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Abstract

A careful analysis of conditioning in th8leeping Beauty
problem is done, using the formal model for reasoning about
knowledge and probability developed by Halpern and Tuttle.
While the Sleeping Beauty problem has been viewed as re-
vealing problems with conditioning in the presence of imper-
fect recall, the analysis done here reveals that the problems
are not so much due to imperfect recall asagynchrony

The implications of this analysis for van Fraassééflection
Principle and Savage’Sure-Thing Principlare considered.

1 Introduction

The standard approach to updating beliefs in the probabil-
ity literature is by conditioning. But it turns out that con-
ditioning is somewhat problematic if agents hawgerfect
recall. In the economics community this issue was brought
to the fore by the work of Piccione and Rubinstein [1997]
(to which was dedicated a special issue of the jouGahes
and Economic BehavidrThere has also been a recent surge
of interest in the topic in the philosophy community, inspired
by a re-examination by Elga [2000] of one of the problems
considered by Piccione and Rubinstein, the so-céleép-
ing Beauty problem (Some recent work on the problem
includes [Arntzenius 2003; Dorr 2002; Lewis 2001; Monton
2002].)

| take the Sleeping Beauty problem as my point of depar-
ture in this paper too. | argue that the problems in updating
arise not just with imperfect recall, but alsoaeynchronous
systems, where agents do not know exactly what time it is, or
do not share a global clock. Since both human and computer
agents are resource bounded and forget, imperfect recall is
the norm, rather than an unusual special case. Moreover,
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there are many applications where it is unreasonable to as-
sume the existence of a global clock. Thus, understanding
how to do updating in the presence of asynchrony and imper-
fect recall is a significant issue in knowledge representation.

The Sleeping Beauty problem is described by Elga as fol-
lows:

Some researchers are going to put you to sleep. During
the two days that your sleep will last, they will briefly
wake you up either once or twice, depending on the
toss of a fair coin (heads: once; tails: twice). After
each waking, they will put you back to sleep with a
drug that makes you forget that waking. When you are
first awakened, to what degree ought you believe that
the outcome of the coin toss is heads?

Elga argues that there are two plausible answers. The first
is that it is1/2. After all, it was1/2 before you were put

to sleep and you knew all along that you would be woken
up. Thus, it should still bé /2 when you are actually woken
up. The second is that it is/3. Clearly if this experiment is
carried out repeatedly, then in the long run, at roughly one
third of the times that you are woken up, you are in a trial in
which the coin lands heads.

Elga goes on to give another argument f@8, which he
argues is in fact the correct answer. Suppose you are put
to sleep on Sunday, so that you are first woken on Monday
and then possibly again on Tuesday if the coin lands tails.
Thus, when you are woken up, there are three events that
you consider possible:

e ¢;: itis Monday and the coin landed heads;

e ¢,: itis Monday and the coin landed tails;

e c3: itis Tuesday and the coin landed tails.

Here is Elga’s argument: Clearly if, after waking up, you
learn that it is Monday, you should consider and es
equally likely. Since, conditional on learning that it is Mon-
day, you conside¢; ande; equally likely, you should con-
sider them equally likely unconditionally. Now, conditional
on the coin landing tails, it also seems reasonablecthahd

e3 should be equally likely; after all, you have no reason to
think Monday is any more or less likely that Tuesday if the



coin landed tails. Thus, unconditionallg andes should
be equally likely. But the only way foe, e2, andes to

other cards he has seen, and any information he may have
about the strategies of the other players (e.g., Bob may know
be equally likely is for them all to have probability'3. So that Alice likes to bluff, while Charlie tends to bet conser-
heads should have probability3. vatively). In the Sleeping Beauty problem, we can assume
Note that if the story is changed so that (1) heads has prob- that the agent has local states corresponding to “just woken
ability .99 and tails has probability .01, (2) you are woken up up” and “sleeping”. We could also include local states corre-
once if the coin lands heads, and (3) you are woken up 9900 sponding to “just before the experiment” and “just after the

times if the coin lands tails, then Elga’s argument would say
that the probability of tails is .99. Thus, although you know
you will be woken up whether the coin lands heads or tails,
and you are initially almost certain that the coin will land
heads, when you are woken up (according to Elga’s analy-
sis) you are almost certain that the coin landed tails!

To analyze these arguments, | use a formal model for
reasoning about knowledge and probability that Mark Tut-
tle and | developed [Halpern and Tuttle 1993] (HT from
now on), which in turn is based on the “runs and systems”
framework for reasoning about knowledge in computing
systems, introduced in [Halpern and Fagin 1989] (see [Fa-
gin, Halpern, Moses, and Vardi 1995] for motivation and
discussion). Using this model, | argue that Elga’s argument
is not as compelling as it may seem. The analysis also re-
veals that, despite the focus of the economics community
on imperfect recall, the real problem is not imperfect recall,
but asynchrony: the fact that Sleeping Beauty does not know
exactly what time it is.

Finally, | consider other arguments and desiderata tra-
ditionally used to justify probabilistic conditioning, such

experiment”.

Besides the agents, it is also conceptually useful to have
an “environment” (or “nature”) whose state can be thought
of as encoding everything relevant to the description of the
system that may not be included in the agents’ local states.
In many ways, the environment can be viewed as just an-
other agent. For example, in the Sleeping Beauty problem,
the environment state can encode the actual day of the week
and the outcome of the coin toss. We can view the whole
system as being in songgobal state a tuple consisting of
the local state of each agent and the state of the environment.
Thus, a global state has the fofm., s1, ..., s,), wheres,
is the state of the environment ardis agenti’s state, for
1=1,...,n.

A global state describes the system at a given point in
time. But a system is not a static entity. It is constantly
changing over time. Aun captures the dynamic aspects of
a system. Intuitively, a run is a complete description of one
possible way in which the system’s state can evolve over
time. Formally, a run is a function from time to global states.
For definiteness, | take time to range over the natural num-

as frequency arguments, betting arguments, van Fraassen'sbers. Thusy(0) describes the initial global state of the sys-

[1984]Reflection Principleand Savage’s [1954ure-Thing
Principle. | show that our intuitions for these arguments are
intimately bound up with assumptions such as synchrony
and perfect recall.

The rest of this paper is organized as follows. In the next
section | review the basic runs and systems framework. In
Section 3, | describe the HT approach to adding probability

to the framework when the system is synchronous, and then that is, if r;(m) = r}(m’).

tem in a possible execution(1) describes the next global
state, and so on. A pajr, m) consisting of a rum and time
m is called apoint If r(m) = (s, s1,- .-, $n), then define
re(m) = s, andr;(m) = s;, i = 1,...,n; thus,r;(m)
is agenti’s local state at the point-, m) andr.(m) is the
environment’s state dt, m). | write (r,m) ~; (r',m’) if
agenti has the same local state at b¢thm) and (', m’),
Let K;(r,m) = {(+',m) :

consider two generalizations to the case that the system is (r,m) ~; (v',m’)}. Intuitively, IC; (r, m) is the set of points
asynchronous. In the Sleeping Beauty problem, these two thati considers possible &t, m). Sets of the forniC; (r, m)

generalizations give the two solutions discussed by Elga. In
Section 4, | consider other arguments and desiderata.

2 The framework
2.1 The basic multi-agent systems framework

In this section, we briefly review the multiagent systems
framework; see [Fagin, Halpern, Moses, and Vardi 1995]
for more details.

A multiagent systeroonsists of: agents interacting over
time. At each point in time, each agent is in soloeal
state Intuitively, an agent’s local state encapsulates all the
information to which the agent has access. For example,
in a poker game, a player’s state might consist of the cards

are sometimes calledformation sets

In general, there are many possible executions of a sys-
tem: there could be a number of possible initial states and
many things that could happen from each initial state. For
example, in a draw poker game, the initial global states could
describe the possible deals of the hand by having pléyer
local state describe the cards held by playerFor each
fixed deal of the cards, there may still be many possible bet-
ting sequences, and thus many runs. Formalbystenis a
nonempty set of runs. Intuitively, these runs describe all the
possible sequences of events that could occur in the system.
Thus, | am essentially identifying a system with its possible
behaviors.

The obvious system for the Sleeping Beauty problem con-

he currently holds, the bets made by the other players, any sists of two runs, the first corresponding to the coin land-
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ing heads, and the second corresponding to the coin landing Various other models are possible:
tails. However, there is some flexibility in how we model the
global states. Here is one way: At time 0, a coin is tossed;
the environment state encodes the outcome. At time 1, the
agent is asleep (and thus is in a “sleeping” state). At time 2,
the agent is woken up. If the coin lands tails, then at time 3,
the agent is back asleep, and at time 4, is woken up again.
Note that | have assumed here that time in both of these runs ) o
ranges from 0 to 5. Nothing would change if | allowed runs  ® All this assumes that the agent knows when the coin is

to have infinite length or a different (but sufficiently long) going to be tossed. If the agent doesn’t know this, then
finite length. we can consider the system consisting of the four runs

/ /
r,r1,7T2,T9.

e We could assume (as Elga does at one point) that the coin
toss happens only after the agent is woken up the first
time. Very little would change, except that the environ-
ment state would b@ (or some other way of denoting that
the coin hasn't been tossed) in the first two global states
of both runs. Call the two resulting rum$ andr.

Alternatively, we might decide that it is not important to
model the time that the agent is sleeping; all that matters is e Suppose that we now want to allow for the possibility
the point just before the agent is put to sleep and the points  that, upon wakening, the agent learns that it is Monday
where the agent is awake. Assume that Sleeping Beauty is (as in Elga’s argument). To do this, the system must in-

in stateb before the experiment starts, in statafter the clude runs where the agent actually learns that it is Mon-
experiment is over, and in state when woken up. This day. For example, we can consider the systRm =
leads to a model with two runs, andr,, where the first (r1,72,77,75), wherer; is the same as; except that on
three global states im, are(H,b), (H,w), and(H,a), and Monday, the agent’s local state encodes that it is Mon-
the first four global states in, are (T,b), (T, w), (T, w), day. Thus, the sequence of global statesfirs (H, b),
(T,a). Let R, be the system consisting of the runsand (H,M), (H,a), and the sequenceid is (T, b), (T, M),

ro. This system is shown in Figure 1 (where only the first (T, w). Ry is described in Figure 2. Note that on Tues-
three global states in each run are shown). The three points day inr3, the agent forgets whether she was woken up on

where the agent’s local stateds namely,(rq,1), (rq, 1), Monday. She is in the same local state on Tuesday; in
and(rq, 2), form what is traditionally called in game theory as she is on both Monday and Tuesday4n
aninformation set These are the three points that the agent
considers possible when she is woken up. For definiteness, " " r* -
| useR; in my analysis of Sleeping Beauty. 0" * .0 ‘ ‘ (0 * (.0 ‘
L] 5]
(r.0% %0 (r.Dg (.1 ‘ (g gD
(?'1,2). .(5:2) (?’l*,Q). Q(?',;‘,Q)

Figure 2: An alternate representation of the Sleeping Beauty
problem, usingR..

Figure 1: The Sleeping Beauty problem, captured using Yet other representations of the Sleeping Beauty problem
are also possible. The point that | want to emphasize here

Notice thatR ; is also compatible with a somewhat differ-  is that the framework has the resources to capture important

ent story. Suppose that the agent is not aware of time pass-distinctions about when the coin is tossed and what agents

ing. Attime O the coin is tossed, and the agent knows this. If know.

the coin lands heads, only one round passes before the agent

is told that the experiment is over; if the coin lands tails, 2-2 Synchrony and perfect recall

she is told after two rounds. Since the agent is not aware of One advantage of the runs and systems framework is that it

time passing, her local state is the same at the pint2), can be used to easily model a number of important assump-

(rq,1), and(re,2). The same analysis should apply to the tions. | focus on two of them hersynchronythe assump-

guestion of what the probability of heads is at the informa- tion that agents know the time, amperfect recal) the as-

tion set. The key point is that here the agent does not forget; sumption that agents do not forget [Fagin, Halpern, Moses,

she is simply unaware of the time passing. and Vardi 1995; Halpern and Vardi 1989]
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Formally, a systen® is synchronous for ageritif for all
points(r,m) and(r',m') in R, if (r,m) ~; (+',m’), then
m = m’. Thus, if R is synchronous for ageitthen at time
m, agenti knows that it is timem, because it is timen at
all the points he considers possible.is synchronoud it is

synchronous for all agents. Note that the systems that model

the Sleeping Beauty problem are not synchronous. When
Sleeping Beauty is woken up on Monday, she does not know
what day it is.

Consider the following example of a synchronous system,
taken from [Halpern 2003]:

Example 2.1 Suppose that Alice tosses two coins and sees
how the coins land. Bob learns how the first coin landed af-

ter the second coin is tossed, but does not learn the outcome

always so.
The system describing this situation has four runs,
r,...,r% one for each of the time-2 global states. The

runs are perhaps best thought of as being the branches of the
computation tree described in Figure 3.

of the second coin toss. How should this be represented as a

multi-agent system? The first step is to decide what the lo-
cal states look like. There is no “right” way of modeling the

local states. What | am about to describe is one reasonable

way of doing it, but clearly there are others.

The environment state will be used to model what actually
happens. At time 0, it i$), the empty sequence, indicating
that nothing has yet happened. Attime 1, it is eitté or
(T"), depending on the outcome of the first coin toss. Attime
2,itis either(H, H), (H,T), (T, H), or (T, T'), depending
on the outcome of both coin tosses. Note that the environ-
ment state is characterized by the values of two random vari-
ables, describing the outcome of each coin toss. Since Alice
knows the outcome of the coin tosses, | take Alice’s local
state to be the same as the environment state at all times.

What about Bob’s local state? After the first coin is
tossed, Bob still knows nothing; he learns the outcome of
the first coin toss after the second coin is tossed. The first
thought might then be to take his local states to have the
form () at time 0 and time 1 (since he does not know the
outcome of the first coin toss at time 1) and eiti&F) or
(T) at time 2. This choice would not make the system syn-
chronous, since Bob would not be able to distinguish time
0 from time 1. If Bob is aware of the passage of time, then
at time 1, Bob’'s state must somehow encode the fact that
the time is 1. | do this by taking Bob’s state at time 1 to be
(tick), to denote that one time tick has passed. (Other ways
of encoding the time are, of course, also possible.) Note that
the time is already implicitly encoded in Alice’s state: the
time is 1 if and only if her state is eithéf) or (T').

Figure 3: Tossing two coins.

Modeling perfect recall in the systems framework is not
too difficult, although it requires a little care. In this frame-
work, an agent’s knowledge is determined by his local state.
Intuitively, an agent has perfect recall if his local state is al-
ways “growing”, by adding the new information he acquires
over time. This is essentially how the local states were mod-
eled in Example 2.1. In general, local states are not required
to grow in this sense, quite intentionally. It is quite possible
that information encoded i (m)—i's local state at timen
in run r—no longer appears in;(m + 1). Intuitively, this
means that agerithas lost or “forgotten” this information.
There is a good reason not to make this requirement. There
are often scenarios of interest where it is important to model
the fact that certain information is discarded. In practice,
for example, an agent may simply not have enough memory
capacity to remember everything he has learned. Neverthe-
less, although perfect recall is a strong assumption, there are
many instances where it is natural to model agents as if they
do not forget.

Intuitively, an agent with perfect recall should be able to
reconstruct his complete local history from his current lo-
cal state. To capture this intuition, lagenti’s local-state
sequence at the poiift, m) be the sequence of local states
that she has gone through in raap to timem, without con-
secutive repetitions. Thus, if from time 0 through time 4 in

Under this representation of global states, there are sevenrunr agent has gone through the sequerigg s;, s, s;, $;)

possible global states:

o ((),(),()), the initial state,

e two time-1 states of the forni(X), (X), (tick)), for
X, € {H,T},

o four time-2 states of the form
(<X1, Xv2>7 <X1, X2>, <tiC|(7 X1>), for X1,X5 € {H7 T}

In this simple case, the environment state determines the
global state (and is identical to Alice’s state), but this is not

of local states, where; # s., then her local-state sequence
at (r,4) is (s;, s}, s;). Agenti's local-state sequence at a
point (r, m) essentially describes what has happened in the
run up to timem, from 4’s point of view. Omitting consec-
utive repetitions is intended to capture situations where the
agent has perfect recall but is not aware of time passing, so
she cannot distinguish a run where she stays in a given state
s for three rounds from one where she staysiar only one
round.

KR 2004 15



An agent has perfect recall if her current local state
encodes her whole local-state sequence. More formally,
agenti has perfect recall in systef if, at all points(r, m)
and(r’',m’) in R, if (r,m) ~; (r',m'), then agent has
the same local-state sequence at hpthn) and (v, m’).
Thus, agent has perfect recall if she “remembers” her local-
state sequence at all timésn a system with perfect recall,
r;(m) encodeg’s local-state sequence in that, at all points
wherei’s local state is;; (m), she has the same local-state se-
guence. A system where agertas perfect recall is shown
in Figure 4.

Figure 4. An asynchronous system where agéats perfect
recall.

The combination of synchrony and perfect recall leads to
particularly pleasant properties. It is easy to see thAt i§
a synchronous system with perfect recall &ndn + 1) ~;
(r',m + 1), then(r,m) ~; (r',;m). Thatis, if agent con-
siders runr’ possible at the pointr, m + 1), theni must
also consider run’ possible at the pointr, m). (Proof:
since the system is synchronous antlas perfect recall,
i's local state must be different at each pointrin For
if ¢'s local state were the same at two poirfisk) and
(r, k") for k # k', then agent would not know that it was
time k at the point(r, k). Thus, at the point$r,m + 1),
i's local-state sequence must have length+ 1. Since
(rym 4+ 1) ~; (r',m + 1), i has the same local-state se-
quence afr,m + 1) and (r',m + 1). Thus,i must also
have the same local-state sequence at the points) and
(r',m), sincei’s local-state sequence at these points is just
the prefix ofi’s local-state sequence @t m + 1) of length
m. It is then immediate thatr,m) ~; (r',m).) Thus, in
a synchronous system with perfect recall, agé&ninforma-
tion set refines over time, as shown in Figure 5.

2This definition of perfect recall is not quite the same as that
used in the game theory literature, where agents must explicitly re-
call the actions taken (see [Halpern 1997] for a discussion of the

[- » e 9 o -J
(o o o ¢](s o
RO

Figure 5: A synchronous system with perfect recall.

Note that whether the agent has perfect recall in the Sleep-
ing Beauty problem depends in part on how we model the
problem. In the systerik®, she does; iR, she does not.
For example, at the poirit;, 2) in Ro, where her local state
is (T, w), she has forgotten that she was woken up at time
1 (because she cannot distinguigh, 2) from (r3,2)). (It
may seem strange that the agent has perfect recall;in
but that is because iR, the time that the agent is asleep
is not actually modeled. It happens “between the points”. If
we explicitly include local states where the agent is asleep,
then the agent would not have perfect recall in the resulting
model. The second interpretation&f;, where the agent is
unaware of time passing, is perhaps more compatible with
perfectrecall. | us&; here so as to stress that perfect recall
is not really the issue in the Sleeping Beauty problem; it is
the asynchrony.)

3 Adding probability

To add probability to the framework, | start by assuming a
probability on the set of runs in a system. Intuitively, this
should be thought of as the agents’ common probability. It
is not necessary to assume that the agents all have the same
probability on runs; different agents may have use probabil-
ity measures. Moreover, it is not necessary to assume that
the probability is placed on the whole set of runs. There
are many cases where it is convenient to partition the set of
runs and put a separate probability measure on each cell in
the partition (see [Halpern 2003] for a discussion of these
issues). However, to analyze the Sleeping Beauty problem,
it suffices to have a single probability on the runspb-
abilistic systemis a pair(R, Pr), whereR is a system (a

set of runs) andPr is a probability onR. (For simplicity,

| assume thaR is finite and that all subsets & are mea-
surable.) In the case of the Sleeping Beauty problem, the

issues), but the difference between the two notions is not relevant Probability onR; is immediate from the desc.ri.ption of the
here. In particular, according to both definitions, the agent has per- problem: each of-; andr, should get probabilityl /2. To

fect recall in the “game” described by Figure 1.
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how likely it is that the agent will discover that it is actually
Monday. Suppose that probabilityds In that casey; and
ro both get probability 1 — «)/2, while r§ andr; both get
probability /2.

Unfortunately, the probability on runs is not enough for
the agent to answer questions like “What is the probabil-
ity that heads was tossed?” if she is asked this question at
the point(r;,1) when she is woken up iR, for exam- rl r2 r3 rd
ple. Atthis point she considers three points possipte; 1), Figure 6: Tossing two coins, with probabilities.
(r9,1), and(rq, 2), the three points where she is woken up.

She needs to put a probability on this space of three points

to answer the question. Obviously, the probability on the gyggested above does not immediately extend to the asyn-

points should be related to the probability on runs. Buthow? cnronous case. In the asynchronous case, the points in
K;(r,m) are not in general all time: points, so it does not

3.1 The synchronous case make sense to condition dx™ on K;(r,m). (Of course,

it would be possible to condition on the time-points in

K;(r,m), butitis easy to give examples showing that doing

this gives rather nonintuitive results.)

Tuttle and | suggested a relatively straightforward way of
going from a probability on runs to a probability on points
in synchronous systems. For all times the probability ) . .
Pr on R, the set of runs, can be used to put a probabil- I d|_scuss two reasonable candidates fpr ascribing prqba—
ity Pr™ on the points inR™ = {(r,m) : r € R}: sim- p|I|ty in the asynchronous case here, Whlch are generallza—
ply take Pr™(r,m) = Pr(r). Thus, the probability of the t|pns of the two approac'hes that Elga considers. I. first con-
point (, m) is just the probability of the run. Clearly,Pr™ sider these approaches in the context of th_e S_Ieepmg Beauty
is a well-defined probability on the set of time-points. problem, and then give the general formalization.

SinceR is synchronous, at the poittt, m), agenti con- Consider the syster_n descr!bed in Figure 1, but_r_10w sup-
siders possible only time: points. That is, all the points ~ POse that the probability of, is a and the probability of

in KCi(r,m) = {(',m’) : (r,m) ~; (+',m’)} are actually ro iS 1 — a. (In the original Sleeping Beauty .problem,
time-m points. Since, at the poirft, m), the agent consid- @ = 1/2) It seems reasonable that at the poifts, 0)

ers possible only the points iK;(r,m), it seems reason- and (r3,0), the agent ascribes probabilityto (r,,0) and

able to take the agent's probability at the pojntm) to 1 —ato(ry,0), using the HT approach for the synchronous
the result of conditionind®r™ on K;(r,m), provided that ~ case. What about at each of the poifits, 1), (i, 1), and

Pr™ (K;(r,m)) > 0, which, for simplicity, | assume here. ~ (72,2)? One approach (which I henceforth call #H& ap-
Taking Pr(,..,, ;) to denote agents probability at the point proach since it was advocated in HT), is to say that the prob-
(r,m), this suggests thatr, ,,, ; (', m) = Pr™((r',m) | ability O.c.Of runry is prOJ.ected.to the poir(tr1, 1), while the
Ki(r,m)). probability 1 — « of ry |§.pr01ecteq to(r, 1) and (rs, 2):

How should the probability be split over these two points?
Note that splitting the probability essentially amounts to de-
ciding the relative probability of being at time 1 and time 2.
Nothing in the problem description gives us any indication

To see how this works, consider the system of Exam-
ple 2.1. Suppose that the first coin has t3#38, the second
coin is fair, and the coin tosses are independent, as shown
in Figure 6. Note that, in Figure 6, the edges coming out ) . . ; . )
of each node are labeled with a probability, which is intu- °.f how to de.termme t.hls' HT avoid making this determina-
itively the probability of taking that transition. Of course, tion by making the singleton sefgrz, 1}} and {(r2,2)}

the probabilities labeling the edges coming out of any fixed nonmeg_surable. Since thgy are not in the domain of the
node must sumto 1, since some transition must be taken. Forpmb"’lbIIIty measure, there is no need to give them a proba-

example, the edges coming out of the root have probability bility. The only measurable sets in this space would then be

2/3 and1/3. Since the transitions in this case (i.e., the coin (D'h{_(rhl’ D} {(E’;.)I.’ (ré’ 2)}; and{(rlé 11)’ (r2, 1), (.T2’|2)}A
tosses) are assumed to be independent, itis easy to computéNI Ic g.et proba 'I'(ty 2 Io"da; ,brespectlllvelyk | n
the probability of each run. For example, the probability of alternative Is to take times 1 and 2 to be equally likely, in

: o i o hich case the probability of the s¢f(rq, 1), (r2,2)} is
runr'is2/3 x 1/2 = 1/3; this represents the probability of whi A .
getting tw{) heaés. / split over(rq, 1) and(r2,2), and they each get probability

(1 — a)/2. Whena = 1/2, this gives Elga’s first solution.
Although it is reasonable to assume that times 1 and 2 are
equally likely, the technical results that | prove hold no mat-
The guestion now is how the agents should ascribe prob- ter how the probability is split between times 1 and 2.
abilities in arbitrary (not necessarily synchronous) system,  The second approach, which | call tl#ga approach
such as that of the Sleeping Beauty problem. The approach (since it turns out to generalize what Elga does), is to require

3.2 The general case
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that for any pair of pointgr, m) and (', m’) on different
runs, the relative probability of these points is the same as
the relative probability of- andr’. This property is easily

seen to hold for the HT approach in the synchronous case.

With this approach, the ratio of the probability @f , 1) and
(ro,1) isa : 1 — «, as is the ratio of the probability of
(r1,1) and(rq, 2). This forces the probability ofry, 1) to

be a/(2 — «), and the probability of each dfr1,1) and
(re,2) to be(1 — a)/(2 — «). Note that, according to the
Elga approach, iPr is the probability on the runs ok,

a = 1/2, so thatPr(r;) = Pr(re) = 1/2, andPr’ is the
probability that the agent assigns to the three points in the
information set, then

((Tl’ ) ‘ {(rla )7( 71)})
- ((7’1, ) ‘ {(7’1, )7( 72)})
= Pr(ri [{ri,r2})
= 1/2.
Thus, we must havePr'((r,1)) = Pr'((rz,1)) =

Pr’((r2,2)), so each of the three points has probabilits,
which is Elga’s second solution. Moreover, note that

Pr'((ry, )\{(7‘1, 1), (r2,1)})

((’I“g, ‘{(7‘1, ) (T272)})
1/2

This is one way of formalizing Elga’'s argument tHai’
should have the property that, conditional on learning it is
Monday, you should consider “it is Monday and the coin
landed heads” and “it is Monday and the coin landed tails”
equally likely.

To summarize, the HT approach assigns probability
among points in an information séty dividing the proba-
bility of a runr among the points it that lie onr (and then
normalizing so that the sum is one), while the Elga approach
proceeds by giving each and every poinfithat is on run-
the same probability as that of and then normalizing.

For future reference, | now give a somewhat more precise
formalization of the HT and Elga approaches. To do so, it is

similarly will use Pr(Elg“ to denote agents preobability

calculcated using the Elga approach.) That is, the probabll—
ity that agent assigns at the poiitt, m) to the points in’ is
just the probability of the run’ conditional on the probabil-
ity of the runs going through the information gét(r, m).
As | said earlier, Halpern and Tuttle do not try to assign a
probability to individual points inC;(r,m)(r’) if there is
more than one point o in /C;(r, m).

By way of contrast, the Elga approach is defined as fol-
lows:

Pr;({r'} N R(K;(r,m)))
ZT”ER(IC,;(T m)) Pr; (r)[KC; (rym) ({7 })|

It is easy to check thatPrffZ;Ii) is the unique

probability measure Pr’ on K;(r,m) such that
Pr'((r1,m1))/ Pr'((ra, m2)) Pr;(r1)/ Pry(ry) if
Pr;(r2) > 0. Note thatPrﬁl’iZ‘i) assigns equal probability
to all points on a run’ in K;(r,m). Even if Pr(l" .

is extended so that all points on a given run are taken to
be equally likely, in generalPr([7, ;) # Pr(% . The
following lemma characterizes exactly when the approaches
give identical results.

Lemma 3.1 Pr(b:l{z 5=

|KC;(r, m)({r2})] for all runs ri,7o € R(K;(r,
thatPr;(r;) #0forj =1,2.

Note that, in the synchronous cagé;(r,m)({r'})| = 1
for all runsr’ € R(K;(r,m)), so the two approaches are
guaranteed to give the same answers.

Elga
P (r,m,3)

(T/vm/) =

= Pr(i o iff [Ki(r,m)({r1})] =
m)) such

4 Comparing the Approaches

| have formalized two approaches for ascribing probability
in asynchronous settings, both of which generalize the rel-
atively noncontroversial approach used in the synchronous
case. Which is the most appropriate? | examine a number of
arguments here.

helpful to have some notation that relates sets of runs to sets4.1  Elga’s Argument

of points. If S is a set of runs and’ is a set of points, let
S(U) be the set of runs i§ going through some point iff.
and letU(S) be the set of points il that lie on some run
in S. Thatis,

SWU)={reS:(r,m)eU forsomem} and
US)={(r,m)eU:reS}

Note that, in particular/C;(r,m)(r’) is the set of points
in the information setC;(r, m) that are on the rum’ and
R(K;(r,m)) is the set of runs in the syste that con-
tain points inkC;(r,m). According to the HT approach,
if Prl is agenti's probability on’R, the set of runs, then
Pr(y i) (Ki(r,m) (1)) = Pri(r’ | R(Ki(r,m))). (Note
that here | am US'”@’Y(M,m) to denote agenis probabil-
ity at the point(r, m) calculated using the HT approach; |
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Elga argued for the Elga approach, using the argument that
if you discover it is Monday, then you should consider heads
and tails equally likely. As | suggested above, | do not find
this a compelling argument for the Elga approach. | agree
that if you discover it is Monday, you should consider heads
and tails equally likely. On the other hand, if you might
actually learn that it is Monday, then there should be arunin
the system reflecting this fact, as in the sysf@sdescribed
Figure 2. InR., even if the HT approach is used, if you
discover it is Monday in rum} or r3, then you do indeed
ascribe probabilityl /2 to heads. On the other hand,
andry, where you danot discover it is Monday, you also
ascribe probabilityt /2 to heads when you are woken up, but
conditional on it being Monday, you consider the probability
of heads to be&/3. Thus, R, allows us to model Elga’s



intuition that, after learning it is Monday (irf andr3) you
ascribe probabilityl /2 to heads, while still allowing you to
ascribe probabilityl /2 to heads in-; andr, if you do not
learn it is Monday. Moreover, in; andr,, conditional on it
being Monday, you ascribe probabili2y'3 to heads.

The real issue here is whether, +#p, the probability of

would accept a bet on tails. While this seems quite straight-
forward, in the asynchronous case it is not. This issue was
considered in detail in the context of the absented-minded
driver paradox in [Grove and Halpern 1997]. Much the same
comments hold here, so | just do a brief review.

Suppose that Sleeping Beauty is offered a $1 bet on

heads conditional on it being Monday should be the same as whether the coin landed heads or the coin landed tails ev-

the probability that you ascribe to heads-jn where you ac-
tually discover that itis Monday. We often identify the prob-
ability of V' givenU with the probability that you would as-
cribe toV if you learnU is true. What | am suggesting here
is that this identification breaks down in the asynchronous

ery time she is woken up. If the bet pays off every time
she answers the question correctly, then clearly she should
say “tails”. Her expected gain by always saying tails is $1
(since, with probabilityl /2, the coin will land tails and she
will get $1 both times she is asked), while her expected

case. This, of course, raises the question of what exactly gain by always saying heads is only2. Indeed, a risk-

conditioning means in this context. “The probability 6f
givenU” is saying something like “if it were the case that
U, then the probability o¥” would be ...” This is not nec-
essarily the same as “if you were to learn thatthen the
probability of VV would be ... 8

AlthoughR s shows that Elga’s argument for thg3—2/3
answer is suspect, it does not follow tHaB—2/3 is incor-
rect. In the remainder of this section, | examine other con-
siderations to see if they shed light on what should be the
appropriate answer.

4.2 The Frequency Interpretation

One standard interpretation of probability is in terms of fre-
quency. If the probability of a coin landing headsli&,
then if we repeatedly toss the coin, it will land heads in
roughly half the trials; it will also land heads roughly half the
time. In the synchronous case, “half the trials” and “half the
time” are the same. But now consider the Sleeping Beauty
problem. What counts as a “trial”? If a “trial” is an experi-
ment, then the coin clearly lands heads in half of the trials.
But it is equally clear that the coin lands hedd$ of the
times that the agent is woken up. Considering “times” and
“trials” leads to different answers in asynchronous systems;
in the case of the Sleeping Beauty problem, these different
answers are precisely the natutdl—1/2 and1/3-2/3 an-
swers.

4.3 Betting Games

neutral agent should be willing to pay to take this bet. Thus,
even though she considers heads and tails equally likely and
ascribes probabilities using the HT approach, this betting
game would have her act as if she considered tails twice
as likely as heads: she would be indifferent between say-
ing “heads” and “tails” only if the payoff for heads was $2,
twice the payoff for tails.

In this betting game, the payoff occurs at every time step.
Now consider a second betting game, where the payoff is
only once per trial (so that if the coin lands tails, the agent
get $1 if she says tails both times, and $0.50 if she says tails
only once). If the payoff is per trial, then the agent should be
indifferent being saying “heads” and “tails”; the situation is
analogous to the discussion in the frequency interpretation.

There is yet a third alternative. The agent could be of-
fered a bet at only one point in the information set. If the
coin lands heads, she must be offered the bétsatl). If
the coin lands heads, an adversary must somehow choose if
the bet will be offered atrs, 1) or (2, 2). The third betting
game is perhaps more in keeping with the second story told
for R1, where the agent is not aware of time passing and
must assign a probability to heads and tails in the informa-
tion set. It may seem that the first betting game, where the
payoff occurs at each step, is more appropriate to the Sleep-
ing Beauty problem—atfter all, the agent is woken up twice
if the coin lands tails. Of course, if the goal of the prob-
lem is to maximize the expected number of correct answers
(which is what this betting game amounts to), then there is

Another standard approach to determining subjective prob- N0 question that “tails” is the right thing to say. On the other
ability, which goes back to Ramsey [1931] and De Finetti hand, if the goal is to get the right answer “now”, whenever
[1931], is in terms of betting behavior. For example, one NoOw is, perhaps because this is the only time that the bet
way of determining the subjective probability that an agent Will be offered, then the third game is more appropriate. My
ascribes to a coin toss landing heads is to compare the oddsmain point here is that the question of the right betting game,

at which he would accept a bet on heads to one at which he While noncontroversial in the synchronous case, is less clear
- in the asynchronous case.
3There are other reasons that “givérand “if you were to learn

that U” should be treated differently; in the latter case, you must 4 4 Conditioning and the Reflection Principle
take into account how you came to learn thas the case. Without o , -
taking this into account, you run into puzzles like the Monty Hall 10 What extent is it the case that the agent’s probability over

problem; see [@mwald and Halpern 2003] for discussion of this ~ time can be viewed as changing via conditioning? It turns
point. | ignore this issue here, since it is orthogonal to the issues out that the answer to this question is closely related to the

that arise in the Sleeping Beauty problem. guestion of when the Reflection Principle holds, and gives
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further support to using the HT approach to ascribing prob-
abilities in the asynchronous case.

There is a trivial sense in which updating is never done by
conditioning: At the point(r,m), agenti puts probability
on the spacéC;(r, m); at the point(r, m + 1), agenti puts
probability on the spack,(r,m + 1). These spaces are ei-
ther disjoint or identical (since the indistinguishability rela-
tion that determinek’; (r, m) andkC;(r, m+1) is an equiva-
lence relation). Certainly, if they are disjoint, ageicainnot
be updating by conditioning, since the conditional probabil-
ity space is identical to the original probability space. And if

the spaces are identical, it is easy to see that the agent is notdistinct. Using/C;(r, m + 1)™)

doing any updating at all; her probabilities do not change.
To focus on the most significant issues, it is best to fac-
tor out time by considering only the probability ascribed to
runs. Technically, this amounts to considering-based
events that is setsU of points with the property that if
(r,m) € U, then(r,m') € U for all timesm/. In other
words, U contains all the points in a given run or none of
them. Intuitively, we can identifyy with the set of runs
that have points irl/. To avoid problems of how to as-
sign probability in asynchronous systems, | start by con-
sidering synchronous systems. Given algatf points, let
V- ={(r,m): (r,m+1) € V}, thatis,VV~ consists of all
the points immediately preceding pointstn The follow-
ing result, whose straightforward proof is left to the reader,

at time(r, m), we want to condition on the set of points in
K;(r, m) that are on runs that the agent considers possible at
(r,m + 1). But this set is not necessarity; (r, m + 1) .

Let Ki(r,m + D)™ = {(r' k) € Ki(r,m) :
Im/((r,m + 1) ~; (r',m’))}. Note thatiC; (r, m + 1)(»™)
consists precisely of those points that agent considers pos-
sible at(r, m) that are on runs that the agent still consid-
ers possible atr,m + 1). In synchronous systems with
perfect recall JC;(r,m + 1)»™) = KC;(r,m + 1)~ since,
as observed above, {fr,m + 1) ~; (r',m + 1) then
(r,m) ~; (r',m). In general, however, the two sets are
instead ofiC,, ., gives

r!

an appropriate generalization of Theorem 4.1.

Theorem 4.2 [Halpern 2003]Let U be a run-based event
and letR be a system where the agents have perfect recall.
Then,

Prggz+1,i(U)

Thus, in systems with perfect recall, using the HT ap-
proach to assigning probabilities, updating proceeds by con-
ditioning. Note that since the theorem considers only run-
based events, it holds no matter how the probability among
points on a run is distributed. For example, in the Sleeping
Beauty problem, this result holds ever(if,, 1) and(rs, 2)
are not taken to be equally likely.

=PrAT (U | Ki(r,m 4 1)),

r,m,i

shows that in synchronous systems where the agents have The analogue of Theorem 4.2 does not hold in general for

perfect recall, the agents do essentially update by condition-

ing. The probability that the agent ascribes to an evént
at timem + 1 is obtained by conditioning the probability
he ascribes t&/ at timem on the set of points immediately
preceding those he considers possible at time 1.

Theorem 4.1 [Halpern 2003]Let U be a run-based event

and letR be a synchronous system where the agents have

perfect recall. Then
Prnerl,i(U) = PI‘T’mﬂ'(U | /Ci(r,m + 1)_)

Theorem 4.1 does not hold without assuming perfect re-

the Elga approach. This can already be seen in the Sleeping
Beauty problem. Consider the system of Figure 1. At time
0 (in eitherr; or ry), the event heads (which consists of
all the points inry) is ascribed probabilityi /2. At time

1, it is ascribed probabilityt /3. Sincegp(r1, 1)) =
{(r1,0), (r2,0)}, we have

1/3 = Prilf’fSB(heads) #

Pri s (heads) | Ksp(ri,1)000) = 1/2.
The last equality captures the intuition that if Sleeping
Beauty gets no additional information, then her probabili-

call. For example, suppose that an agent tosses a fair cointies should not change using conditioning.

and observes at time 1 that the outcome is heads. Then at

Van Fraassen’s [199%}eflection Principlés a coherence

time 2 he forgets the outcome (but remembers that the coin condition connecting an agent’s future beliefs and his cur-
was tossed, and knows the time). Thus, at time 2, becauserent belief. Note that what an agent believes in the future

the outcome is forgotten, the agent ascribes probahifiy
to each of heads and tails. Clearly, her time 2 probabili-
ties are not the result of applying conditioning to her time 1
probabilities.

A more interesting question is whether Theorem 4.1 holds

will depend in part on what the agent learns. Theneral-
ized Reflection Principlsays that if we consider all the pos-
sible things that an agent might learn (or evidence that an
agent might obtain) between the current time and time-

call theseE(1,k), ..., E(k,m)—andPry, ..., Pr; are the

if we assume perfect recall and do not assume synchrony. agent’s probability functions at time (depending on which

Properly interpreted, it does, as | show below. But, as stated,

it does not, even with the HT approach to assigning prob-
abilities. The problem is the use &f;(r,m 4+ 1)~ in the

piece of evidence is obtained), then the agent’s current prob-
ability should be a convex combination ®f,...,Pr;.
That is, there should exist coefficients, . . ., ay, in the in-

statement of the theorem. In an asynchronous system, someterval |0, 1] such thalPr = «; Pry +. ..+ oy, Pry. Savage’s

of the points inC;(r, m + 1)~ may still be in/C;(r, m + 1),

[1954] Sure-Thing Principlés essentially a special case. It

since the agent may not be aware of time passing. Intuitively, says that if the probability ofl is & no matter what is learned
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at timem, then the probability ofA should bex right now.
This certainly seems like a reasonable criterion.

Van Fraassen [1995] in fact claims that if an agent
changes his opinion by conditioning on evidence, that is, if
Prj = Pr(- | E(j,m)) for j = 1,...,k, then the General-
ized Reflection Principle must hold. The intuition is that the
pieces of evidenc&(1,m), ..., E(k,m) must form a par-
tition of underlying space (in each state, exactly one piece
of evidence will be obtained), so that it becomes a straight-
foward application of elementary probability theory to show
that if «; Pr(E(j,t)) for j ., k, then indeed
PI‘ZOqu‘l—i—"'—i'Oék-PI‘k.

Van Fraassen was assuming that the agent has a fixed se{2) R(

W of possible worlds, and his probability div changed

fixed andr ranges over the runs, these sets, as we observed
earlier, contain points other than time points. While it

is true that eithelC;(r, m) is identical to/C;(r/,m) or dis-
joint from /C; (v, m), these sets dpotinduce a partition on
the runs. It is quite possible that, even though the set of
points C;(r,m) and K; (', m) are disjoint, there may be a
runs” and timesn; andms such tha(r”, m;) € K;(r,m)

and (", mq) € K;(r',m). For example, in Figure 4, if
the runs from left to right arey—r5, thenKgp(rs, 1) =
{r1,...,rs} andKgp(ri,1) = {r1,rz,73}. However, un-
der the assumption of perfect recall, it can be shown that for
any two information set#C;(r, m) and K;(r2,m), either
Ki(ri,m)) € R(Ki(rz,m)), (0) R(Ki(ra,m)) C
R(Ki(’f‘l, m)), or (C) R(’Ci(’/’l, m)) N R(IC,‘(TQ, m)) = 0.

by Conditioning on new evidence. Moreover, he was assum- From this it follows that there exist a collectid®’ of runs

ing that the evidence was a subsetlt In the runs and
systems framework, the agent is not putting probability on
a fixed set of worlds. Rather, at each tihehe puts prob-
ability on the set of worlds (i.e., points) that he considers
possible at time:. The agent’s evidence is an information
set—a set of points. If we restrict attention to run-based

such that the set® (K; (', m)) for ' € R’ are disjoint and
the union of R(KC;(r', m)) taken over the runs’ € R’ con-
sists of all runs inR. Then the same argument as in the
synchronous case gives the following result.

Theorem 4.3 If R is a (synchronous or asynchronous) sys-
tem with perfect recall andC;(ry,m), ..., K;(rg, m) are

events, we can instead focus on the agent’s probabilities on ihe distinct information sets of the form(r m) for ' €

runs. That is, we can také” to be the set of runs, and con-
sider how the agent’s probability on runs changes over time.
Unfortunately, agent's evidence at a pointr, m) is not a

set of runs, but a set of points, namédy(r,m). We can
associate withC;(r, m) the set of runs going through the
points infC;(r, m), namely, in the notation of Section 3.2,
R(K;(r,m))

In the synchronous case, for each timethe possible in-
formation sets at timen correspond to the possible pieces
of evidence that the agent has at time These informa-
tion sets form a partition of the timer points, and induce

R(K;(r,0), then there existy, . . ., o such that

2:0¢JPrZ | R(K

The following corollary is immediate from Theorem 4.3,
given the definition oPr{]". ;.

Pri(- | R(K m))).

i(75,

Corollary 4.4: If R is a (synchronous or asynchronous)
system with perfect recall antl;(r1,m), ..., K;(rg, m)
are the distinct information sets of the forkiy(+', m) for
r’ € R(K;(r,0), then there existy, ..., ax such that for

a partition on runs. In this case, van Fraassen's argument g o/ -

is correct. More precisely, if, for simplicity, “now” is taken
to be time 0, and we consider some future time> 0,
the possble pieces of evidence that agerduld get at time

Pr(7 o) (Ki(r,0)(R)) Za]Pr(” m) m))(R)).

Ki(ry,

m are all sets of the fornC;(r, m), for r € R. With this

translation of terms, it is an immediate consequence of van  Corollary 4.4 makes precise the sense in which the Re-
Fraassen’s observation and Theorem 4.1 that the General-flection Principle holds for the HT approach. Although the
ized Reflection Principle holds in synchronous systems with notationC;(r,m)(R’) that converts sets of runs to sets of
perfect recall. But note that the assumption of perfect re- points makes the statement somewhat ugly, it plays an im-
call is critical here. Consider an agent that tosses a coin portant role in emphasizing what | take to be an important
and observes that it lands heads at time 0. Thus, at time 0, distinction, that has largely been ignored. An agent assigns
she assigns probability 1 to the event of that coin toss land- probability to points, not runs. At both time 0 and time

ing heads. But she knows that one year later she will have we can consider the probability that the agent assigns to the
forgotten the outcome of the coin toss, and will assign that points on the runs iR/, but the agent is actually assign-

event probabilityl /2 (even though she will know the time).
Clearly Reflection does not hold.

What about the asynchronous case? Here itis not straight-

forward to even formulate an appropriate analogue of the
Reflection Principle. The first question to consider is what
pieces of evidence to consider at time While we can con-
sider all the information sets of forid, (r, m), wherem is

ing probability to quite different (although related) events at
time 0 and timen.

The obvious analogue to Corollary 4.4 does not hold for
the Elga approach. Indeed, the same example that shows
conditioning fails in the Sleeping Beauty problem shows that
the Reflection Principle does not hold. Indeed, this example
shows that the sure-thing principle fails too. Using the Elga
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approach, the probability of heads (i.e., the probability of the
points on the run where the coin lands heads) changes from
1/2to 1/3 between time 0 and time 1, no matter what.

5 Conclusion

In this paper, | have tried to take a close look at the problem
of updating in the presence of asynchronoy and imperfect
recall. Let me summarize what | take to be the main points
of this paper:

e It is important to have a good formal model that incor-
porates uncertainty, imperfect recall, and asynchrony in
which probabilistic arguments can be examined. While
the model | have presented here is certainly not the only
one that can be used, it does have a number of attractive
features.

e Whereas there seems to be only one reasonable approach

to assigning (and hence updating) probabilities in the syn-

chronous case, there are at least two such approaches in
the asynchronous case. Both approaches can be supported

using a frequency interpretation and a betting interpreta-
tion. However, only the HT approach supports the Reflec-
tion Principle in general. In particular, the two approaches
lead to the two different answers in the Sleeping Beauty
problem.

¢ \We cannot necessarily identify the probability conditional
onU with what the probability would be upon learnibg
This identification is being made in Elga’s argument; the
structureR , shows that they may be distinct.

One fact that seems obvious in light of all this discussion
is that our intuitions regarding how to do updating in asyn-
chronous systems are rather poor. Given how critical this
problem is for KR, it clearly deserves further investigation.
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