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Abstract

It is commonly believed that the meaning of a formal declar-
ative knowledge representation language is determined by its
formal semantics. This is not quite so. This paper shows
an epistemological ambiguity that arises in the context of
logic programming. Several different logic programming for-
malisms and semantics have been proposed. Hence, logic
programming can be seen as an overlapping family of formal
logics, each induced by a pair of a formal syntax and a for-
mal semantics. We would expect that (a) each such pair has
a unique declarative reading and (b) for a program in the in-
tersection of several formal LP logics with the same formal
semantics in each of them, its declarative reading is the same
in each of them.

I show in this paper that neither (a) nor (b) holds. The pa-
per investigates the causes and the consequences of this phe-
nomenon and points out some directions to overcome the am-
biguity.

Introduction
This paper is concerned with the use of logic programming
(LP) languages fordeclarative knowledge representation,
and with thedeclarative readingof LP languages in rela-
tion to the formal semantics. I will first try to clarify what I
mean with these terms.

In the process ofdeclarative knowledge representation(as
viewed here in this paper) about somedomain of discourse,
a human expert, at some stage, will select a set of relevant
basic properties that are known to hold in this domain and
which he desires to represent in the formal language. To
formalise these properties, he needs to design an appropri-
ate vocabulary of so-callednon-logical symbols to denote
relevant objects and concepts in the domain. Once these
symbols are chosen and their denotations clear and fixed,
well-formed expressions of the language become meaning-
ful statements about the domain in the mind of the human
expert; a formal expression is then a statement of a certain
property, which can betrue or false in that domain. This
property is what is called here thedeclarative reading of the
expression(under the given denotations of the non-logical
symbols). The experts goal is to construct a set of formal
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expressions whose declarative readings match the selected
basic properties.

Not all formal languages aim to be used or can be used
for declarative knowledge representation in the above sense.
To be able to use a formal language as in the above scenario,
the following question of epistemological nature must have
an answer:for any given domain of discourse and set of
denotations of non-logical symbols in this domain, what is
the property of the domain that is expressed by a formal ex-
pression of the language?This epistemological question is
an informal question and cannot be answered with absolute
mathematical rigor. Yet, for a class of languages, the ques-
tion can be answered with a very high degree of precision.
The standard example of such a language is of course classi-
cal logic. For example, when using unary predicate symbols
human, male andfemale to denote respectively humans,
males and females, the declarative reading of the classical
logic formula

∀x(human(x)→ male(x) ∨ female(x)) (1)
is the property that each human is male or female or both.
This is a precise and objective property, which istrue in the
real world. A well-known historical example of anepiste-
mologically ambiguousknowledge representation language,
i.e. one whose expressions are interpreted differently by dif-
ferent human experts, was the formalism of semantic net-
works in the state of the art of the early seventies. (Woods
1975) pointed out that “the same semantic network notations
could be used by different people (or even by the same per-
son at different times for different examples) to mean differ-
ent things”: for example, one network could be understood
by some as the property that all telephones are black, by
others that some telephone is black and by yet others as a
definition of the concept of a black telephone.

Epistemological ambiguity interferes with the basic role
of a declarative knowledge representation language: to be a
precise and reliable tool to describe properties of a domain
and communicate these amongst human (or non-human) ex-
perts. Indeed, a language can only play this role if the com-
munity that uses it is able to assign a common, unique,
well-understood declarative reading to the expressions of
the logic, in the context of any appropriate set of denota-
tions of the non-logical symbols. A non-ambiguous declar-
ative reading is also needed to develop a coherent declara-
tive knowledge representation methodology. Consequently,
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one of the main conclusions from semantic networks drawn
by Woods and by the logic-based AI community (e.g. in
(Hayes 1977)) was that the meaning of knowledge represen-
tation languages must be characterised in a formal mathe-
matical way, by formal semantics. At present, many in the
AI community seem to believe that a formal semantics dis-
ambiguates the meaning of a formal language: that it deter-
mines the declarative reading of the language, if not in an
explicit then at least in an implicit way. A main point of this
paper is that this is not so, and I will illustrate this point in
the case of classical logic and logic programming.

This study is an epistemological investigation into logic
programming. The area of logic programming is complex
and several different semantics and extensions have been
presented. The most common semantics are the completion
semantics (Clark 1978), the well-founded semantics (Van
Gelder, Ross, & Schlipf 1991), the stable model seman-
tics (Gelfond & Lifschitz 1988) and its extension, answer
set semantics (Gelfond & Lifschitz 1991). The extensions
that concern us here are abductive logic programming (ALP)
(Kakas, Kowalski, & Toni 1992) and answer set program-
ming (ASP)(Gelfond & Lifschitz 1991). Logic program-
ming is not one formal language but can be seen as a family
of such languages, each induced by a pair of a syntax and a
formal semantics.

These languages belong to the intersection of computa-
tional logic and knowledge representation logics. As com-
putational logics, they serve to encode problems and to solve
them by applying some standard inference mechanism. But
they are also often viewed asdeclarativelanguages which
can be used for knowledge representation and which are
related to default and autoepistemic logic. Viewed from
this perspective, the epistemological question arises: what
is the declarative reading of logic programming? What is
the meaning of the negation as failure and the rule operator?
These questions have occurpied many researchers since the
late seventies. In this paper, I do not aim to answer these
questions. Rather, I want to pinpoint a problem in the logic
programming community which causes an epistemological
ambiguity of similar nature as occurred in semantic nets in
the early seventies.

Evidently, we may not expect that the negation as failure
symbol and the rule operator have the same meaning in each
of the LP logics that are induced by a selection of syntax and
formal semantics. On the contrary, each of these languages
must be expected to have its own declarative reading, thus
giving rise to a landscape of different interpretations and
views. However, we might expect the following.

(a) We might expect that each LP logic in this family has
a unique declarative reading. Even if we miss the words
and concepts in natural language to give a very precise
explanation of the intuitive meaning of the logical sym-
bols in the logic (i.e. negation as failure, the rule operator,
. . . ), we would expect that the formal semantics implicitly
disambiguates the meaning of the logic expressions.

(b) There is a substantial overlap between the different
LP logics. For example, for acyclic normal programs,
completion semantics, the stable semantics and the well-

founded semantics coincide (Apt & Bezem 1990). For
stratified programs, stable and well-founded semantics
coincide. If a program belongs to several LP logics and
has the same formal semantics in them, then we might ex-
pect that its declarative readings in these different logics
agree with each other.

The epistemological ambiguity of logic programming is that
neither (a) nor (b) holds. There exist different views on the
meaning of logic programs, including those for which all se-
mantics coincide. Moreover, the same expressions under the
same semantics have sometimes been interpreted in different
ways. This is an epistemological ambiguity of an analogous
kind as in the situation of semantic nets in the early seven-
ties.

This phenomenon contradicts with the common belief that
formal semantics disambiguates the meaning of a formal
language. A formal semantics merely defines a formal re-
lationship between expressions of a formal language and
mathematical semantical concepts, e.g. structures and the
|= relation between structures and expressions. If the mean-
ing of the semantical concepts is not clear and different hu-
man experts assign different epistemological roles to these
semantical concepts, then they will disagree about the mean-
ing of the expressions of the logic, even if they agree on the
formal semantics. This point is illustrated in the next section
where a non-standard declarative reading of classical logic is
presented which is compatible with the standard semantics
of classical logic.

The above observation shows the hart of LP’s ambigu-
ity problem. There is no clear, universally adopted conven-
tion of what a model means in the research community of
LP, answer set programming (ASP) and abductive logic pro-
gramming (ALP). This explains why different intuitions can
and have been assigned to the same LP expressions, even
to those for which all formal semantics coincide. The pa-
per investigates the consequences and problems caused by
the ambiguity and discusses general strategies to resolve the
ambiguity.

An alternative interpretation of classical logic
The following table describes the standard meaning of the
logical connectives and of the basic semantical concepts of
model theory of classical logic:

formal concept meaning
atomp(x1, . . . , xn) (x1, . . . , xn) belongs to ’p’
∧ conjunction
∨ inclusive disjunction
¬ negation
∃x(ψ[x]) existential quantification
∀x(ψ[x]) universal quantification
a structureM M formally represents a

state of the problem world
M |= ψ ψ is true inM
a modelM of ψ M is a possible state

according toψ
ψ |= φ ψ entailsφ (φ is true in

all states whereψ is true)
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Given a vocabulary of user defined symbols denoting objects
and concepts in a domain of discourse, the above table tells
a human expert how to interpret a formula in the domain of
discourse. For example, under the obvious meaning of the
symbols, the formula

∀x(¬person(x) ∨male(x) ∨ female(x)) (2)

expresses that each person is male or female or both.
The question now is whether the formal semantics of

classical logic really forces a rational person to interpret
the logical symbols as specified by this table. Stated
differently: could it be that an intelligent and rational
person understands the formal semantics of first order
logic, and yet, that this person interprets some or all
logical connectives differently than in the above table?
More precisely, is it possible that this person would un-
derstand for which pairs of structuresM and formulasF
the satisfaction relationM |= F holds and still, would
assign a different meaning to the logical connectives? The
answer is “yes” if the person also assigns a different mean-
ing to the semantical concepts. Below is an alternative table:

formal concept meaning
atomp(x1, . . . , xn) (x1, . . . , xn) does not

belong to ’p’
∧ inclusive disjunction
∨ conjunction
¬ negation
∃x(ψ[x]) universal quantification
∀x(ψ[x]) existential quantification
M |= ψ ψ is false inM
a modelM of ψ M is an impossible state

according toψ
ψ |= φ ψ is entailed byφ

Using this table, any formula means exactly the opposite of
its standard declarative reading. For example, the formula
(2) means thatthere exists a person who is neither male nor
female. Yet, this is consistent with the mathematical defini-
tion of the truth relation|= because the latter relation now
specifies falsity rather than truth.

This experiment shows that formal model semantics do
not disambiguate the declarative reading of a formal lan-
guage in an absolute manner. It shifts the question of the
meaning of the logical connectives and formulas to the ques-
tion of the meaning of the semantical concepts. Changing
the meaning of the semantical concepts changes the mean-
ing of the logical connectives, and as shown, the change can
be drastic. Knowing which are the models of a formula does
not tell us what this formula means. We also need to know
what a model tells about the world, and this is not and cannot
be formalised in the model theory.

Classical logic owes its reputation as a clear, precise, non-
ambiguous knowledge representation language not only to
its formal semantics but also to an implicitly but universally
adoptedconventionabout the meaning of two key seman-
tical concepts:a structureis understood as a mathematical
abstraction of a state of the problem domain and describes
it as a domain of objects and a set of functions and relations

in this domain;the satisfaction relation|= relates structures
with formulas that aretrue in it. As shown, one can think of
other consistent interpretations of these concepts, but fortu-
nately, nobody uses them.

The bottom line is that the informal notions of declara-
tive reading of a formal logic and the epistemological role of
its semantic concepts are tightly connected. Only if the re-
search community uses a standard convention on the mean-
ing of the semantic concepts, the formal semantics deter-
mines a declarative reading of the logic.

This observation has the following philosophical implica-
tion. It is well-known that there are many different views
on what logic is. In AI, logic is often defined as a sys-
tem consisting of a formal syntax and formal semantics. In
the light of the observations in this section, we realise that
such a system in principle has no fixed declarative reading.
From a knowledge representation perspective, a more sensi-
ble view is that a logic is a precise formal language to rep-
resent knowledge. In this view, a logic cannot be a purely
formal object in the sense that two logics may be formally
indistinguishable or isomorphic and still have different in-
formal declarative readings, each formalised by one and the
same formal semantics but using different informal views of
the semantical concepts. I believe this consequence must be
accepted and that it makes more sense to view logic as a
triple consisting of a formal syntax, an informal declarative
reading and a formal semantics formalising this declarative
reading under a specific interpretation of the formal seman-
tical concepts.

Ambiguity of Logic Programming
There are several symptoms and observations that point to
the ambiguity of logic programming. Below we discuss
some of them. We use the following formal and informal
concepts. Apossible (world) stateis a state of the world
which is possible according to a given belief. In a context
where the belief of an agent is not or only partially known, a
state of beliefof the agent is one of the possible beliefs this
agent might have. Abelief setT is a deductively closed set
(T is its own deductive closureCn(T )) which represents a
state of belief of an ideally rational agent, that is an agent
with unlimited deductive powers (if he believesψ andψ en-
tailsφ then he believesφ).

Gelfond and Lifschitz’s original paper on stable seman-
tics (Gelfond & Lifschitz 1988) takes a nonstandard view
on a model and explicitly states that stable models represent
“possible states of beliefs that a rational agent might hold” .
Up to that moment, the epistemological role of a model
in LP semantics (Least Herbrand (van Emden & Kowalski
1976), completion semantics (Clark 1978), perfect model
semantics (Apt, Blair, & Walker 1988) ) had not been ex-
plicitly mentioned. In (Gelfond & Lifschitz 1990), Gelfond
and Lifschitz distinguished betweengeneral logic programs,
in which a stable model represents a possible world state,
which is the standard view on a model, andextended logic
programsin which ananswer setrepresents a first order the-
ory consisting of literals and representing a possible state of
belief of the human expert. But extended logic programs
that do not use classical negation are formally identical to
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general logic programs. Moreover, their answer sets are the
stable models. This led to the remarkable situation that gen-
eral logic programming and the subset of extended logic pro-
gramming without classical negation are formally indistin-
guishable and yet, in the light of the previous section, these
logics have different declarative readings. Gelfond and Lifs-
chitz realised this and observed that “there is a semantic dif-
ference between a set of rules viewed as a general program
(under stable semantics) and the same set of rules viewed as
an extended program (under answer set semantics)” (Gel-
fond & Lifschitz 1990).

There are simple examples that illustrate the different
declarative readings. For example, we might represent a
definition of dead in terms ofalive by the following logic
program rule:

dead :- not alive (3)
If this is the only rule withdead in the head, it expresses
that a person is dead if and only if he is not alive.

On the other hand, (Gelfond & Lifschitz 1990) uses the
following singleton program to illustrate the meaning of the
logical connectives:- and not in extended logic pro-
gramming:

cross :- not train (4)
This program represents the knowledge of a self-reflective
agent. The non-logical symbolcross denotes that the agent
crosses the railway, andtrain means that a train is arriving.
The operator:- is interpreted as material implication; the
operatornot corresponds to the modal operator “I do not
know that ..” in autoepistemic logic. The intended meaning
of the program is thatall the agent knowsis that “he crosses
if he does not know thata train is arriving”. Since this theory
doesnot tell whether a train is arriving, the agent apparently
does not know and hence, by application of the rule, he will
cross.

These two rules have the same syntactic form but if we
make abstraction of the different denotations of non-logical
symbols, they represent different types of properties. Forex-
ample, it is true that Bin Laden is dead if and only if he is not
alive, but it is not true that he is dead if I do not know that he
is alive. Vice versa, in a situation where an agent crosses the
railway in firm but mistaken belief that no train is arriving,
the classical logic equivalencecross ↔ ¬train is violated
but the autoepistemic sentence is true. In both statements,
the basic connectives negation as failurenot and rule op-
erator :- have different meaning. In the definition,not
has the standard modality of classical negation and:- is
equivalence; in the railroad rule,not is a modal operator
and the rule operator is material implication.

The unique model of the general logic program
{dead :- not alive} is {dead}. This model is the
unique possible state of the world, which means that the
belief represented by the program is thatalive is false
anddead is true. The unique answer set of the extended
logic program{cross :- not train} is {cross} which
represents the belief thatcross is true and nothing is be-
lieved abouttrain. The difference in declarative readings
of these two rules is not explained by different formal se-
mantics but by the different epistemological roles assigned
to the model.

Semantics of Logic Programming has often been analysed
through embeddings in other logics, in particular in clas-
sical logic (CL), default logic (Reiter 1980) and autoepis-
temic logic (Moore 1983). Different embeddings give a dif-
ferent meaning to the rule operator, to negation as failure
and hence, to logic programs. The difference appears in al-
most every logic program, even the most simple ones with-
out negation on which all main LP model semantics coin-
cide. It is easy to demonstrate this formally. Consider the
case of definite programs and, as an illustration, take the fol-
lowing program:

P1 = {p :- q}

This program is a non-recursive definite program. For such
programs, all semantics coincide. The empty set∅ is the
unique least model, the unique model of the completion, the
unique stable model and the unique well-founded model of
P1.

Let us compare the meaning ofP1 as expressed by three
different embeddings. The first one is the Clark comple-
tion (Clark 1978). In the case whereP is a propositional
logic program, the theorycomp(P ) consists of the equiv-
alencesp ↔ B1 ∨ . . . ∨ Bn wherep :- B1, . . . , p :- Bn
is the set of rules withp in the head. The belief set of an
agent whose knowledge is represented byP under this em-
bedding isCn(comp(P )). The second embeddingael(P )
maps a rulep :- q, not r to the autoepistemic formula
p ← q ∧ ¬Kr and was proposed first in (Gelfond 1987)
and again in the original paper on the stable model seman-
tics (Gelfond & Lifschitz 1988). The belief sets ofP un-
der this embedding are given by theautoepistemic expan-
sions of ael(P ). In (Gelfond & Lifschitz 1988), it was
shown that the stable models of a programP correspond ex-
actly to the sets of atoms in theautoepistemic expansionsof
ael(P ). The third embeddingdl(P ), proposed by (Marek
& Truszczýnski 1989), maps a rulep :- q, not r to the

default
q : ¬r
p

. P ’s belief sets are given by the default

extensions ofdl(P ). There is a one to one correspondence
between stable models ofP and default extentions ofdl(P ):
each default extension ofdl(P ) is of the formCn(M) with
M a stable model ofP and vice versa, for each stable model
M , Cn(M) defines an extension ofdl(P ). In (Gelfond &
Lifschitz 1991), this embedding was extended to extended
logic programs.

Under each embedding,P1 leads to a unique state of be-
lief. The following table formally compares the belief sets
of an agent believingcomp(P1), ael(P1) anddl(P1), and
the possible world states corresponding to these belief sets.

P1 = {p :- q} comp(P1)

embedding

{

q ↔ false,
p↔ q

}

belief set Cn({¬p,¬q})
possible states ∅
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P1 = {p :- q} ael(P1)

embedding {p← q}
belief set Cn({p← q})
possible states ∅, {p}, {p, q}

P1 = {p :- q} dl(P1)

embedding

{

q :
p

}

belief set Cn(∅)
possible states ∅, {p}, {p, q}, {q}

The differences in meaning are explained by the fact that
in each embedding, the model∅ plays a different epistemo-
logical role. Incomp(P1), the model∅ of P represents the
unique possible state of the world; inael(P1) it represents
the set of believed atoms, while indl(P1), it is a proposi-
tional theory representing the belief of the agent.

The programP1 is an example of a program for which all
formal model semantics coincide, but for which the declara-
tive readings induced by the different embeddings differ. So
it illustrates that point (b) of the introduction does not hold.
P1 also illustrates thatael anddl assign a different meaning
to logic programs, despite the fact that they both induce the
stable semantics. So, this example illustrates that point (a)
of the introduction does not hold.

At this moment, the literature is vague and confusing
about the epistemological role of models and answer sets
of LP, ALP and ASP. As mentioned before, the early works
on semantics of logic programming do not explicitly men-
tion the epistemological role of a model. Therefore, in prin-
ciple, we cannot know the declarative reading of logic pro-
gramming under the least Herbrand, completion, perfect and
well-founded semantics. Gelfond and Lifschitz (Gelfond &
Lifschitz 1991) introduced different roles for a model but
they were explicit about this and even renamed logics to
distinguish formally indistinguishable systems by the epis-
temological role of models (confergeneralversusextended
logic programs). Their example has not been followed in the
LP community.

Abductive logic programming (Kakas, Kowalski, & Toni
1992) is defined as an extension of logic programming to
perform abductive reasoning. Formal semantics are spec-
ified implicitly through a framework explaining how any
logic programming semantics can be extended to the case
of ALP. No commitments are made with respect to the epis-
temological role of models. Until recently, no efforts had
been made to explain the epistemological foundations of this
logic, and this domain inherits the ambiguity problems of
LP.

Also in answer set programming, the role of answer sets
has grown confused. Gelfond has continued to explain the
view of answer sets as first order theories representing states
of belief of a rational agent, and to make the distinction
between answer set programs and general logic programs
(see e.g. (Gelfond 2002) which studies how to approxi-
mate general logic programs by answer set programs). How-
ever, he is not followed by the ASP community. Marek and
Truszczynski in (Marek & Truszczýnski 1999) and Niemelä

in (Niemel̈a 1999) explain that an answer set isa solution
to a problem. This explanation does not tell us what is the
epistemological role of an answer set, i.e. what an answer
set tells about the real world or about the belief of the hu-
man expert or the agent whose beliefs are expressed in the
program. If we analyse the applications presented in these
papers and related ones (e.g. Hamiltonian path, colorabil-
ity problems, n-queens, planning problems, computer con-
figuration problems . . . ), then we see that the programs can
be viewed naturally as incomplete descriptions of a prob-
lem world and that stable models represent possible states
of the world satisfying the programs. In this respect, the
approaches proposed in these papers are based on general
logic programming rather than on answer set programming.
For example, consider the Hamiltonian path program from
(Marek & Truszczýnski 1999):






























in(V1, V2) :- edge(V1, V2), not in ∗ (V1, V2)
in ∗ (V1, V2) :- edge(V1, V2), not in(V1, V2)
f :- in(V2, V1), in(V3, V1), not V2 = V3, not f

f :- in(V1, V2), in(V1, V3), not V2 = V3, not f

reached(a)
reached(V2) :- in(V1, V2), reached(V1)
f :- not reached(X), not f































The first two rules specify thatin is a subset of the edges
of a graph. The two next rules specify thatin is a lin-
ear path through the graph (all stable models of a rule
f :- B, not f, satisfy the bodyB). The next rules induc-
tively define the reachability relation from an initial vertex
a. The last rule specifies that each vertex should be reach-
able froma. This theory specifies thatin is a Hamiltonian
path in the graphedge. It’s models represent possible states
of the world. This is a general logic program1. In the recent
book (Baral 2003), Baral identifiesgeneral logic program-
ming(or normal logic programmingunder the stable seman-
tics) with AnsProg, a sublogic of answer set programming
without classical negation nor disjunction. The aforemen-
tioned semantical difference between stable models in both
formalisms is not discussed. Even Lifschitz no longer ex-
plicitly mentions the epistemological role of answer sets or
the distinction between general logic programs and answer
set programs (e.g. in (Lifschitz 2002)). (?) investigates the
representation of definitions in answer set programming. It
is unclear now whether a rulep :- not q represents
a rule of a definition or an autoepistemic statement.

Because the epistemological role of a model or an answer
set is often not made explicit and because of the lack of a
clear and widely accepted convention, in principle we can
not know what a logic program, an abductive logic program
or answer set program means.

Some Consequences and Problems
This section discusses some consequences and potential
problems caused by the ambituity.

1It is worth mentioning that in (Marek & Truszczyński 1999),
Marek and Truszczynski use the termStable logic programming,
not answer set programming. Only later, this approach was incor-
porated in answer set programming (see e.g. (Lifschitz 1999)).
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What is negation as failure (NAF)? A widespread belief is
that negation as failure is not objective negation as in classi-
cal logic but an epistemic operator “it is consistent to assume
¬p”. The truth is that there are multiple consistent views
on the meaning of logic programs and its basic connec-
tives not and :- . In the context of answer set program-
ming, negation as failurenot can indeed be interpreted as
a modal operator, as shown for example by the translationdl
of extended logic programming into default logic. However,
this interpretation should not be extrapolated to other views
on LP in which a model is a possible state of the world, not
even to general logic programming. This is most obvious
in the completion semantics which maps negation as fail-
ure into classical negation. At present, we do not know what
negation as failure means in general or stable logic program-
ming.

Language extensions. Languages are extended on the ba-
sis of their declarative reading. Language extensions that
make sense in one declarative reading do not make sense in
others. For example, if negation as failure in general logic
programming would turn out to be classical negation, then it
would make no sense to extend this formalism with classical
negation.

Methodology and teaching. The multiple declarative read-
ings complicate the development of a methodology. The
combination of vagueness about the epistemological role of
semantic concepts, the presence of multiple intuitions and
declarative readings and the complexities of the program-
ming methodology form a perfect blend to confuse our stu-
dents. For example, the definition of dead in terms of alive
can be represented by the rule (3)

dead :- not alive

or alternatively, if classical negation can be used:
{

dead :- ¬alive
¬dead :- alive

}

In the area of answer set programming, both styles have been
used. Each style has its own applications and limitations.
Moreover, these styles should not be mixed. As an illustra-
tion, assume a student has an assignment to represent that
all an agent knows is that he crosses the railroad if he does
not know there is a train and that it is safe to cross iff there is
no train. The second part of this assignment is a definition.
In the spirit of (?) (and similar as in thedead andalive ex-
ample), he might be tempted to solve this assignment by the
programPsafe consisting of the rule (4) and one additional
rule:

safe :- not train (5)

After all, each of the rules correctly represents half of the
assignment. Unfortunately for the student, this is a wrong
answer for the simple reason that a model cannot play the
role of a possible world state and of a set of believed for-
mulas at the same time. Since the agent has no knowledge
about the train, he crosses. So the belief set of the agent is
Cn({cross, safe↔ ¬train}). The unique stable model of
Psafe is {safe, cross}. This is not the unique possible state

of the world ({cross, train} is another possible state) and it
is not the set of believed formulas of the agent.

I do not claim that programs mixing up different declara-
tive readings actually occur in the LP literature (probably
not, since they yield wrong answers). But I believe that
the existence of the different declarative readings and the
vagueness that surrounds them, complicates the develop-
ment of a consistent, comprehensible knowledge represen-
tation methodology and creates confusion amongst students,
users and researchers.

Comparing formal semantics. In LP, there exist many
mathematical results relating different model semantics.
What is lacking almost completely in the LP literature is
what these mathematical results mean at the epistemologi-
cal level. Extreme caution is needed here. Comparing sets
of atoms representing possible states, sets of believed atoms
or first order theories, is comparingapples and oranges. For
example, it is well-known that the set of stable models is a
subset of the set of models of the completion. It is tempting
to conclude from this that the default reading or the autoepis-
temic reading of a logic program is stronger than the com-
pletion semantics (in the sense that more formulas are be-
lieved and less world states are possible), but this is a wrong
conclusion, in a similar way as it is wrong to conclude that
2kg is less than 3 pounds. Actually the programP1 in the
previous section is an example of the contrary:dl(P1) is
weaker thanael(P1) which is weaker thancomp(P1).

Explaining LP to the outside AI-world. Logic program-
ming and its extensions are quite widely used as tools for
implementingAI-applications or building rapid prototypes.
However, as long as we cannot resolve the vagueness about
and confusion of its meaning, I believe that LP will not and
should not be accepted as a declarative knowledge represen-
tation language in the larger AI and KR community2.

A strategy for resolving the ambiguity
In computational logic, logic is often viewed as a formal
language to encode problems and to solve them using infer-
ence engines. Extracting the answer to the problem from
the computed semantical concepts of a theory is considered
to be the responsibility of the human expert. This means
that the epistemological role of semantical concepts, thatis,
the way they are related to the problem domain and to the
knowledge of the human expert, is left as a design choice
to the human expert. But as we saw in the case of classical
logic, it is impossible then to associate a declarative reading
to connectives and expressions of the logic and to develop a
methodology on the basis of the declarative reading.

Declarative knowledge representation, as meant in this
paper, is not the same asencoding problems in a formal lan-
guage. One represents knowledge by writing formal expres-
sions with declarative readings that aretrue in the domain

2In the past, it has been one of my own research goals to demon-
strate the suitability ofabductive logic programmingfor knowledge
representation. At some point I realised the futility of such efforts
as long as we are unable to explain what kind of knowledge can be
represented byabductive logic programs.
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of discourse. To be able to do this, a knowledge representa-
tion language must have a unique, precise, well-understood
declarative reading.

In many theoretical studies of a formal system, e.g. de-
velopment of inference methods, proof of their correctness,
complexity of such algorithms and of formally defined com-
putational problems within the logic, formal analysis of re-
lationships with other logics, etc, informal aspects such as
declarative reading and epistemological role of semantic
concepts are immaterial. However, in those situations where
the meaning of the logical connectives and expressions mat-
ter, the epistemological role of semantical concepts should
be clear:

• when explaining the intuitions underlying formal seman-
tics

• when discussing the meaning of the formal connectives

• when explaining methodology

• when presenting examples and applications.

In the present state of affairs, logic programming and its
extensions, viewed as knowledge representation languages,
are ambiguous. The following strategy can resolve the am-
biguity problem.

As a first step, the community should develop a rigourous
and systematic discipline of being precise about the epis-
temological role of semantical concepts in each application
and experiment and in each discussion of the meaning of the
logical symbols.

In a second step, the area should “install” a fixed and
clear convention of how to interpret the semantical concepts.
If multiple declarative readings exist, the formal language
should be split up and renamed so that the ambiguity disap-
pears (as was done by Gelfond and Lifschitz in the case of
general logic programsandextended logic programs). The
area should monitor that this convention is obeyed in exam-
ples and applications.

But to understand the use of a formal language as a knowl-
edge representation formalism, to develop a methodology
and to be able to teach it to students, more is needed than
just a formal semantics and a clear convention about the
meaning of the semantical concepts. We need to study the
meaning of its connectives and the declarative reading in a
sufficiently large class of expressions. Such epistemological
studies could consist of the following elements:

• “Meaning preserving” transformations to or from other
logics with a well- or better understood declarative read-
ing. Examples in LP are the Clark completion embedding
and the embeddingdl of extended logic programming in
default logic.

• Arguments from first principles. Frequently, this is done
by identifying some informal linguistic construct and ar-
guing that the formal logic models this construct correctly.
An example in the context of LP is found in (Denecker
1998; Denecker, Bruynooghe, & Marek 2001), which
points to nonmonotone forms of inductive definitions in
mathematics and argues that logic programming under the
well-founded semantics can be seen as a logic of such in-

ductive definitions. The epistemological role of a well-
founded model is a possible state of the world.

• Illustration of different aspects of knowledge representa-
tion in the logic in many different examples and applica-
tions.

Presently, the three best understood declarative views on
logic programming are:

• logic programming and abductive logic programming un-
der well-founded semantics as a logic of nonmonotone
inductive definitions (Denecker, Bruynooghe, & Marek
2001; Denecker & Ternovska 2004b; 2004a);

• extended logic programming as a sublogic of default logic
based ondl (Marek & Truszczýnski 1989; Gelfond & Lif-
schitz 1991) or, equivalently, as a sublogic of autoepis-
temic logic under the stable semantics (Denecker, Marek,
& aw Truszczýnski 2003);

• answer set programming as an epistemic logic to en-
code possible belief states of an artificial rational reasoner
(Gelfond & Leone 2002).

The declarative reading of other extensions such as general
or stable logic programming (Marek & Truszczyński 1999)
are currently not well-understood. At this moment, we are
still lacking a good understanding of the differences and re-
lationships between all these logics and of their domains of
application.

Conclusion
The ambiguity of LP boils down to the fact that the same
rules and the same programs can be and have been assigned
different meanings. Despite the fact that LP logics have for-
mal semantics, this is an epistemological ambiguity of the
same kind as that of semantic nets in the early seventies.
This paper is an analysis of the causes of this ambiguity and
presents a strategy to remediate the problem. In particular
I have argued that formal semantics, also in the context of
classical logic, do not disambiguate the declarative reading
of a formal language in an absolute way. What is needed
more is a clear convention on the epistemological role of the
semantical primitives. It is the lack of such a convention that
causes LP’s epistemological ambiguity.

This paper has articulated a particular view ondeclarative
knowledge representation, which I believe is quite common
in the logic-based AI community. To be able to use a formal
language for this sort of knowledge representation, a unique,
precise, well-understood declarative reading of the language
is asine qua non. Although I argued that logic programming
in the current state of the art, does not satisfy this criterion,
I believe that LP extensions have a great potential use for
knowledge representation and declarative problem solving,
if we are able to explain its declarative reading in clear and
precise terms. If we succeed in this, it will greatly improve
our understanding of the position and contributions of logic
programming in logic and knowledge representation and it
may lead to a much desired simplification of the complex
landscape of logic programming.
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