall in the systems framework is not
too difficult, although it requires a little care. In this frame-
work, an agent’s knowledge is determined by his local state.
Intuitively, an agent has perfect recall if his local state is al-
ways “growing”, by adding the new information he acquires
over time. This is essentially how the local states were mod-
eled in Example 2.1. In general, local states are not required
to grow in this sense, quite intentionally. It is quite possible
that information encoded inri(m)—i’s local state at timem
in run r—no longer appears inri(m + 1). Intuitively, this
means that agenti has lost or “forgotten” this information.
There is a good reason not to make this requirement. There
are often scenarios of interest where it is important to model
the fact that certain information is discarded. In practice,
for example, an agent may simply not have enough memory
capacity to remember everything he has learned. Neverthe-
less, although perfect recall is a strong assumption, there are
many instances where it is natural to model agents as if they
do not forget.

Intuitively, an agent with perfect recall should be able to
reconstruct his complete local history from his current lo-
cal state. To capture this intuition, letagenti’s local-state
sequence at the point(r, m) be the sequence of local states
that she has gone through in runr up to timem, without con-
secutive repetitions. Thus, if from time 0 through time 4 in
runr agenti has gone through the sequence〈si, si, s

′
i, si, si〉

of local states, wheresi 6= s′i, then her local-state sequence
at (r, 4) is 〈si, s

′
i, si〉. Agent i’s local-state sequence at a

point (r, m) essentially describes what has happened in the
run up to timem, from i’s point of view. Omitting consec-
utive repetitions is intended to capture situations where the
agent has perfect recall but is not aware of time passing, so
she cannot distinguish a run where she stays in a given state
s for three rounds from one where she stays ins for only one
round.
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An agent has perfect recall if her current local state
encodes her whole local-state sequence. More formally,
agenti has perfect recall in systemR if, at all points(r, m)
and (r′,m′) in R, if (r, m) ∼i (r′,m′), then agenti has
the same local-state sequence at both(r, m) and (r′,m′).
Thus, agenti has perfect recall if she “remembers” her local-
state sequence at all times.2 In a system with perfect recall,
ri(m) encodesi’s local-state sequence in that, at all points
wherei’s local state isri(m), she has the same local-state se-
quence. A system where agenti has perfect recall is shown
in Figure 4.

Figure 4: An asynchronous system where agenti has perfect
recall.

The combination of synchrony and perfect recall leads to
particularly pleasant properties. It is easy to see that ifR is
a synchronous system with perfect recall and(r, m + 1) ∼i

(r′,m + 1), then(r, m) ∼i (r′,m). That is, if agenti con-
siders runr′ possible at the point(r, m + 1), theni must
also consider runr′ possible at the point(r, m). (Proof:
since the system is synchronous andi has perfect recall,
i’s local state must be different at each point inr. For
if i’s local state were the same at two points(r, k) and
(r, k′) for k 6= k′, then agenti would not know that it was
time k at the point(r, k). Thus, at the points(r, m + 1),
i’s local-state sequence must have lengthm + 1. Since
(r, m + 1) ∼i (r′,m + 1), i has the same local-state se-
quence at(r, m + 1) and (r′,m + 1). Thus, i must also
have the same local-state sequence at the points(r, m) and
(r′,m), sincei’s local-state sequence at these points is just
the prefix ofi’s local-state sequence at(r, m + 1) of length
m. It is then immediate that(r, m) ∼i (r′,m).) Thus, in
a synchronous system with perfect recall, agenti’s informa-
tion set refines over time, as shown in Figure 5.

2This definition of perfect recall is not quite the same as that
used in the game theory literature, where agents must explicitly re-
call the actions taken (see [Halpern 1997] for a discussion of the
issues), but the difference between the two notions is not relevant
here. In particular, according to both definitions, the agent has per-
fect recall in the “game” described by Figure 1.

Figure 5: A synchronous system with perfect recall.

Note that whether the agent has perfect recall in the Sleep-
ing Beauty problem depends in part on how we model the
problem. In the systemR1 she does; inR2 she does not.
For example, at the point(r∗2 , 2) in R2, where her local state
is (T,w), she has forgotten that she was woken up at time
1 (because she cannot distinguish(r2, 2) from (r∗2 , 2)). (It
may seem strange that the agent has perfect recall inR1,
but that is because inR1, the time that the agent is asleep
is not actually modeled. It happens “between the points”. If
we explicitly include local states where the agent is asleep,
then the agent would not have perfect recall in the resulting
model. The second interpretation ofR1, where the agent is
unaware of time passing, is perhaps more compatible with
perfect recall. I useR1 here so as to stress that perfect recall
is not really the issue in the Sleeping Beauty problem; it is
the asynchrony.)

3 Adding probability

To add probability to the framework, I start by assuming a
probability on the set of runs in a system. Intuitively, this
should be thought of as the agents’ common probability. It
is not necessary to assume that the agents all have the same
probability on runs; different agents may have use probabil-
ity measures. Moreover, it is not necessary to assume that
the probability is placed on the whole set of runs. There
are many cases where it is convenient to partition the set of
runs and put a separate probability measure on each cell in
the partition (see [Halpern 2003] for a discussion of these
issues). However, to analyze the Sleeping Beauty problem,
it suffices to have a single probability on the runs. Aprob-
abilistic systemis a pair(R,Pr), whereR is a system (a
set of runs) andPr is a probability onR. (For simplicity,
I assume thatR is finite and that all subsets ofR are mea-
surable.) In the case of the Sleeping Beauty problem, the
probability onR1 is immediate from the description of the
problem: each ofr1 andr2 should get probability1/2. To
determine a probability on the runs ofR2, we need to decide
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how likely it is that the agent will discover that it is actually
Monday. Suppose that probability isα. In that case,r1 and
r2 both get probability(1 − α)/2, while r∗1 andr∗2 both get
probabilityα/2.

Unfortunately, the probability on runs is not enough for
the agent to answer questions like “What is the probabil-
ity that heads was tossed?” if she is asked this question at
the point(r1, 1) when she is woken up inR1, for exam-
ple. At this point she considers three points possible:(r1, 1),
(r2, 1), and(r2, 2), the three points where she is woken up.
She needs to put a probability on this space of three points
to answer the question. Obviously, the probability on the
points should be related to the probability on runs. But how?

3.1 The synchronous case

Tuttle and I suggested a relatively straightforward way of
going from a probability on runs to a probability on points
in synchronous systems. For all timesm, the probability
Pr on R, the set of runs, can be used to put a probabil-
ity Prm on the points inRm = {(r, m) : r ∈ R}: sim-
ply takePrm(r, m) = Pr(r). Thus, the probability of the
point(r, m) is just the probability of the runr. Clearly,Prm

is a well-defined probability on the set of time-m points.
SinceR is synchronous, at the point(r, m), agenti con-
siders possible only time-m points. That is, all the points
in Ki(r, m) = {(r′,m′) : (r, m) ∼i (r′,m′)} are actually
time-m points. Since, at the point(r, m), the agent consid-
ers possible only the points inKi(r, m), it seems reason-
able to take the agent’s probability at the point(r, m) to
the result of conditioningPrm on Ki(r, m), provided that
Prm(Ki(r, m)) > 0, which, for simplicity, I assume here.
TakingPr(r,m,i) to denote agenti’s probability at the point
(r, m), this suggests thatPr(r,m,i)(r′,m) = Prm((r′,m) |
Ki(r, m)).

To see how this works, consider the system of Exam-
ple 2.1. Suppose that the first coin has bias2/3, the second
coin is fair, and the coin tosses are independent, as shown
in Figure 6. Note that, in Figure 6, the edges coming out
of each node are labeled with a probability, which is intu-
itively the probability of taking that transition. Of course,
the probabilities labeling the edges coming out of any fixed
node must sum to 1, since some transition must be taken. For
example, the edges coming out of the root have probability
2/3 and1/3. Since the transitions in this case (i.e., the coin
tosses) are assumed to be independent, it is easy to compute
the probability of each run. For example, the probability of
runr1 is 2/3× 1/2 = 1/3; this represents the probability of
getting two heads.

3.2 The general case

The question now is how the agents should ascribe prob-
abilities in arbitrary (not necessarily synchronous) system,
such as that of the Sleeping Beauty problem. The approach
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Figure 6: Tossing two coins, with probabilities.

suggested above does not immediately extend to the asyn-
chronous case. In the asynchronous case, the points in
Ki(r, m) are not in general all time-m points, so it does not
make sense to condition onPrm onKi(r, m). (Of course,
it would be possible to condition on the time-m points in
Ki(r, m), but it is easy to give examples showing that doing
this gives rather nonintuitive results.)

I discuss two reasonable candidates for ascribing proba-
bility in the asynchronous case here, which are generaliza-
tions of the two approaches that Elga considers. I first con-
sider these approaches in the context of the Sleeping Beauty
problem, and then give the general formalization.

Consider the system described in Figure 1, but now sup-
pose that the probability ofr1 is α and the probability of
r2 is 1 − α. (In the original Sleeping Beauty problem,
α = 1/2.) It seems reasonable that at the points(r1, 0)
and (r2, 0), the agent ascribes probabilityα to (r1, 0) and
1−α to (r2, 0), using the HT approach for the synchronous
case. What about at each of the points(r1, 1), (r2, 1), and
(r2, 2)? One approach (which I henceforth call theHT ap-
proach, since it was advocated in HT), is to say that the prob-
ability α of runr1 is projected to the point(r1, 1), while the
probability 1 − α of r2 is projected to(r2, 1) and (r2, 2).
How should the probability be split over these two points?
Note that splitting the probability essentially amounts to de-
ciding the relative probability of being at time 1 and time 2.
Nothing in the problem description gives us any indication
of how to determine this. HT avoid making this determina-
tion by making the singleton sets{(r2, 1}} and {(r2, 2)}
nonmeasurable. Since they are not in the domain of the
probability measure, there is no need to give them a proba-
bility. The only measurable sets in this space would then be
∅, {(r1, 1)}, {(r2, 1), (r2, 2)}, and{(r1, 1), (r2, 1), (r2, 2)},
which get probability 0,α, 1 − α, and 1, respectively. An
alternative is to take times 1 and 2 to be equally likely, in
which case the probability of the set{((r2, 1), (r2, 2)} is
split over(r2, 1) and(r2, 2), and they each get probability
(1 − α)/2. Whenα = 1/2, this gives Elga’s first solution.
Although it is reasonable to assume that times 1 and 2 are
equally likely, the technical results that I prove hold no mat-
ter how the probability is split between times 1 and 2.

The second approach, which I call theElga approach
(since it turns out to generalize what Elga does), is to require
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that for any pair of points(r, m) and (r′,m′) on different
runs, the relative probability of these points is the same as
the relative probability ofr andr′. This property is easily
seen to hold for the HT approach in the synchronous case.
With this approach, the ratio of the probability of(r1, 1) and
(r2, 1) is α : 1 − α, as is the ratio of the probability of
(r1, 1) and(r2, 2). This forces the probability of(r1, 1) to
be α/(2 − α), and the probability of each of(r1, 1) and
(r2, 2) to be(1 − α)/(2 − α). Note that, according to the
Elga approach, ifPr is the probability on the runs ofR1,
α = 1/2, so thatPr(r1) = Pr(r2) = 1/2, andPr′ is the
probability that the agent assigns to the three points in the
information set, then

Pr′((r1, 1) | {(r1, 1), (r2, 1)})
= Pr′((r1, 1) | {(r1, 1), (r2, 2)})
= Pr(r1 | {r1, r2})
= 1/2.

Thus, we must havePr′((r1, 1)) = Pr′((r2, 1)) =
Pr′((r2, 2)), so each of the three points has probability1/3,
which is Elga’s second solution. Moreover, note that

Pr′((r1, 1) | {(r1, 1), (r2, 1)})
= Pr′((r2, 1) | {(r1, 1), (r2, 2)})
= 1/2.

This is one way of formalizing Elga’s argument thatPr′

should have the property that, conditional on learning it is
Monday, you should consider “it is Monday and the coin
landed heads” and “it is Monday and the coin landed tails”
equally likely.

To summarize, the HT approach assigns probability
among points in an information setI by dividing the proba-
bility of a runr among the points inI that lie onr (and then
normalizing so that the sum is one), while the Elga approach
proceeds by giving each and every point inI that is on runr
the same probability as that ofr, and then normalizing.

For future reference, I now give a somewhat more precise
formalization of the HT and Elga approaches. To do so, it is
helpful to have some notation that relates sets of runs to sets
of points. IfS is a set of runs andU is a set of points, let
S(U) be the set of runs inS going through some point inU .
and letU(S) be the set of points inU that lie on some run
in S. That is,

S(U) = {r ∈ S : (r, m) ∈ U for somem} and
U(S) = {(r, m) ∈ U : r ∈ S}.

Note that, in particular,Ki(r, m)(r′) is the set of points
in the information setKi(r, m) that are on the runr′ and
R(Ki(r, m)) is the set of runs in the systemR that con-
tain points inKi(r, m). According to the HT approach,
if Pri is agenti’s probability onR, the set of runs, then
PrHT

(r,m,i)(Ki(r, m)(r′)) = Pri(r′ | R(Ki(r, m))). (Note

that here I am usingPrHT
(i,r,m) to denote agenti’s probabil-

ity at the point(r, m) calculated using the HT approach; I

similarly will usePrElga
(i,r,m) to denote agenti’s preobability

calculcated using the Elga approach.) That is, the probabil-
ity that agenti assigns at the point(r, m) to the points inr′ is
just the probability of the runr′ conditional on the probabil-
ity of the runs going through the information setKi(r, m).
As I said earlier, Halpern and Tuttle do not try to assign a
probability to individual points inKi(r, m)(r′) if there is
more than one point onr′ in Ki(r, m).

By way of contrast, the Elga approach is defined as fol-
lows:

PrElga
(r,m,i)(r

′,m′) =
Pri({r′} ∩ R(Ki(r, m)))∑

r′′∈R(Ki(r,m)) Pri(r′′)|Ki(r, m)({r′′})|
.

It is easy to check thatPrElga
(r,m,i) is the unique

probability measure Pr′ on Ki(r, m) such that
Pr′((r1,m1))/ Pr′((r2,m2)) = Pri(r1)/ Pri(r2) if
Pri(r2) > 0. Note thatPrElga

(r,m,i) assigns equal probability

to all points on a runr′ in Ki(r, m). Even if PrHT
(r,m,i)

is extended so that all points on a given run are taken to
be equally likely, in general,PrHT

(r,m,i) 6= PrElga
(r,m,i). The

following lemma characterizes exactly when the approaches
give identical results.

Lemma 3.1: PrElga
(r,m,i) = PrHT

(r,m,i) iff |Ki(r, m)({r1})| =
|Ki(r, m)({r2})| for all runs r1, r2 ∈ R(Ki(r, m)) such
thatPri(rj) 6= 0 for j = 1, 2.

Note that, in the synchronous case,|Ki(r, m)({r′})| = 1
for all runsr′ ∈ R(Ki(r, m)), so the two approaches are
guaranteed to give the same answers.

4 Comparing the Approaches
I have formalized two approaches for ascribing probability
in asynchronous settings, both of which generalize the rel-
atively noncontroversial approach used in the synchronous
case. Which is the most appropriate? I examine a number of
arguments here.

4.1 Elga’s Argument
Elga argued for the Elga approach, using the argument that
if you discover it is Monday, then you should consider heads
and tails equally likely. As I suggested above, I do not find
this a compelling argument for the Elga approach. I agree
that if you discover it is Monday, you should consider heads
and tails equally likely. On the other hand, if you might
actually learn that it is Monday, then there should be a run in
the system reflecting this fact, as in the systemR2 described
Figure 2. InR2, even if the HT approach is used, if you
discover it is Monday in runr∗1 or r∗2 , then you do indeed
ascribe probability1/2 to heads. On the other hand, inr1

andr2, where you donot discover it is Monday, you also
ascribe probability1/2 to heads when you are woken up, but
conditional on it being Monday, you consider the probability
of heads to be2/3. Thus,R2 allows us to model Elga’s
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intuition that, after learning it is Monday (inr∗1 andr∗2) you
ascribe probability1/2 to heads, while still allowing you to
ascribe probability1/2 to heads inr1 andr2 if you do not
learn it is Monday. Moreover, inr1 andr2, conditional on it
being Monday, you ascribe probability2/3 to heads.

The real issue here is whether, inr1, the probability of
heads conditional on it being Monday should be the same as
the probability that you ascribe to heads inr∗1 , where you ac-
tually discover that it is Monday. We often identify the prob-
ability of V givenU with the probability that you would as-
cribe toV if you learnU is true. What I am suggesting here
is that this identification breaks down in the asynchronous
case. This, of course, raises the question of what exactly
conditioning means in this context. “The probability ofV
given U ” is saying something like “if it were the case that
U , then the probability ofV would be . . . ” This is not nec-
essarily the same as “if you were to learn thatU , then the
probability ofV would be . . . ”3

AlthoughR2 shows that Elga’s argument for the1/3–2/3
answer is suspect, it does not follow that1/3–2/3 is incor-
rect. In the remainder of this section, I examine other con-
siderations to see if they shed light on what should be the
appropriate answer.

4.2 The Frequency Interpretation
One standard interpretation of probability is in terms of fre-
quency. If the probability of a coin landing heads is1/2,
then if we repeatedly toss the coin, it will land heads in
roughly half the trials; it will also land heads roughly half the
time. In the synchronous case, “half the trials” and “half the
time” are the same. But now consider the Sleeping Beauty
problem. What counts as a “trial”? If a “trial” is an experi-
ment, then the coin clearly lands heads in half of the trials.
But it is equally clear that the coin lands heads1/3 of the
times that the agent is woken up. Considering “times” and
“trials” leads to different answers in asynchronous systems;
in the case of the Sleeping Beauty problem, these different
answers are precisely the natural1/2–1/2 and1/3–2/3 an-
swers.

4.3 Betting Games
Another standard approach to determining subjective prob-
ability, which goes back to Ramsey [1931] and De Finetti
[1931], is in terms of betting behavior. For example, one
way of determining the subjective probability that an agent
ascribes to a coin toss landing heads is to compare the odds
at which he would accept a bet on heads to one at which he

3There are other reasons that “givenU and “if you were to learn
thatU ” should be treated differently; in the latter case, you must
take into account how you came to learn thatU is the case. Without
taking this into account, you run into puzzles like the Monty Hall
problem; see [Gr̈unwald and Halpern 2003] for discussion of this
point. I ignore this issue here, since it is orthogonal to the issues
that arise in the Sleeping Beauty problem.

would accept a bet on tails. While this seems quite straight-
forward, in the asynchronous case it is not. This issue was
considered in detail in the context of the absented-minded
driver paradox in [Grove and Halpern 1997]. Much the same
comments hold here, so I just do a brief review.

Suppose that Sleeping Beauty is offered a $1 bet on
whether the coin landed heads or the coin landed tails ev-
ery time she is woken up. If the bet pays off every time
she answers the question correctly, then clearly she should
say “tails”. Her expected gain by always saying tails is $1
(since, with probability1/2, the coin will land tails and she
will get $1 both times she is asked), while her expected
gain by always saying heads is only1/2. Indeed, a risk-
neutral agent should be willing to pay to take this bet. Thus,
even though she considers heads and tails equally likely and
ascribes probabilities using the HT approach, this betting
game would have her act as if she considered tails twice
as likely as heads: she would be indifferent between say-
ing “heads” and “tails” only if the payoff for heads was $2,
twice the payoff for tails.

In this betting game, the payoff occurs at every time step.
Now consider a second betting game, where the payoff is
only once per trial (so that if the coin lands tails, the agent
get $1 if she says tails both times, and $0.50 if she says tails
only once). If the payoff is per trial, then the agent should be
indifferent being saying “heads” and “tails”; the situation is
analogous to the discussion in the frequency interpretation.

There is yet a third alternative. The agent could be of-
fered a bet at only one point in the information set. If the
coin lands heads, she must be offered the bet at(r1, 1). If
the coin lands heads, an adversary must somehow choose if
the bet will be offered at(r2, 1) or (r2, 2). The third betting
game is perhaps more in keeping with the second story told
for R1, where the agent is not aware of time passing and
must assign a probability to heads and tails in the informa-
tion set. It may seem that the first betting game, where the
payoff occurs at each step, is more appropriate to the Sleep-
ing Beauty problem—after all, the agent is woken up twice
if the coin lands tails. Of course, if the goal of the prob-
lem is to maximize the expected number of correct answers
(which is what this betting game amounts to), then there is
no question that “tails” is the right thing to say. On the other
hand, if the goal is to get the right answer “now”, whenever
now is, perhaps because this is the only time that the bet
will be offered, then the third game is more appropriate. My
main point here is that the question of the right betting game,
while noncontroversial in the synchronous case, is less clear
in the asynchronous case.

4.4 Conditioning and the Reflection Principle

To what extent is it the case that the agent’s probability over
time can be viewed as changing via conditioning? It turns
out that the answer to this question is closely related to the
question of when the Reflection Principle holds, and gives
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further support to using the HT approach to ascribing prob-
abilities in the asynchronous case.

There is a trivial sense in which updating is never done by
conditioning: At the point(r, m), agenti puts probability
on the spaceKi(r, m); at the point(r, m + 1), agenti puts
probability on the spaceKi(r, m + 1). These spaces are ei-
ther disjoint or identical (since the indistinguishability rela-
tion that determinesKi(r, m) andKi(r, m+1) is an equiva-
lence relation). Certainly, if they are disjoint, agenti cannot
be updating by conditioning, since the conditional probabil-
ity space is identical to the original probability space. And if
the spaces are identical, it is easy to see that the agent is not
doing any updating at all; her probabilities do not change.

To focus on the most significant issues, it is best to fac-
tor out time by considering only the probability ascribed to
runs. Technically, this amounts to consideringrun-based
events, that is setsU of points with the property that if
(r, m) ∈ U , then(r, m′) ∈ U for all timesm′. In other
words,U contains all the points in a given run or none of
them. Intuitively, we can identifyU with the set of runs
that have points inU . To avoid problems of how to as-
sign probability in asynchronous systems, I start by con-
sidering synchronous systems. Given a setV of points, let
V − = {(r, m) : (r, m + 1) ∈ V }; that is,V − consists of all
the points immediately preceding points inV . The follow-
ing result, whose straightforward proof is left to the reader,
shows that in synchronous systems where the agents have
perfect recall, the agents do essentially update by condition-
ing. The probability that the agent ascribes to an eventU
at timem + 1 is obtained by conditioning the probability
he ascribes toU at timem on the set of points immediately
preceding those he considers possible at timem + 1.

Theorem 4.1: [Halpern 2003]Let U be a run-based event
and letR be a synchronous system where the agents have
perfect recall. Then

Prr,m+1,i(U) = Prr,m,i(U | Ki(r, m + 1)−).

Theorem 4.1 does not hold without assuming perfect re-
call. For example, suppose that an agent tosses a fair coin
and observes at time 1 that the outcome is heads. Then at
time 2 he forgets the outcome (but remembers that the coin
was tossed, and knows the time). Thus, at time 2, because
the outcome is forgotten, the agent ascribes probability1/2
to each of heads and tails. Clearly, her time 2 probabili-
ties are not the result of applying conditioning to her time 1
probabilities.

A more interesting question is whether Theorem 4.1 holds
if we assume perfect recall and do not assume synchrony.
Properly interpreted, it does, as I show below. But, as stated,
it does not, even with the HT approach to assigning prob-
abilities. The problem is the use ofKi(r, m + 1)− in the
statement of the theorem. In an asynchronous system, some
of the points inKi(r, m + 1)− may still be inKi(r, m + 1),
since the agent may not be aware of time passing. Intuitively,

at time(r, m), we want to condition on the set of points in
Ki(r, m) that are on runs that the agent considers possible at
(r, m + 1). But this set is not necessarilyKi(r, m + 1)−.

Let Ki(r, m + 1)(r,m) = {(r′, k) ∈ Ki(r, m) :
∃m′((r, m + 1) ∼i (r′,m′))}. Note thatKi(r, m + 1)(r,m)

consists precisely of those points that agent considers pos-
sible at(r, m) that are on runs that the agent still consid-
ers possible at(r, m + 1). In synchronous systems with
perfect recall,Ki(r, m + 1)(r,m) = Ki(r, m + 1)− since,
as observed above, if(r, m + 1) ∼i (r′,m + 1) then
(r, m) ∼i (r′,m). In general, however, the two sets are
distinct. UsingKi(r, m + 1)(r,m) instead ofK−r,m+1 gives
an appropriate generalization of Theorem 4.1.

Theorem 4.2: [Halpern 2003]Let U be a run-based event
and letR be a system where the agents have perfect recall.
Then,

PrHT
r,m+1,i(U) = PrHT

r,m,i(U | Ki(r, m + 1)(r,m)).

Thus, in systems with perfect recall, using the HT ap-
proach to assigning probabilities, updating proceeds by con-
ditioning. Note that since the theorem considers only run-
based events, it holds no matter how the probability among
points on a run is distributed. For example, in the Sleeping
Beauty problem, this result holds even if(r2, 1) and(r2, 2)
are not taken to be equally likely.

The analogue of Theorem 4.2 does not hold in general for
the Elga approach. This can already be seen in the Sleeping
Beauty problem. Consider the system of Figure 1. At time
0 (in eitherr1 or r2), the event heads (which consists of
all the points inr1) is ascribed probability1/2. At time
1, it is ascribed probability1/3. SinceKSB (r1, 1)(r1,0) =
{(r1, 0), (r2, 0)}, we have

1/3 = PrElga
r1,1,SB (heads) 6=

PrElga
r1,0,SB (heads) | KSB (r1, 1)(r1,0)) = 1/2.

The last equality captures the intuition that if Sleeping
Beauty gets no additional information, then her probabili-
ties should not change using conditioning.

Van Fraassen’s [1995]Reflection Principleis a coherence
condition connecting an agent’s future beliefs and his cur-
rent belief. Note that what an agent believes in the future
will depend in part on what the agent learns. TheGeneral-
ized Reflection Principlesays that if we consider all the pos-
sible things that an agent might learn (or evidence that an
agent might obtain) between the current time and timem—
call theseE(1, k), . . . ,E(k, m)—andPr1, . . . ,Prk are the
agent’s probability functions at timem (depending on which
piece of evidence is obtained), then the agent’s current prob-
ability should be a convex combination ofPr1, . . . ,Prk.
That is, there should exist coefficientsα1, . . . , αk in the in-
terval[0, 1] such thatPr = α1 Pr1 + . . .+αk Prk. Savage’s
[1954] Sure-Thing Principleis essentially a special case. It
says that if the probability ofA isα no matter what is learned
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at timem, then the probability ofA should beα right now.
This certainly seems like a reasonable criterion.

Van Fraassen [1995] in fact claims that if an agent
changes his opinion by conditioning on evidence, that is, if
Prj = Pr(· | E(j, m)) for j = 1, . . . , k, then the General-
ized Reflection Principle must hold. The intuition is that the
pieces of evidenceE(1,m), . . . , E(k,m) must form a par-
tition of underlying space (in each state, exactly one piece
of evidence will be obtained), so that it becomes a straight-
foward application of elementary probability theory to show
that if αj = Pr(E(j, t)) for j = 1, . . . , k, then indeed
Pr = α1 Pr1 + · · ·+ αk Prk.

Van Fraassen was assuming that the agent has a fixed set
W of possible worlds, and his probability onW changed
by conditioning on new evidence. Moreover, he was assum-
ing that the evidence was a subset ofW . In the runs and
systems framework, the agent is not putting probability on
a fixed set of worlds. Rather, at each timek, he puts prob-
ability on the set of worlds (i.e., points) that he considers
possible at timek. The agent’s evidence is an information
set—a set of points. If we restrict attention to run-based
events, we can instead focus on the agent’s probabilities on
runs. That is, we can takeW to be the set of runs, and con-
sider how the agent’s probability on runs changes over time.
Unfortunately, agenti’s evidence at a point(r, m) is not a
set of runs, but a set of points, namelyKi(r, m). We can
associate withKi(r, m) the set of runs going through the
points inKi(r, m), namely, in the notation of Section 3.2,
R(Ki(r, m))

In the synchronous case, for each timem, the possible in-
formation sets at timem correspond to the possible pieces
of evidence that the agent has at timem. These informa-
tion sets form a partition of the time-m points, and induce
a partition on runs. In this case, van Fraassen’s argument
is correct. More precisely, if, for simplicity, “now” is taken
to be time 0, and we consider some future timem > 0,
the possble pieces of evidence that agenti could get at time
m are all sets of the formKi(r, m), for r ∈ R. With this
translation of terms, it is an immediate consequence of van
Fraassen’s observation and Theorem 4.1 that the General-
ized Reflection Principle holds in synchronous systems with
perfect recall. But note that the assumption of perfect re-
call is critical here. Consider an agent that tosses a coin
and observes that it lands heads at time 0. Thus, at time 0,
she assigns probability 1 to the event of that coin toss land-
ing heads. But she knows that one year later she will have
forgotten the outcome of the coin toss, and will assign that
event probability1/2 (even though she will know the time).
Clearly Reflection does not hold.

What about the asynchronous case? Here it is not straight-
forward to even formulate an appropriate analogue of the
Reflection Principle. The first question to consider is what
pieces of evidence to consider at timem. While we can con-
sider all the information sets of formKi(r, m), wherem is

fixed andr ranges over the runs, these sets, as we observed
earlier, contain points other than timem points. While it
is true that eitherKi(r, m) is identical toKi(r′,m) or dis-
joint fromKi(r′,m), these sets donot induce a partition on
the runs. It is quite possible that, even though the set of
pointsKi(r, m) andKi(r′,m) are disjoint, there may be a
runr′′ and timesm1 andm2 such that(r′′,m1) ∈ Ki(r, m)
and (r′′,m2) ∈ Ki(r′,m). For example, in Figure 4, if
the runs from left to right arer1–r5, thenKSB (r5, 1) =
{r1, . . . , r5} andKSB (r1, 1) = {r1, r2, r3}. However, un-
der the assumption of perfect recall, it can be shown that for
any two information setsKi(r1,m) andKi(r2,m), either
(a) R(Ki(r1,m)) ⊆ R(Ki(r2,m)), (b) R(Ki(r2,m)) ⊆
R(Ki(r1,m)), or (c)R(Ki(r1,m)) ∩ R(Ki(r2,m)) = ∅.
From this it follows that there exist a collectionR′ of runs
such that the setsR(Ki(r′,m)) for r′ ∈ R′ are disjoint and
the union ofR(Ki(r′,m)) taken over the runsr′ ∈ R′ con-
sists of all runs inR. Then the same argument as in the
synchronous case gives the following result.

Theorem 4.3: If R is a (synchronous or asynchronous) sys-
tem with perfect recall andKi(r1,m), . . . ,Ki(rk,m) are
the distinct information sets of the formKi(r′,m) for r′ ∈
R(Ki(r, 0), then there existα1, . . . , αk such that

Pri(· | R(Ki(r, 0))) =
k∑

j=1

αjPri(· | R(Ki(rj ,m))).

The following corollary is immediate from Theorem 4.3,
given the definition ofPrHT

(i,r,m).

Corollary 4.4: If R is a (synchronous or asynchronous)
system with perfect recall andKi(r1,m), . . . ,Ki(rk,m)
are the distinct information sets of the formKi(r′,m) for
r′ ∈ R(Ki(r, 0), then there existα1, . . . , αk such that for
all R′ ⊆ R,

PrHT
(i,r,0)(Ki(r, 0)(R′)) =

k∑
j=1

αjPrHT
(i,rj ,m)(Ki(rj ,m))(R′)).

Corollary 4.4 makes precise the sense in which the Re-
flection Principle holds for the HT approach. Although the
notationKi(r, m)(R′) that converts sets of runs to sets of
points makes the statement somewhat ugly, it plays an im-
portant role in emphasizing what I take to be an important
distinction, that has largely been ignored. An agent assigns
probability to points, not runs. At both time 0 and timem
we can consider the probability that the agent assigns to the
points on the runs inR′, but the agent is actually assign-
ing probability to quite different (although related) events at
time 0 and timem.

The obvious analogue to Corollary 4.4 does not hold for
the Elga approach. Indeed, the same example that shows
conditioning fails in the Sleeping Beauty problem shows that
the Reflection Principle does not hold. Indeed, this example
shows that the sure-thing principle fails too. Using the Elga
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approach, the probability of heads (i.e., the probability of the
points on the run where the coin lands heads) changes from
1/2 to 1/3 between time 0 and time 1, no matter what.

5 Conclusion
In this paper, I have tried to take a close look at the problem
of updating in the presence of asynchronoy and imperfect
recall. Let me summarize what I take to be the main points
of this paper:

• It is important to have a good formal model that incor-
porates uncertainty, imperfect recall, and asynchrony in
which probabilistic arguments can be examined. While
the model I have presented here is certainly not the only
one that can be used, it does have a number of attractive
features.

• Whereas there seems to be only one reasonable approach
to assigning (and hence updating) probabilities in the syn-
chronous case, there are at least two such approaches in
the asynchronous case. Both approaches can be supported
using a frequency interpretation and a betting interpreta-
tion. However, only the HT approach supports the Reflec-
tion Principle in general. In particular, the two approaches
lead to the two different answers in the Sleeping Beauty
problem.

• We cannot necessarily identify the probability conditional
onU with what the probability would be upon learningU .
This identification is being made in Elga’s argument; the
structureR2 shows that they may be distinct.

One fact that seems obvious in light of all this discussion
is that our intuitions regarding how to do updating in asyn-
chronous systems are rather poor. Given how critical this
problem is for KR, it clearly deserves further investigation.
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