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Abstract

In a very basic sense, the aim of knowledge discovery
is to revealstructures of knowledgewhich can be seen
as being represented bystructural relationships. In this
paper, we make this notion more precise and present a
method how to extract structural information from sta-
tistical data. There are two key ideas underlying our
approach: First, knowledge discovery is understood as
a process which is inverse to inductive knowledge rep-
resentation. So the relevance of discovered informa-
tion is judged with respect to the chosen representation
method. Second, the link between structural and nu-
merical knowledge is established by an algebraic theory
of conditionals, which considers conditionals as agents
acting on possible worlds. By applying this theory, we
develop an algorithm that computes sets of probabilis-
tic rules from distributions. In particular, we show how
sparse information can be dealt with appropriately in
our framework. The inductive representation method
used here is based on information theory, so that the
discovered rules can be considered as being most infor-
mative in a strict, formal sense.

Introduction
In a very basic sense, the aim of knowledge discovery is
to revealstructures of knowledgefrom data, which make
fundamental relationships explicit and focus on relevant as-
pects. A basic means to formalize such relationships are
rules, connecting a precondition and a conclusion by anif-
then-construction. Such rules or conditionalsare widely
used for knowledge representation and reasoning. They
should be clearly distinguished from (material) implications,
as they are able to represent alsoplausible relationships
or default rules(for a deeper discussion of this topic and
further references, cf. e.g. (Kern-Isberner 2001b; Nute &
Cross 2002; Benferhat, Dubois, & Prade 1997)). The crucial
point with conditionals is that they carry generic knowledge
which can be applied to different situations. This makes
them most interesting objects for knowledge representation
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in general, in theoretical as well as in practical respect.
Conditionals can be specified further by degrees of plau-
sibility, possibility, probability and the like. In particular,
probability theory provides a solid mathematical framework
for conditionals which is often used for statistical knowl-
edge discovery (cf. e.g. (Spirtes, Glymour, & Scheines 1993;
Cheeseman & Oldford 1994)). The semantics that is usually
associated with conditionals in this field is a frequentistic
one, and their relevance is measured in terms ofconfidence
andsupport(see, e.g., (Agrawalet al. 1996)). When search-
ing for structures in probabilistic data, causality is often
appreciated as a most appropriate framework (Pearl 1988;
Spirtes, Glymour, & Scheines 1993; Cowellet al. 1999).
While, on the one hand, frequentistic criteria are sometimes
found a bit weak to embody relevance, causality, on the
other hand, is too rigid a concept to fit plausible relation-
ships which are also most relevant for human reasoning.

In this paper, we present a method to discover structures
imposed by plausible cognitive links from data. Relevance is
understood with respect to informativeness, a notion which
is based here on solid information-theoretical grounds. In
short, our aim is to findmost informative rules from data.
In more detail, we assume the probabilistic distribution pro-
vided by the statistical data to be generated from some ba-
sic set of conditionals via theprinciple of maximum entropy
(ME), and we develop an algorithm to find such a gener-
ating set of conditionals. The ME-methodology provides
techniques to represent incomplete probabilistic information
inductively by a probability distribution and allows non-
monotonic, semantic-based inferences (cf. (Jaynes 1983;
Paris 1994)). Thestructures of knowledgewhich ME-
representations follow have been made explicit in (Kern-
Isberner 1998) and have provided the grounds for develop-
ing a new algebraic theory of conditionals (Kern-Isberner
2001b). Different from former, mainly logical approaches to
put conditional reasoning in formal terms, here conditionals
are considered as agents acting on possible worlds. This the-
ory formalizes precisely whatconditional structuresare, and
how they can be used to handle complex interactions of con-
ditionals. In contrast to causal approaches to knowledge rep-
resentation and discovery, our focus is onconditional depen-
dencies, not onconditional independencieswhich are usu-
ally assumed to underly the concept of causality. In (Kern-
Isberner 2003), it is shown that our concept is strictly more
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general than conditional independence.
Our method is abottom-up approach, starting with condi-

tionals with long premisses, and shortening these premises
to make the conditionals most expressive but without losing
information, in accordance with the information inherent to
the data. In particular, the main features of the approach can
be described as follows:

• The method is based on statistical information but not on
probabilities close to1; actually, it mostly uses only struc-
tural information obtained from the data;

• it is able to disentangle highly complex interactions be-
tween conditionals.

• We are going to discover not single, isolated rules but a
set of rules, thus taking into regard the collective effects
of several conditionals.

• Zero probabilities computed from data are interpreted as
missing information, not as certain knowledge.

From a more foundational point of view, this paper presents
and elaborates quite an unusual approach to knowledge
discovery: Here, knowledge discovery is understood as
a process which reverses inductive knowledge representa-
tion. We use the ME-principle as a vehicle to represent
incomplete probabilistic knowledge inductively, and show
how to solve theinverse maxent problem(i.e. computing
ME-generating conditionals from a probability distribution).
This paper continues work begun in (Kern-Isberner 2000;
2001b).

The organization of this paper is as follows: The follow-
ing section summarizes basic facts concerning probabilis-
tic logic and the maximum entropy approach. Then we
sketch the main features of the algebraic theory of condi-
tionals which is based on group theory and provides the
grounds for our approach to knowledge discovery; the re-
sulting method is briefly described afterwards. Then we
present the CKD-algorithm (CKD = Conditional Knowledge
Discovery) which is illustrated by an example, and go into
implementation details. Finally, we conclude this paper with
a summary and an outlook on further and practical work.

Probabilistic logic and maximum entropy
We consider a propositional framework over a finite set
V = {V1, V2, . . .} of (multivalued) propositional variables
Vi with finite domains. For each variableVi ∈ V, the values
are denoted byvi. In generalizing the bivalued propositional
framework, we call expressions of the formVi = vi liter-
als, and abbreviate them byvi. The languageL consists of
all formulasA built by conjoining finitely many literals by
conjunction (∧), disjunction (∨), and negation (¬) in a well-
formed way. The conjunction operator,∧, will usually be
omitted, soAB will meanA ∧ B, and negation is indicated
by barring, i.e.A = ¬A. An elementary conjunctionis a
conjunction consisting of literals, and acomplete conjunc-
tion is an elementary conjunction where each variable from
V is represented by exactly one value. LetΩ denote the set
of complete conjunctions ofL. Ω can be taken as the set
of possible worldsω, providing a complete description of

each possible state, and hence corresponding to elementary
events in probability theory.

Conditionals are written in the form(B|A), with an-
tecedents,A, and consequents,B, both formulas inL, and
may be read asif A thenB. Let (L | L) denote the set
of all conditionals overL. Single-elementary conditionals
are conditionals whose antecedents are elementary conjunc-
tions, and whose consequents consist of one single literal.

LetP be a probability distribution overV. Within a prob-
abilistic framework, conditionals can be quantified and in-
terpreted probabilistically via conditional probabilities:

P |= (B|A) [x] iff P (A) > 0 andP (AB) = xP (A)

for x ∈ [0, 1]. If R∗ = {(B1|A1) [x1], . . . , (Bn|An) [xn]}
is a set of probabilistic conditionals, thenR =
{(B1|A1), . . . , (Bn|An)} denotes the set of structural (i.e.
unquantified) conditionals.

Suppose a setR∗ = {(B1|A1) [x1], . . . , (Bn|An) [xn]}
of probabilistic conditionals is given. For instance,R∗ may
describe the knowledge available to a physician when he
has to make a diagnosis. Or,R∗ may express common-
sense knowledge like “Students are young with a probability
of (about) 80 %” and “Singles (i.e. unmarried people) are
young with a probability of (about) 70 %”, this knowledge
being formally expressed byR∗ = {(young|student)[0.8],
(young|single)[0.7]}. Usually, such rule bases represent
incomplete knowledge, in that there are a lot of proba-
bility distributions apt to represent them. So learning, or
inductively representing, respectively, the rules means to
take them as a set of conditional constraints and to se-
lect a unique probability distribution as a “best” model
which can be used for queries and further inferences. Paris
(Paris 1994) investigates several inductive representation
techniques and proves that theprinciple of maximum en-
tropy, (ME-principle)yields the only method to represent in-
complete knowledge in an unbiased way, satisfying a set of
postulates describing sound commonsense reasoning. The
entropyH(P ) of a probability distributionP is defined as

H(P ) = −
∑
ω

P (ω) logP (ω)

and measures the amount of indeterminateness inherent in
P . Applying the principle of maximum entropy then means
to select the unique distributionP ∗ = ME(R∗) that max-
imizesH(P ) subject toP |= R∗. In this way, the ME-
method ensures that no further information is added, so that
the knowledgeR∗ is represented most faithfully.ME(R∗)
can be written in the form

ME(R∗)(ω) = α0

∏
16i6n
ω|=AiBi

α1−xi
i

∏
16i6n
ω|=AiBi

α−xi
i (1)

with the αi’s being chosen appropriately so as to satisfy
all of the conditional constraints inR∗ (cf. (Kern-Isberner
1998));ME(R∗) is called theME-representation ofR∗.

The ME-principle provides a most convenient and theo-
retically sound method to represent incomplete probabilistic
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knowledge.1 Unlike Bayesian networks, no external (and of-
ten unjustified) independence assumptions have to be made,
and only relevant conditional dependencies are part of the
knowledge base. In fact, Bayesian networks need a lot of
probabilities being specified. If one has to model the depen-
dencies, for instance, between two diseases,D1, D2, and
two symptoms,S1, S2, one has to quantify all probabili-
tiesP (sj |di), wheresj anddi, respectively, is any one of
Sj ,¬Sj andDi,¬Di, for i, j = 1, 2. But not only the large
amount of probabilities necessary to build up Bayesian net-
works are a problem. Although a physician will usually be
capable to quantifyP (Sj |Di) from his expert knowledge,
he will hardly be able to say something informed about
P (Sj |¬Di) – what is the probability of a symptom given
that the disease isnot present? In an ME-environment, the
expert has only to list whatever relevant conditional proba-
bilities he is aware of. Moreover, the two basic ingredients
for Bayesian networks, namely the set of conditional proba-
bilities and the independence assumptions, specifycomplete
probabilistic knowledge, thereby detracting from the flexible
and transferable power of generic conditional information.
ME-modelling, on the other hand, preserves the generic na-
ture of conditionals by minimizing the amount of informa-
tion being added.

Nevertheless, modelling ME-rule bases has to be done
carefully so as to ensure thatall relevant dependencies are
taken into account. This task can be difficult and trouble-
some. So, a method to compute rule sets appropriate for
ME-modelling from statistical data is urgently needed.

Conditional structures
and conditional indifference

In order to obtain structural information from data, one usu-
ally searches for causal relationships by investigating con-
ditional independencies and thus non-interactivity between
sets of variables (Cooper & Herskovits 1992; Spirtes, Gly-
mour, & Scheines 1993; Heckerman 1996; Buntine 1996).
Some of these algorithms also make use of optimization
criteria which are based on entropy (Herskovits & Cooper
1990; Geiger 1992). Although causality is undoubtedly
most important for human understanding, it seems to be too
rigid a concept to represent human knowledge in an exhaus-
tive way. For instance, a person suffering from a flu is cer-
tainly sick (P (sick|flu) = 1), and they often will complain
about headache (P (headache|flu) = 0.9). Then we have

P (headache|flu) = P (headache|flu∧ sick),

but we would surely expect

P (headache|¬flu) 6= P (headache|¬flu∧ sick)!

Although, from a näıve point of view, the (first) equal-
ity suggests a conditional independence betweensick and
headache, due to the causal dependency betweenheadache
andflu, the (second) inequality shows this to be (of course)

1Efficient implementations of ME-systems can be found via
www.fernuni-hagen.de/BWLOR/forsch.htm andwww.
pit-systems.de

false. Furthermore, a physician might also wish to state
some conditional probability involvingsick andheadache,
so that we would obtain a complex network of rules. Each
of these rules will be considered relevant by the expert, but
none will be found when searching for conditional indepen-
dencies! So, what actually are the “structures of knowledge”
by which conditional dependencies (not independencies!)
manifest themselves in data? What are the “footprints” con-
ditionals leave on probabilities after they have been learned
inductively?

To answer this question, we use the approach developed
in (Kern-Isberner 2000; 2001b); all proofs and lots of exam-
ples can be found in (Kern-Isberner 2001b). We first take
a structural look on conditionals, bare of numerical values,
that is, we focus on setsR = {(B1|A1), . . . , (Bn|An)}
of measure-free conditionals. A well-known approach to
model its non-classical uncertainty is to represent a condi-
tional (B|A) as a three-valued indicator function on worlds

(B|A)(ω) =


1 : ω |= AB
0 : ω |= AB
u : ω |= A

where u stands forunknown(cf., e.g., (DeFinetti 1974;
Calabrese 1991)). Two conditionals areequivalentiff they
yield the same indicator function, so that(B|A) ≡ (D|C)
iff AB ≡ CD andAB ≡ CD.

We generalize this approach a bit by associating to each
conditional (Bi|Ai) in R two abstract symbolsa+

i ,a
−
i ,

symbolizing a (possibly) positive effect on verifying worlds
and a (possibly) negative effect on falsifying worlds:

σi(ω) =

 a+
i if ω |= AiBi

a−i if ω |= AiBi

1 if ω |= Ai

(2)

with 1 being the neutral element of the (free abelian) group
FR = 〈a+

1 ,a
−
1 , . . . , a+

n ,a
−
n 〉, generated by all symbols

a+
1 ,a

−
1 , . . . ,a

+
n ,a

−
n . The functionσR : Ω → FR, defined

by

σR(ω) =
∏

16i6n

σi(ω) =
∏

16i6n
ω|=AiBi

a+
i

∏
16i6n
ω|=AiBi

a−i (3)

describes the all-over effect ofR onω. σR(ω) is called the
conditional structure ofω with respect toR.

Example 1 Let R = {(c|a), (c|b)}, whereA,B,C are bi-
valued propositional variables with outcomes{a, a}, {b, b}
and {c, c}, respectively, and letFR = 〈a+

1 ,a
−
1 ,

a+
2 ,a

−
2 〉. We associatea+

1 ,a
−
1 with the first conditional,

(c|a), anda+
2 ,a

−
2 with the second one,(c|b). Sinceω = abc

verifies both conditionals, we obtainσR(abc) = a+
1 a+

2 . In
the same way, e.g.,σR(abc) = a−1 a−2 , σR(abc) = a+

1 and
σR(abc) = a−2 .

Notice the striking similarity between (3) and (1) – in (1),
the abstract symbolsa+

i ,a
−
i of (3) have been replaced by the

numerical valuesα1−xi
i andα−xi

i , respectively (α0 is sim-
ply a normalizing factor). Therefore, the ME-distribution
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ME(R∗) follows the conditional structure of worlds with re-
spect to the conditionals inR∗ and is thus most adequate to
represent probabilistic conditional knowledge. Theαi’s bear
the crucial conditional information, andα1−xi

i , α−xi
i are the

“footprints” left on the probabilities when ME-learningR∗

(also cf. (Kern-Isberner 1998)). In the following, we will put
these ideas in formal, algebraic terms and prepare the theo-
retical ground for the data mining techniques to be presented
in this paper.

Let Ω̂ := 〈ω | ω ∈ Ω〉 be the free abelian group
generated by allω ∈ Ω, and consisting of all products
ω̂ = ω1

r1 . . . ωm
rm with ω1, . . . , ωm ∈ Ω and integers

r1, . . . rm. Note that, although we speak ofmultiplication,
the worlds in such a product are merely juxtaposed, form-
ing a word rather than aproduct. With this understanding,
a generalized world̂ω ∈ Ω̂ in which only positive expo-
nents occur simply corresponds to a multi-set of worlds. We
will often use fractional representations for the elements of

Ω̂, that is, for instance, we will write
ω1

ω2
instead ofω1ω

−1
2 .

Now σR may be extended tôΩ in a straightforward manner
by setting

σR(ω1
r1 . . . ωm

rm) = σR(ω1)r1 . . . σR(ωm)rm

yielding ahomomorphism of groupsσR : Ω̂ → FR.
Having the same conditional structure defines an equiva-

lence relation≡R on Ω̂: ω̂1 ≡R ω̂2 iff σR(ω̂1) = σR(ω̂2),
i.e. iff ω̂1ω̂

−1
2 ∈ ker σR := {ω̂ ∈ Ω̂ | σR(ω̂) = 1}.

Thus the kernel ofσR plays an important part in identify-
ing the conditional structure of elementsω̂ ∈ Ω̂. ker σR
contains exactly all group elementsω̂ ∈ Ω̂ with a balanced
conditional structure, that means, where all effects of condi-
tionals inR on worlds occurring in̂ω are completely can-
celled. SinceFR is free abelian, no nontrivial relations hold
between the different group generatorsa+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n

of FR, so we haveσR(ω̂) = 1 iff σi(ω̂) = 1 for all
i, 1 6 i 6 n, and this means

kerσR =
n⋂

i=1

kerσi

In this way, each conditional inR contributes tokerσR.
Besides the explicit representation of knowledge byR,

also the implicit normalizing constraintP (>|>) = 1 has to
be taken into account. It is easy to check thatker σ(>|>) =
Ω̂0, with

Ω̂0 := {ω̂ = ω1
r1 · . . . · ωm

rm ∈ Ω̂ |
m∑

j=1

rj = 0}

Two elementŝω1 = ωr1
1 . . . ωrm

m , ω̂2 = νs1
1 . . . ν

sp
p ∈ Ω̂

are equivalent modulôΩ0, ω̂1 ≡> ω̂2, iff ω̂1Ω̂0 = ω̂2Ω̂0,
i.e. iff

∑
16j6m rj =

∑
16k6p sk. This means that̂ω1 and

ω̂2 are equivalent modulôΩ0 iff they both are a (cancelled)
product of the same number of generators, each generator
being counted with its corresponding exponent. Set

ker0 σR := kerσR ∩ Ω̂0 = kerσR∪{(>|>)}

In the following, if not stated otherwise, we will assume
that all probability distributions are positive. For the meth-
ods to be described, this is but a technical prerequisite, per-
mitting a more concise presentation of the basic ideas. The
general case may be dealt with in a similar manner (cf.
(Kern-Isberner 1999)). Positive distributionsP may be ex-
tended to homomorphismsP : Ω̂ → (R+, ·) from Ω̂ into
the multiplicative group of non-negative real numbers in a
straightforward way by setting

P (ω1
r1 . . . ωm

rm) = P (ω1)r1 · . . . · P (ωm)rm

Definition 2 SupposeP is a (positive) probability distri-
bution, and letR = {(B1|A1), . . . , (Bn|An)} be a set of
conditionals. P is (conditionally) indifferent with respect
to R iff P (ω̂1) = P (ω̂2), whenever botĥω1 ≡R ω̂2 and
ω̂1 ≡> ω̂2 hold for ω̂1, ω̂2 ∈ Ω̂.

If P is indifferent with respect toR, then it does not dis-
tinguish between elementŝω1 ≡> ω̂2 with the same condi-
tional structure with respect toR. Conversely, any deviation
P (ω̂) 6= 1 can be explained by the conditionals inR acting
on ω̂ in a non-balanced way. Note that the notion of indiffer-
ence only aims at observing conditional structures, without
making use of any probabilities associated with the condi-
tionals.

The following proposition shows, that conditional in-
difference establishes a connection between the kernels
ker0 σR and

ker0 P := {ω̂ ∈ Ω̂0 | P (ω̂) = 1}

which will be crucial to elaborate conditional structures:

Proposition 3 A probability distributionP is indifferent
with respect to a setR ⊆ (L | L) of conditionals iff
ker0 σR ⊆ ker0 P .

If ker0 σR = ker0 P , thenP (ω̂1) = P (ω̂2) iff σR(ω̂1) =
σR(ω̂2), for ω̂1 ≡> ω̂2. In this case,P completely fol-
lows the conditional structures imposed byR – it observes
R faithfully.

The next theorem characterizes indifferent probability
functions:

Theorem 4 A (positive) probability functionP is indiffer-
ent with respect to a setR = {(B1|A1), . . . , (Bn|An)} ⊆
(L | L) iff there are positive real numbers
α0, α

+
1 , α

−
1 , . . . , α

+
n , α

−
n ∈ R+, such that

P (ω) = α0

∏
16i6n
ω|=AiBi

α+
i

∏
16i6n
ω|=AiBi

α−i , ω ∈ Ω. (4)

Any ME-distribution is indifferent with respect to its gen-
erating set of conditionals, as is obvious by observing (1):

Proposition 5 LetR∗ be a (finite) set of probabilistic con-
ditionals with structural counterpartR ⊆ (L | L), and let
P ∗ = ME(R∗) the ME-distribution generated byR∗. Then
P ∗ is indifferent with respect toR.
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Example 6 We continue Example 1. Here we observe

σR

(
abc · abc
abc · abc

)
=
σR(abc) · σR(abc)
σR(abc) · σR(abc)

=
a+

1 a+
2 · 1

a+
1 · a+

2

= 1,

that is,
abc · abc
abc · abc

∈ ker0 σR. Then any ME-representation

P ∗ = ME({(c|a)[x], (c|b)[y]}) with x, y ∈ [0, 1] will

fulfill P ∗
(
abc · abc
abc · abc

)
= 1, i.e. P ∗(abc)P ∗(abc) =

P ∗(abc)P ∗(abc), no matter what conditional probabilities
x, y ∈ [0, 1] have been chosen.

In (Kern-Isberner 2003), we investigate the exact rela-
tionship betweenconditional indifferenceand conditional
independenceand show that conditional indifference is the
strictly more general concept.

Data mining and group theory – a strange
connection?

Before going into more details and presenting the knowledge
discovery strategy, let us stop for a moment to contemplate
what all this formal machinery is good for. The concept
of conditional structures is not only an algebraic means to
judge well-behavedness with respect to conditionals (Kern-
Isberner 2001a). As group elements, they make conditional
effects on worlds transparent and computable and thereby
allow us to study interactions between different condition-
als inR∗. On (multis)sets of worlds (i.e. elements ofΩ̂),
we may observe cancellations or accumulations of condi-
tional impacts which are reflected by the corresponding ME-
representation (see Example 6 above). Conversely, finding
a set of rules which is able to represent a given probability
distributionP via ME-methods can be done by elaborating
numerical relationships inP , interpreting them as manifes-
tations of underlying conditional dependencies. The proce-
dure to discover appropriate sets of rules is sketched in the
following and will be explained in more detail in the next
section:

• Start with a setB of single-elementary rules (i.e. simple
association rules) the length of which is considered to be
large enough to capture all relevant dependencies. Ideally,
B would consist of rules whose antecedents have maximal
length (i.e. #(variables)− 1).

• Search for numerical relationships inP by investigating
which products of probabilities match, in order to calcu-
lateker0 P .

• Compute the corresponding conditional structures with
respect toB, yielding equations of group elements inFB.

• Solve these equations by forming appropriate factor
groups ofFB.

• Building these factor groups correspond to eliminating
and joining the basic conditionals inB to make their in-
formation more concise, in accordance with the numerical
structure ofP . Actually, the antecedents of the condition-
als inB are shortened so as to comply with the numerical
relationships inP .

As strange as this connection between knowledge discovery
and group theory might appear at first sight, it is obvious
from an abstract and methodological point of view: Con-
sidering knowledge discovery as an operation inverse to in-
ductive knowledge representation, the use of group theoret-
ical means to realize invertability is nearly straightforward.
Moreover, the joint impact of conditionals and their interac-
tions can be symbolized by products and quotients, respec-
tively. Their handling in a group theoretical structure allows
a systematic disentangling of highly complex conditional in-
teraction, thereby offering quite a new (and a bit unusual)
view on discovering “structures of knowledge”.

Discovering conditional structures in data
In this section, we will describe our approach to knowledge
discovery which is based on the group theoretical, algebraic
theory of conditionals sketched above. More precisely, we
will show how to compute setsR, or R∗, respectively, of
conditionals that are apt to generate some given (positive)
probability functionP via ME-presentation. More details
and all proofs can be found in (Kern-Isberner 2001b); the
generalization to multivalued variables (instead of bivalued
variables) is straightforward.

The method to be presented is guided by the following
idea: IfP is the result of inductively representing a setR∗ of
conditionals by applying the ME-principle,P = ME(R∗),
then P is necessarily indifferent with respect toR, i.e.
ker0 σR ⊆ ker0 P by Proposition 3. Ideally, we would
haveP to representR faithfully, that is,

P |= R andker0 P = ker0 σR (5)

Assuming faithfulness means presupposing that no equation
P (ω̂) = 1 is fulfilled accidentally, but that any of these equa-
tions is induced byR. Thus the structures of the condition-
als inR become manifest in the elements ofker0 P , that
is, in elementŝω ∈ Ω̂ with P (ω̂) = 1. As a further pre-
requisite, we will assume that this knowledge inherent toP
is representable by a set of single-elementary conditionals.
This restriction should not be considered a heavy drawback,
bearing in mind the expressibility of single-elementary con-
ditionals.

So assumeR∗ = {(b1|A1)[x1], . . . , (bn|An)[xn]} is an
existing, but hidden set of single-elementary conditionals,
such that (5) holds. Let us further suppose thatker0 P (or
parts of it) is known from exploiting numerical relationships.
Since conditional indifference is a structural notion, we omit
the quantificationsxi of the conditionals in what follows.
Let σR : Ω̂ → FR = 〈a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n 〉 denote a condi-

tional structure homomorphism with respect toR .
Besides conditional structures, a further notion which is

crucial to study and exploit conditional interactions is that
of subconditionals: (D|C) is called asubconditionalof
(B|A), and (B|A) is a superconditionalof (D|C), writ-
ten as(D|C) v (B|A), iff CD |= AB andCD |= AB,
that is, iff all worlds verifying (falsifying)(D|C) also verify
(falsify) (B|A). For any two conditionals(B|A), (D|C) ∈
(L | L) with ABCD ≡ ABCD ≡ ⊥, the supremum
(B|A) t (D|C) in (L | L) with respect tov exists and is
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given by

(B|A) t (D|C) ≡ (AB ∨ CD|A ∨ C)

(cf. (Kern-Isberner 1999)). In particular, for two condition-
als(B|A), (B|C) with the same consequent, we have

(B|A) t (B|C) ≡ (B|A ∨ C)

The following lemma provides an easy characterization
for the relationv to hold between single-elementary condi-
tionals:

Lemma 7 Let (b|A) and (d|C) be two single-elementary
conditionals. Then(d|C) v (b|A) iff C |= A andb = d.

This lemma may be generalized slightly to hold for condi-
tionals(b|A) and(d|C) whereA andC are disjunctions of
conjunctions of literals not containingb andd, respectively.

From (2), Definition 2 and Proposition 3, it is clear that in
an inductive reasoning process such as ME-propagation that
results in an indifferent representation of conditional knowl-
edgeR, all subconditionals of conditionals inR also exert
the same effects on possible worlds as the corresponding su-
perconditionals. The basic idea is to start with most basic
conditionals, and to generalize them step-by-step to super-
conditionals in accordance with the conditional structure re-
vealed byker0 P . From a theoretical point of view, the most
adequate candidates for rules to start with arebasic single-
elementary conditionals, which are single-elementary con-
ditionals with antecedents of maximal length:

ψv,l = (v | Cv,l) (6)

wherev is a value of some variableV ∈ V andCv,l is an
elementary conjunction consisting of literals involving all
variables fromV exceptV . It is clear that considering all
such conditionals is intractable, but we are still on theoreti-
cal grounds, so let us assume for the moment we could start
with the set

B = {ψv,l | v ∈ V, l suitable}

of all basic single-elementary conditionals in(L | L), and
let FB = 〈b+

v,l,b
−
v,l〉v,l be the free abelian group corre-

sponding toB with conditional structure homomorphism
σB : Ω̂ → FB. Note thatσB andFB are known, whereasσR
andFR are not. We only know the kernel,ker0 σR, of σR,
which is, by assuming faithfulness (5), the same as the ker-
nel, ker0 P , of P . Now, to establish a connection between
what is obvious (B) and what is searched for (R), we define
a homomorphismg : FB → FR via

g(b±v,l) :=
∏

16i6n
ψv,lv(bi|Ai)

a±i =
∏

16i6n
bi=v,Cv,l|=Ai

a±i , (7)

where the second equality holds due to Lemma 7.g uses
the subconditional-relationship in collecting for each basic
conditional inB the effects of the corresponding supercon-
ditionals inR. Actually, g is a “phantom” which is not ex-
plicitly given, but only assumed to exist. Its crucial meaning
for the knowledge discovery task is revealed by the follow-
ing theorem:

Theorem 8 Letg : FB → FR be as in (7). Then

σR = g ◦ σB

In particular, ω̂ ∈ ker0 σR = ker0 P iff ω̂ ∈ Ω̂0 and
σB(ω̂) ∈ ker g.

This means, that numerical relationships observed inP (and
represented by elements ofker0 P ) translate into group the-
oretical equations modulo the kernel of g.

Proposition 9 Let ω̂ = ωr1
1 · . . . ·ωrm

m ∈ Ω̂0. ThenσB(ωr1
1 ·

. . . · ωrm
m ) ∈ ker g iff for all literals v in L,∏

Cv,l

∏
16k6m
ωk|=Cv,lv

(b+
v,l)

rk ,
∏
Cv,l

∏
16k6m
ωk|=Cv,lv

(b−v,l)
rk ∈ ker g. (8)

So each (generating) element ofker0 σR gives rise to an
equation moduloker g for the generatorsb+

v,l,b
−
v,l of FB.

Moreover, Proposition 9 allows us to split up equations mod-
ulo ker0 g to handle each literal separately as a consequent
of conditionals, and to separate positive from negative ef-
fects. These separations are possible due to the property of
the involved groups of being free abelian, and they are cru-
cial to disentangle conditional interactions (cf. also (Kern-
Isberner 2001b)).

Now the aim of our data mining procedure can be made
more precise: We are going to define a finite sequence of
setsS(0),S(1), . . . of conditionals approximatingR, in the
sense that

ker0 σS(0) ⊆ ker0 σS(1) ⊆ . . . ⊆ ker0 σR (9)

The setB of basic single elementary conditionals proves
to be an ideal starting pointS(0):

Lemma 10 σB is injective, i.e. ker0 σB = {1}.
SoσB provides the most finely grained conditional structure
on Ω̂: No different elementŝω1 6= ω̂2 are equivalent with
respect toB.

Step by step, the relations modker g holding between
the group elements are exploited with the aim to construct
S(t+1) from S(t) by eliminating or joining conditionals by
t, in accordance with the equations moduloker g (i.e.,
by assumption, with the numerical relationships found in
P ). EachS(t) is assumed to be a set of conditionalsϕ(t)

v,j
with a single literalv in the conclusion, and the antecedent
D

(t)
v,j of ϕ(t)

v,j is a disjunction of elementary conjunctions not

mentioning the variableV . Let FS(t) = 〈s(t)
v,j

+
, s(t)

v,j

−
〉v,j

be the free abelian group associated withS(t), andσS(t) :
Ω̂ → FS(t) the corresponding structure homomorphism; let
g(t) : FS(t) → FR be the homomorphism defined by

g(t)(s(t)
v,j

±
) =

∏
16i6n

v=bi,D
(t)
v,j

|=Ai

a±i

such thatg(t) ◦ σS(t) = σR. Let ≡g(t) denote the equiva-
lence relation moduloker g(t), i.e.s1 ≡g(t) s2 iff g(t)(s1) =
g(t)(s2) for any two group elementss1, s2 ∈ FS(t) . In the
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following, for ease of notation, we will omit the+,− super-
scripts on group generators; this is justified, since, by Propo-
sition 9, only one{+,−}-type of generators is assumed to
occur in the equations to be dealt with in the sequel. It is
clear that all equations can be transformed such that on ei-
ther side, only generators with positive exponents occur.

The basic type of equation that arises fromker0 P by
applying Theorem 8 and the faithfulness assumption (5) is
of the form

s(t)
v,j0

≡g(t) s(t)
v,j1

. . . s(t)
v,jm

(10)

To obtain the new setS(t+1) by solving this equation, the
following steps have to be done:

1. eliminateϕ(t)
v,j0

from S(t);

2. replace eachϕ(t)
v,jk

by ϕ(t+1)
v,jk

= ϕ
(t)
v,j0

t ϕ(t)
v,jk

for 1 6
k 6 m.

3. retain all otherϕ(t)
w,l in S(t).

This also includes the casem = 0, i.e.ϕ(t)
v,j0

≡g(t) 1; in this
case, Step 2 is vacuous and therefore is left out.

It can be shown (cf. (Kern-Isberner 2001b)) that

g(t+1) ◦ σS(t+1) = σR

and hence

ker0 σS(t) ⊆ ker0 σS(t+1) ⊆ ker0 σR

as desired. Moreover,ker g(t+1) can be obtained directly
from ker g(t) by straightforward modifications. Since the
considered equation has been solved, it can be eliminated,
and other equations may simplify.

Now, that the theoretical background and the basic tech-
niques have been described, we will turn to develop an al-
gorithm for conditional knowledge discovery.

The CKD-algorithm
In this section, we will describe the algorithmCKD (= Con-
ditional Knowledge Discovery) for mining probabilistic con-
ditionals from statistical data which has been implemented
in the CONDOR-system (for an overview, cf. (Beierle &
Kern-Isberner 2003)) and is sketched in Figure 1. The result-
ing set of conditionals will reveal relevant relationships and
may serve to represent inductively the corresponding proba-
bility distribution via the ME-principle.

As was already pointed out in the previous section, the set
B of all basic single elementary conditionals is intractable
and thus may not really serve as a starting point in our al-
gorithm. There is another problem which one usually en-
counters in data mining problems and which seems to have
been neglected hitherto: The frequency distributions calcu-
lated from data are mostly not positive – just to the contrary,
they would be sparse, full of zeros, with only scattered clus-
ters of non-zero probabilities. This overload of zeros is also
a problem with respect to knowledge representation, since
a zero in such a frequency distribution often merely means
that such a combination has not beenrecorded. The strict
probabilistic interpretation of zero probabilities, however, is

Algorithm CKD
(Conditional Knowledge Discovery)

Input A frequency/probability distributionP ,
obtained from statistical data,
only listing entries with positive probabilities,
together with information on
variables and appertaining values

Output A set of probabilistic conditionals

Begin
% Initialization
Compute thebasic tree of conjunctions
Compute the listNC of null-conjunctions
Compute the setS0 of basic rules
Computeker0 P
Computeker g
SetK := ker g
SetS := S0

% Main loop
While equations of type (10) are inK Do

Choosegp ∈ K of type (10)
Modify (and compactify)S
Modify (and reduce)K

Calculate the probabilities of the conditionals inS
ReturnS and appertaining probabilities

End.

Figure 1: The CKD-algorithm

that such a combination does notexistwhich seems not to
be adequate.

Both of these problems – the exponential complexity of
the ideal conditional starter set and the sparse and mostly
incomplete knowledge provided by statistical data – can be
solved in our framework in the following way: The zero
values in frequency distributions are taken to be unknown,
but equal probabilities, that is, they are treated as non-
knowledge without structure. More exactly, letP be the
frequency distribution computed from the set of data under
consideration. Then, for each two worldsω1, ω2 not occur-
ring in the database and thus being assigned a zero probabil-
ity, we haveP (ω1) = P (ω2) and henceω1

ω2
∈ ker0 P . In

this way, all these so-callednull-worldscontribute toker0 P ,
and their structure may be theoretically exploited to shrink
the starting set of conditionals in advance.

In order to represent missing information in a most con-
cise way, null-conjunctions(i.e. elementary conjunctions
with frequency0) have to be calculated as disjunctions of
null-worlds. To this end, thebasic tree of conjunctionsis
built up. Its nodes are labelled by the names of variables, and
the outgoing edges are labelled by the corresponding values,
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or literals, respectively. The labels of paths going from the
root to nodes define elementary conjunctions. So, the leaves
of the tree either correspond to complete conjunctions oc-
curring in the database, or to null-conjunctions. These null-
conjunctions are collected and aggregated to define a setNC
of most concise conjunctions of probability0.

Now we are able to set up a setS0 of basic rulesalso
with the aid of tree-like structures. First, it is important to
observe that, due to Proposition 9, conditionals may be sep-
arately dealt with according to the literal occurring in their
consequents. SoS0 consists of setsS0.v of conditionals with
consequentv, for each valuev of each variableV ∈ V. Basi-
cally, the full trees contain all basic single-elementary con-
ditionals fromB, but the trees are pruned with the help of
the setNC of null-conjunctions. The method to shorten the
premises of the rules is the same as has been developed in
the previous section with non-zero probabilities, except that
now appropriate modifications have to be anticipated, in or-
der to be able to work with a set of rules of acceptable size
right from the beginning.

Next, the numerical relationships inP have to be explored
to set upker0 P . We only use complete conjunctions with
non-zero probabilities for this purpose. So again, we avoid
to use missing information. Usually, numerical relation-
shipsP (ω̂) = 1 stemming from learning single-elementary
rules can be found between neighboring complete conjunc-
tions (i.e. complete conjunctions that differ in exactly one
literal). We construct aneighbor graphfrom P , the ver-
tices of which are the non-null-worlds, labeled by their fre-
quencies or probabilities, and with edges connecting any two
neighbors. Then any such relationshipP (ω̂) = 1 corre-
sponds to a cycle of even length (i.e. involving an even num-
ber of vertices) in the neighbor graph, such that the cross-
product built from the frequencies associated with the ver-
tices, with alternating exponents+1 and−1 according to the
order of vertices in the cycle, amounts to (a number close to)
1. Therefore, the search for numerical relationships holding
in P amounts to searching for such cycles in the neighbor
graph. Finally, as the last step of the initialization,ker g has
to be computed fromker0 P with respect to the setS0 of
conditionals.

In the main loop of the algorithmCKD, the setsK of
group elements andS of conditionals are subject to change.
In the beginning,K = ker g andS = S0; in the end,S
will contain the discovered conditional relationships. More
detailed, the products inK which correspond to equations
of type (10) are used to simplify the setS. The modified
conditionals induce in turn a modification ofK, and this is
repeated as long as elements yielding equations of type (10)
can be found inK. Note that no probabilities are used in
this main loop – only structural information (derived from
numerical information) is processed. It is only afterwards,
that the probabilities of the conditionals in the final setS
are computed fromP , and the probabilistic conditionals are
returned.

Although equations of type (10) are the most typical ones,
more complicated equations may arise, which need further
treatment. The techniques described above, however, are
basic to solvingany group equation. More details will be

published in a forthcoming paper. But in many cases, we
will find that all or nearly all equations inker g can be solved
successfully and hence can be eliminated fromK.

We will illustrate our method by the following example.
The results shown are found with the help of CONDOR, but
the example is simple enough to be calculated “by hand”.
Nevertheless, it may well serve to show how the algorithm
works, in particular, how missing information is dealt with.

Example 11 Suppose in our universe areanimals(A), fish
(B), aquatic beings(C), objects with gills(D) andobjects
with scales(E). The following table may reflect our obser-
vations:

object freq. prob. object freq. prob.

abcde 59 0.5463 abcde 11 0.1019
abcde 21 0.1944 abcde 9 0.0833
abcde 6 0.0556 abcde 2 0.0185

The set of null-conjunctions is calculated asNC =
{a, c, b d} – no object matching any one of these partial de-
scriptions occurs in the data base. These null-conjunctions
are crucial to set up a starting setB of basic rules of feasible
size:

B = { φb,1 = (b|acde) φd,1 = (d|abce)
φb,2 = (b|acde) φd,2 = (d|abce)
φb,3 = (b|d) φd,3 = (d|b)
φe,1 = (e|abcd) φa,1 = (a|>)
φe,2 = (e|abcd)
φe,3 = (e|abcd) φc,1 = (c|>) }

So, the missing information reflected by the setNC null-
conjunctions helped to shrink the starting setB of rules from
5 · 24 = 80 basic single-elementary rules to only11 con-
ditionals. The next step is to analyze numerical relation-
ships. In this example, we find two numerical relationships
between neighboring worlds that are nearly equal:

P (abcde) ≈ P (abcde) and P (
abcde

abcde
) ≈ P (

abcde

abcde
)

The first relationship can be translated into the following
structural equations by usingσB, according to Theorem 8:

b+
a,1b

−
b,1b

+
c,1b

+
d,3b

+
e,3 ≡g b+

a,1b
−
b,2b

+
c,1b

+
d,3b

−
e,3

⇒ b−b,1 ≡g b−b,2 andb+
e,3 ≡g b−e,3 ≡g 1

Soφb,1 andφb,2 are joined to yield(b|acd), andφe,3 is elim-
inated. In a similar way, by exploiting the second relation-
ship inP , we obtainb±d,1 ≡ b±d,2 andb±e,1 ≡ b±e,2, that is,
the corresponding conditionals have to be joined. As a fi-
nal output, the CKD algorithm returns the following set of
conditionals:

cond. prob. cond. prob.

(a|>) 1 (c|>) 1
(b|d) 1 (d|b) 1

(b|acd) 0.8 (d|abc) 0.91
(e|abc) 0.74
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All objects in our universe are aquatic animals which are
fish or have gills. Aquatic animals with gills are mostly fish
(with a probability of0.8), aquatic fish usually have gills
(with a probability of0.91) and scales (with a probability of
0.74).

Implementation details
In order to be able to test the algorithm, a prototype has
been implemented using the functional programming lan-
guage Haskell. Haskell was chosen as the implementation
language because functional programs in general are shorter
and thus easier to maintain than their counterparts written in
imperative or object-oriented languages. Furthermore, the
use of higher-order functions makes it easy to write new
functions reusing others, and, in cooperation with Haskell’s
clear syntax, facilitates to concentrate on the algorithmic de-
tails.

For lack of space it is impossible to describe the imple-
mentation as a whole. Instead, two crucial parts of the algo-
rithm are presented and discussed in some detail, in order to
show certain aspects of the chosen (prototypical) implemen-
tation.

As explained in the previous section, one problem when
implementing the prototype was the representation of the
frequency distribution. The input of the algorithm consists
of tabular data, i.e. a table where each column corresponds
to one variableV ∈ V and every row represents a complete
conjunction. The frequency of every complete conjunction
can easily be calculated from this table, but the question re-
mains how to represent the frequency distribution in mem-
ory. For this purpose, we used a tree-like structure. Given
a fixed ordering of the variablesV ∈ V, the internal nodes
of this tree are labeled with a variable, where all internal
nodes on the same level are labeled with the same variable.
Every edge leaving an internal node labeled with variable
Vi is labeled with a valuevi ∈ [Vi]. This way, each path
from the root node of the tree to one of its leaves defines
one complete conjunction, whose frequency is contained in
the leaf, and the frequency of a complete conjunction can be
computed in timeO(|V|). The frequency of arbitrary con-
junctions can also be calculated easily: starting at the root
note, the set of literals corresponding to the variable the cur-
rently visited node is labeled with is picked out of all literals
included in the conjunction. The corresponding subtrees are
visited and finally, when reaching the leaves, the particular
frequencies are accumulated.

The tree of conjunctions also facilitates the computation
of null-conjunctions, which would not be possible using e.g.
a tabular representation. Null-conjunctions are represented
by leaves with a frequency of 0. These null-conjunctions are
collected and aggregated, but one can further accelerate the
search for these null-conjunctions (and perhaps also the cal-
culation of the frequencies of conjunctions) by reordering
the variables according to certain heuristics. For example,
suppose we are given four binary variablesA, B, C and
D. Suppose further on that the frequency of either complete
conjunctionabcd, abcd, abcd andabcd is 0. Using the given
ordering, one must collect all four null-conjunctions and ag-

gregate them to attain more concise null-conjunctions. But
rearranging the variables toB,D, A, C would immediately
give the shorter null-conjunctionbd.

Another important part is the computation ofker0 P .
To do this, one has to construct the neighbor graph ofP .
This is not that difficult, as the non-null-worlds, which con-
stitute its vertices, can easily be found by traversing the
tree of conjunctions. The difficult part is finding cycles of
even length, each corresponding to a numerical relationship
P (ω̂) = 1. One possible solution is conducting a slightly
modified depth-first search, starting in every vertex of the
neighbor graph. During a depth-first search, one keeps track
of the vertices already visited. During the modified depth-
first search, only the vertices on the path from the start node
to the currently visited note are memorised. As soon as a
node contained in this set of already visited nodes is visited
again, a cycle has been detected. If this node is the start node
and the cycle has even length, one has found an element of
ker0 P . Of course, using this simple algorithm, elements of
ker0 P are found more than once, at least twice because the
graph is undirected. So the set of newly found elements of
ker0 P must be postprocessed after every depth-first search.
The whole function to compute the elements ofker0 P con-
sists of 30 lines of code, which is very short for the amount
of work done and illustrates how Haskell’s syntax supports
the user in writing concise and clear programs.

Summary and further work
In this paper, we present and elaborate an approach to
knowledge discovery as a process which reverses inductive
knowledge representation. Relevant relationships to be dis-
covered from the data are those that are apt to generate the
inherent probabilistic information via an inductive represen-
tation method as, for instance, the well-known principle of
maximum entropy. We briefly describe the theoretical and
methodological background, and also make clear how our
method can be implemented by sketching an algorithm. In
general, the complexity of this algorithm is determined by
the number of non-zero entries in the frequency table (and
not by the number of possible worlds, which would make
the problems intractable).

The CKD-algorithm and the prototype which are reported
on in this paper have been developed and implemented dur-
ing the CONDOR-project2. CONDOR is designed as a sys-
tem for complex knowledge processing. It will be able to
deal both with probabilistic and qualitative knowledge, and
its components are devised for knowledge discovery, in-
ductive knowledge representation, inferencing, and belief
change operations (Beierle & Kern-Isberner 2003). CON-
DOR is supposed to be applied for modelling and diagnosis
in medical and economical domains.
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