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Abstract

There are many examples in the literature that suggest that
indistinguishability is intransitive, despite the fact that the in-
distinguishability relation is typically taken to be an equiv-
alence relation (and thus transitive). It is shown that if the
uncertainty perception and the question of when an agent
reports that two things are indistinguishable are both care-
fully modeled, the problems disappear, and indistinguishabil-
ity can indeed be taken to be an equivalence relation. More-
over, this model also suggests a logic ofvaguenessthat seems
to solve many of the problems related to vagueness discussed
in the philosophical literature. In particular, it is shown here
how the logic can handle theSorites Paradox.

1 Introduction
While it seems that indistinguishability should be an equiv-
alence relation and thus, in particular, transitive, there are
many examples in the literature that suggest otherwise. For
example, tasters cannot distinguish a cup of coffee with one
grain of sugar from one without sugar, nor, more generally,
a cup withn + 1 grains of sugar from one withn grains of
sugar. But they can certainly distinguish a cup with 1,000
grains of sugar from one with no sugar at all.

These intransitivities in indistinguishability lead to intran-
sitivities in preference. For example, consider someone who
prefers coffee with a teaspoon of sugar to one with no sugar.
Since she cannot distinguish a cup withn grains from a cup
with n + 1 grains, she is clearly indifferent between them.
Yet, if a teaspoon of sugar is 1,000 grains, then she clearly
prefers a cup with 1,000 grains to a cup with no sugar.

There is a strong intuition that the indistinguishability re-
lation should be transitive, as should the relation of equiva-
lence on preferences. Indeed, transitivity is implicit in our
use of the word “equivalence” to describe the relation on
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preferences. Moreover, it is this intuition that forms the ba-
sis of the partitional model for knowledge used in game the-
ory (see, e.g., [Aumann 1976]) and in the distributed sys-
tems community [Fagin, Halpern, Moses, and Vardi 1995].
On the other hand, besides the obvious experimental obser-
vations, there have been arguments going back to at least
Poincaŕe [1902] that the physical world is not transitive in
this sense. In this paper, I try to reconcile our intuitions
about indistinguishability with the experimental observa-
tions, in a way that seems (at least to me) both intuitively
appealing and psychologically plausible. I then go on to ap-
ply the ideas developed to the problem ofvagueness.

To understand the vagueness problem, consider the well-
knownSorites Paradox: If n+1 grains of sand make a heap,
then so don. But 1,000,000 grains of sand are clearly a
heap, and 1 grain of sand does not constitute a heap. Let
Heap to be a predicate such thatHeap(n) holds ifn grains
of sand make a heap. What is the extension ofHeap? That
is, for what subset of natural numbers doesHeap hold? Is
this even well defined? Clearly the set of numbers for which
Heap holds is upward closed: ifn grains of sand is a heap,
then surelyn+ 1 grains of sand is a heap. Similarly, the set
of grains of sand which are not a heap is downward closed:
if n grains of sand is not a heap, thenn− 1 grains of sand is
not a heap. However, there is a fuzzy middle ground, which
is in part the reason for the paradox. The relationship of the
vagueness ofHeap to indistinguishability should be clear:
n grains of sand are indistinguishable fromn + 1 grains.
Indeed, just as

Heap is a vague predicate, so is the predicateSweet,
whereSweet(n) holds if a cup of coffee withn grains of
sugar is sweet. So it is not surprising that an approach to
dealing with intransitivity has something to say about vague-
ness.

The rest of this paper is organized as follows. In Sec-
tion 2 I discuss my solution to the intransitivity problem.
In Section 3, I show how how this solution can be applied
to the problem of vagueness. There is a huge literature on
the vagueness problem. Perhaps the best-known approach in
the AI literature involves fuzzy logic, but fuzzy logic repre-
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sents only a small part of the picture; the number of recent
book-length treatments, including [Keefe 2000; Keefe and
Smith 1996; Sorenson 2001; Williamson 1994], give a sense
of the activity in the area. I formalize the intuitions dis-
cussed in Section 2 using a logic for reasoning about vague
propositions, provide a sound a complete axiomatization for
the logic, and show how it can deal with problems like the
Sorites Paradox. I compare my approach to vagueness to
some of the leading alternatives in Section 4. Finally, I con-
clude with some discussion in Section 5.

2 Intransitivity
Clearly part of the explanation for the apparent intransitivity
in the sugar example involves differences that are too small
to be detected. But this can’t be the whole story. To under-
stand the issues, imagine a robot with a simple sensor for
sweetness. The robot “drinks” a cup of coffee and measures
how sweet it is. Further imagine that the robot’s sensor is
sensitive only at the 10-grain level. Formally, this means
that a cup with 0–9 grains results in a sensor reading of 0,
10–19 grains results in a sensor reading of 1, and so on. If
the situation were indeed that simple, then indistinguisha-
bility would in fact be an equivalence relation. All cups of
coffee with 0–9 grains of sugar would be indistinguishable,
as would cups of coffee with 10–19 grains, and so on. How-
ever, in this simple setting, a cup of coffee with 9 grains of
sugar would be distinguishable from cups with 10 grains.

To recover intransitivity requires two more steps. The
first involves dropping the assumption that the number of
grains of sugar uniquely determines the reading of the sen-
sor. There are many reasons to drop this assumption. For
one thing, the robot’s sensor may not be completely reli-
able; for example, 12 grains of sugar may occasionally lead
to a reading of 0; 8 grains may lead to a reading of 1. A
second reason is that the reading may depend in part on the
robot’s state. After drinking three cups of sweet coffee, the
robot’s perception of sweetness may be dulled somewhat,
and a cup with 112 grains of sugar may result in a reading
of 10. A third reason may be due to problems in the robot’s
vision system, so that the robot may “read” 1 when the sen-
sor actually says 2. It is easy to imagine other reasons; the
details do not matter here. All that matters is what is done
about this indeterminacy. This leads to the second step of
my “solution”.

To simplify the rest of the discussion, assume that the “in-
determinacy” is less than 4 grains of sugar, so that if there
are actuallyn grains of sugar, the sensor reading is between
b(n − 4)/10c andb(n + 4)/10c.1 It follows that two cups
of coffee with the same number of grains may result in read-
ings that are not the same, but they will be at most one apart.
Moreover, two cups of coffee which differ by one grain of

1bxc, the floor ofx, is the largest integer less than or equal to
x. Thus, for example,b3.2c = 3.

sugar will also result in readings that differ by at most one.
The robot is asked to compare the sweetness of cups, not

sensor readings. Thus, we must ask when the robotreports
two cups of coffee as being of equivalent sweetness. Given
the indeterminacy of the reading, it seems reasonable that
two cups of sugar that result in a sensor reading that differ
by no more than one are reported as indistinguishable, since
they could have come from cups of coffee with the same
number of grains of sugar. It is immediate that reports of in-
distinguishability will be intransitive, even if the sweetness
readings themselves clearly determine an equivalence rela-
tion. Indeed, if the number of grains in two cups of coffee
differs by one, then the two cups will be reported as equiva-
lent. But if the number of grains differs by at least eighteen,
then they will be reported as inequivalent.

To sum up, reports of relative sweetness (and, more gener-
ally, reports about perceptions) exhibit intransitivity; it may
well be that there are three cups of sugar such thata andb
are reported as being equivalent in sweetness, as areb and
c, but c is reported as being sweeter thana. Nevertheless,
the underlying “perceived sweetness” relation can be taken
to be transitive. However, “perceived sweetness” must then
be taken to be a relation on the taste of a cup of coffee tried
at a particular time, not on the number of grains of sugar in
a cup. That is, rather than considering aSweeter-Thanre-
lation whereSweeter-Than(n, n′) holds if a cup of coffee
with n grains is sweeter than one withn′ grains of sugar, we
should consider aSweeter-Than′ relation, whereSweeter-
Than′((c, s), (c′, s′)) holds if cup of coffeec tried by the
agent in (subjective) states (where the state includes the
time, and other features of the agent’s state, such as how
many cups of coffee she has had recently) is perceived as
sweeter than cup of coffeec′ tried by the agent in states′.
The former relation may not be transitive; the latter is. But
note that the latter relation does not completely determine
when the agentreportsc as being sweeter thanc′. Intran-
sitivity in reports of perceptions does not necessarily imply
intransitivity in actual perceptions.

3 Vagueness
The term “vagueness” has been used somewhat vaguely in
the literature. Roughly speaking, a term is said to be vague if
its use varies both between and within speakers. (According
to Williamson [1994], this interpretation of vagueness goes
back at least to Peirce [1956], and was also used by Black
[1937] and Hempel [1939].) In the language of the previous
section,P is vague if, for somea, some agents may report
P (a) while others may report¬P (a) and, indeed, the same
agent may sometimes reportP (a) and sometimes¬P (a).

Vagueness has been applied to what seem to me to be two
distinct, but related, phenomena. For one thing, it has been
applied to predicates likeRed, where the different reports
may be attributed in part to there not being an objective no-
tion of what counts as red. That is, two agents looking at
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the same object (under the same lighting conditions) may
disagree as to whether an object is red, although typically
they will agree. Vagueness is also applied to situations with
epistemic uncertainty, as in the case of a predicateCrowd,
whereCrowd(n) holds if there are at leastn people in a
stadium at a particular time.2 Here there may be different
responses because agents have trouble estimating the size
of a crowd. I present a model that distinguishes these two
sources of vagueness. Because vagueness is rather slippery,
I also present a formal logic of vagueness.

3.1 A Modal Logic of Vagueness: Syntax and
Semantics

To reason about vagueness, I consider a modal logicLDR
n

with two families of modal operators:R1, . . . , Rn, where
Riϕ is interpreted as “agenti reportsϕ”, andD1, . . . , Dn,
whereDiϕ is interpreted as “according to agenti, ϕ is def-
initely the case”. For simplicity, I consider only a proposi-
tional logic; there are no difficulties extending to the first-
order case. As the notation makes clear, I allow multiple
agents, since some issues regarding vagueness (in particular,
the fact that different agents may interpret a vague predicate
differently) are best considered in a multi-agent setting.

Start with a (possibly infinite) set of primitive proposi-
tions. More complicated formulas are formed by closing
off under conjunction, negation, and the modal operators
R1, . . . , Rn andD1, . . . , Dn.

A vagueness structure M has the form
(W,P1, . . . , Pn, π1, . . . , πn), where Pi is a nonempty
subset ofW for i = 1, . . . , n, andπi is an interpretation,
which associates with each primitive proposition a subset
of W . Intuitively, Pi consists of the worlds that agenti
initially considers plausible. For those used to thinking
probabilistically, the worlds inPi can be thought of as
those that have prior probability greater thanε according to
agenti, for some fixedε ≥ 0.3 A simple class of models
is obtained by takingPi = W for i = 1, . . . , n; however,
as we shall see, in the case of multiple agents, there are
advantages to allowingPi 6= W . Turning to the truth

2Of course, there may still be objective uncertainty as to how to
do the count. For example, does a pregnant woman count as one
or two? If the answer is “one”, then if she goes into labor, at what
point does the answer become “two”? The point is that even if we
assume that all these details have been worked out, so that there
would be be complete agreement among all agents as to how many
people are in the stadium if they had all the relevant information,
there will still in general be uncertainty as to how many people are
in the stadium. This uncertainty leads to vagueness.

3In general, the worlds that an agent considers plausible de-
pends on the agent’s subjective state. That is why I have been care-
ful here to say thatPi consists of the worlds that agenti initially
considers plausible. It should shortly become clear how the model
takes into account the fact that the agent’s set of plausible worlds
changes according to the agent’s subjective state.

assignmentsπi, note that it is somewhat nonstandard in
modal logic to have a different truth assignment for each
agent; this different truth assignment is intended to capture
the intuition that the truth of formulas likeSweetis, to some
extent, dependent on the agent, and not just on objective
features of the world.

I assume thatW ⊆ O × S1 × . . . Sn, whereO is a set of
objective states, andSi is a set of subjective states for agent
i. Thus, worlds have the form(o, s1, . . . , sn). Agent i’s
subjective statesi representsi’s perception of the world and
everything else about the agent’s makeup that determines the
agent’s report. For example, in the case of the robot with a
sensor,o could be the actual number of grains of sugar in
a cup of coffee andsi could be the reading on the robot’s
sensor. Similarly, if the formula in question wasThin(TW)
(“Tim Williamson is thin”, a formula often considered in
[Williamson 1994]), theno could represent the actual di-
mensions of TW, andsi could represent the agent’s per-
ceptions. Note thatsi could also include information about
other features of the situation, such as the relevant reference
group. (Notions of thinness are clearly somewhat culture
dependent and change over time; what counts as thin might
be very different if TW is a sumo wrestler.) In addition,
si could include the agent’s cutoff points for deciding what
counts as thin, or what counts as red. In the case of the robot
discussed in Section 2, the subjective state could include its
rule for deciding when to report something as sweet.

If p is a primitive proposition then, intuitively,
(o, s1, . . . , sn) ∈ πi(p) if i would considerp true if i knew
exactly what the objective situation was (i.e., ifi knew o),
giveni’s possibly subjective judgment of what counts as “p-
ness”. Given this intuition, it should be clear that all that
should matter in this evaluation is the objective part of the
world, o, and (possibly) agenti’s subjective state,si. In
the case of the robot, whether(o, s1, . . . , sn) ∈ πi(Sweet)
clearly depends on how many grains of sugar are in the cup
of coffee, and may also depend on the robot’s perception of
sweetness and its cutoff points for sweetness, but does not
depend on other robots’ perceptions of sweetness. Note that
the robot may give different answers in two different sub-
jective states, even if the objective state is the same and the
robot knows the objective state, since both its perceptions of
sweetness and its cutoff point for sweetness may be different
in the two subjective states.

I write w ∼i w
′ if w andw′ agree on agenti’s subjective

state, and I writew ∼o w
′ if w andw′ agree on the objective

part of the state. Intuitively, the∼i relation can be viewed as
describing the worlds that agenti considers possible. Put an-
other way, ifw ∼i w

′, theni cannot distinguishw fromw′,
given his current information. Note that the indistinguisha-
bility relation is transitive (indeed, it is an equivalence rela-
tion), in keeping with the discussion in Section 2. I assume
thatπi depends only on the objective part of the state andi’s
subjective state, so that ifw ∈ πi(p) for a primitive propo-
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sition p, andw ∼i w
′ andw ∼o w

′, thenw′ ∈ πi(p). Note
that j’s state (forj 6= i) has no effect oni’s determination
of the truth ofp. There may be some primitive propositions
whose truth depends only on the objective part of the state
(for example,Crowd(n) is such a proposition). Ifp is such
an objective proposition, thenπi(p) = πj(p) for all agentsi
andj, and, ifw ∼o w

′, thenw ∈ πi(p) iff w′ ∈ πi(p).
I next define what it means for a formula to be true. The

truth of formulas is relative to both the agent and the world.
I write (M,w, i) |= ϕ if ϕ is true according to agenti in
worldw. In the case of a primitive propositionp,

(M,w, i) |= p iff w ∈ πi(p).

I define|= for other formulas by induction. For conjunction
and negation, the definitions are standard:

(M,w, i) |= ¬ϕ iff (M,w, i) 6|= ϕ;
(M,w, i) |= ϕ ∧ ψ iff (M,w, i) |= ϕ and(M,w, i) |= ψ.

In the semantics for negation, I have implicitly assumed
that, given the objective situation and agenti’s subjective
state, agenti is prepared to say, for every primitive proposi-
tion p, whether or notp holds. Thus, ifw /∈ πi(p), so that
agenti would not considerp true giveni’s subjective state in
w if i knew the objective situation atw, then I am assuming
thati would consider¬p true in this world. This assumption
is being made mainly for ease of exposition. It would be
easy to modify the approach to allow agenti to say (given
the objective state andi’s subjective state), either “p holds”,
“p does not hold”, or “I am not prepared to say whetherp
holds orp does not hold”.4 However, what I am explicitly
avoiding here is taking a fuzzy-logic like approach of saying
something like “p is true to degree .3”. While the notion of
degree of truth is certainly intuitively appealing, it has other
problems. The most obvious in this context is where the .3
is coming from. Even ifp is vague, the notion “p is true to
degree .3” is precise. It is not clear that introducing a con-
tinuum of precise propositions to replace the vague proposi-
tion p really solves the problem of vagueness. Having said
that, there is a natural connection between the approach I am
about to present and fuzzy logic; see Section 4.1.

Next, I consider the semantics for the modal operatorsRj ,
j = 1, . . . , n. Recall thatRjϕ is interpreted as “agentj
reportsϕ. Formally, I takeRjϕ to be true ifϕ is true at all
plausible statesj considers possible. Thus,

(M,w, i) |= Rjϕ iff
(M,w′, j) |= ϕ for all w′ such thatw ∼j w

′ andw′ ∈ Pj .

4The resulting logic would still be two-valued; the primitive
propositionp would be replaced by a family of three primitive
propositions,py, pn, andp?, corresponding to “p holds”, “p does
not hold”, and “I am not prepared to say whetherp holds or does
not hold”, with a semantic requirement (which becomes an axiom
in the complete axiomatization) stipulating that exactly one propo-
sition in each such family holds at each world.

Of course, for a particular formulaϕ, an agent may neither
reportϕ nor¬ϕ. An agent may not be willing to say either
that TW is thin or that TW is not thin. Note that, effec-
tively, the set of plausible states according to agentj given
the agent’s subjective state in worldw can be viewed as the
worlds in in Pj that are indistinguishable to agentj from
w. Essentially, the agentj is updating the worlds that she
initially considers plausible by intersecting them with the
worlds she considers possible, given her subjective state at
world w. If Pj = W for all agentsj = 1, . . . , n, then it is
impossible for agents to give conflicting reports; that is, the
formulaRiϕ∧¬Rjϕwould be inconsistent. By considering
only the plausible worlds when giving the semantics forRj ,
it is consistent to have conflicting reports.

Finally, ϕ is definitely true at statew if the truth ofϕ is
determined by the objective state atw:

(M,w, i) |= Djϕ iff
(M,w′, j) |= ϕ for all w′ such thatw ∼o w

′.

A formula is said to beagent-independentif its truth is
independent of the agent. That is,ϕ is agent-independent if,
for all worldsw,

(M,w, i) |= ϕ iff (M,w, j) |= ϕ.

As we observed earlier, objective primitive propositions
(whose truth depends only on the objective part of a world)
are agent-independent; it is easy to see that formulas of the
form Djϕ andRjϕ are as well. Ifϕ is agent-independent,
then I often write(M,w) |= ϕ rather than(M,w, i) |= ϕ.

3.2 A Modal Logic of Vagueness: Axiomatization
and Complexity

It is easy to see thatRj satisfies the axioms and rules of the
modal logic KD45.5 It is also easy to see thatDj satisfies
the axioms of KD45. It would seem that, in fact,Dj should
satisfy the axioms of S5, since its semantics is determined by
∼j , which is an equivalence relation. This is not quite true.
The problem is with the so-calledtruth axiomof S5, which,
in this context, would say that anything that is definitely true
according to agentj is true. This would be true if there were
only one agent, but is not true with many agents, because of
the differentπi operators.

To see the problem, suppose thatp is a primitive propo-
sition. It is easy to see that(M,w, i) |= Dip ⇒ p for
all worldsw. However, it is not necessarily the case that
(M,w, i) |= Djp ⇒ p if i 6= j. Just because, accord-
ing to agenti, p is definitely true according to agentj, it
does not follow thatp is trueaccording to agenti. What

5For modal logicians, perhaps the easiest way to see this is to
observe that we can define a relationRj on worlds consisting of all
pairs(w, w′) such thatw ∼j w′ andw′ ∈ Pj . This relation, which
characterizes the modal operatorRj , is easily seen to be Euclidean
and transitive, and thus determines a modal operator satisfying the
axioms of KD45.
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is true in general is thatDjϕ ⇒ ϕ is valid for agent-
independentformulas. Unfortunately, agent independence
is a semantic property. To capture this observation as an
axiom, we need a syntactic condition sufficient to ensure
that a formula is necessarily agent independent. I observed
earlier that formulas of the formRjϕ andDjϕ are agent-
independent. It is immediate that Boolean combination of
such formulas are also agent-independent. Say that a for-
mula is necessarily agent-independentif it is a Boolean
combination of formulas of the formRjϕ andDj′ϕ′ (where
the agents in the subscripts may be the same or different).
Thus, for example,(¬R1D2p ∧ D1p) ∨ R2p is necessarily
agent-independent. Clearly, whether a formula is necessar-
ily agent-independent depends only on the syntactic form
of the formula. Moreover,Djϕ ⇒ ϕ is valid for formulas
that are necessarily agent-independent. However, this ax-
iom does not capture the fact that(M,w, i) |= Diϕ ⇒ ϕ
for all worldsw. Indeed, this fact is not directly express-
ible in the logic, but something somewhat similar is. For
arbitrary formulasϕ1, . . . , ϕn, note that at least one of
Diϕ1 ⇒ ϕ1, . . . , Dnϕn ⇒ ϕn must be true respect to
each triple(M,w, i), i = 1, . . . , n. Thus, the formula
(D1ϕ1 ⇒ ϕ1) ∨ . . . ∨ (Dnϕn ⇒ ϕn) is valid. This ad-
ditional property turns out to be exactly what is needed to
provide a complete axiomatization.

Let AX be the axiom system that consists of the follow-
ing axioms Taut, R1–R4, and D1–D6, and rules of inference
NecR, NecD, and MP:

Taut. All instances of propositional tautologies.

R1. Rj(ϕ⇒ ψ) ⇒ (Rjϕ⇒ Rjψ).

R2. Rjϕ⇒ RjRjϕ.

R3. ¬Rjϕ⇒ Rj¬Rjϕ.

R4. ¬Rj(false).

D1. Dj(ϕ⇒ ψ) ⇒ (Djϕ⇒ Djψ).

D2. Djϕ⇒ DjDjϕ.

D3. ¬Djϕ⇒ Dj¬Djϕ.

D4. ¬Dj(false).

D5. Djϕ⇒ ϕ if ϕ is necessarily agent-independent.

D6. (D1ϕ1 ⇒ ϕ1) ∨ . . . ∨ (Dnϕn ⇒ ϕn).

NecR. Fromϕ inferRjϕ.

NecD. Fromϕ inferDjϕ.

MP. Fromϕ andϕ⇒ ψ inferψ.

Using standard techniques of modal logic, it is can be shown
that AX characterizesLDR

n .

Theorem 3.1: AX is a sound and complete axiomatization
with respect to vagueness structures for the languageLDR

n .

This shows that the semantics that I have given implicitly
assumes that agents have perfect introspection and are logi-
cally omniscient. Introspection and logical omniscience are

both strong requirements. There are standard techniques in
modal logic that make it possible to give semantics toRj

that is appropriate for non-introspective agents. With more
effort, it is also possible to avoid logical omniscience. (See,
for example, the discussion of logical omniscience in [Fagin,
Halpern, Moses, and Vardi 1995].) In any case, very little of
my treatment of vagueness depends on these properties of
Rj .

The complexity of the validity and satisfiability problem
for the LDR

n can also be determined using standard tech-
niques.

Theorem 3.2:For all n ≥ 1, determining the problem of de-
termining the validity (or satisfiability) of formulas inLDR

n

is PSPACE-complete.

Proof: The validity and satisfiability problems for KD45
and S5 in the case of two or more agents is known to be
PSPACE-complete [Halpern and Moses 1992]. The modal
operatorsRj andDj act essentially like KD45 and S5 op-
erators, respectively. Thus, even if there is only one agent,
there are two modal operators, and a straightforward modi-
fication of the lower bound argument in [Halpern and Moses
1992] gives the PSPACE lower bound. The techniques of
[Halpern and Moses 1992] also give the upper bound, for
any number of agents.

3.3 Capturing Vagueness and the Sorites Paradox

Although I have described this logic as one for capturing
features of vagueness, the question still remains as to what
it means to say that a propositionϕ is vague. I suggested
earlier that a standard view has been to takeϕ to be vague
if, in some situations, some agents reportϕ while others
report¬ϕ, or if the same agent may sometimes reportϕ
and sometimes report¬ϕ in the same situation. Both intu-
itions can be captured in the logic. It is perfectly consistent
that (M,w) |= Riϕ ∧ ¬Rjϕ if i 6= j; that is, the logic
makes it easy to express that two agents may report differ-
ent things regardingϕ. Expressing the second intuition re-
quires a little more care; it is certainly not consistent to have
(M,w) |= Rjϕ ∧ ¬Rjϕ. However, a more reasonable in-
terpretation of the second intuition is to say that in the same
objectivesituation, an agenti may both reportϕ and¬ϕ.
It is certainly consistent that there are two worldsw andw′

such thatw ∼o w
′, (M,w) |= Rjϕ, and(M,w′) |= ¬Rjϕ.

Note that this is true iff(M,w) |= ¬DjRjϕ. Thus, in the
case of one agent, under this interpretation,ϕ is taken to be
vague if¬DRϕ holds at some world. I return to this point
in Section 4.4.

Although, by design, the logic and the associated seman-
tics can capture features of vagueness, the question still re-
mains as to whether it gives any insight into the problems
associated with vagueness. I defer the discussion of some
of the problems (e.g., higher-order vagueness) to Section 4.
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Here I show how it can deal with the Sorites Paradox. Be-
fore going into details, it seems to me that there should be
two components to a solution to the Sorites Paradox. The
first is to show where the reasoning that leads to the paradox
goes wrong in whatever formalism is being used. The sec-
ond is to explain why, nevertheless, the argument seems so
reasonable and natural to most people.

The Sorites Paradox is typically formalized as follows:

1. Heap(1,000,000).

2. ∀n > 1(Heap(n) ⇒ Heap(n− 1)).
3. ¬Heap(1).
It is hard to argue with statements 1 and 3, so the obvious
place to look for a problem is in statement 2, the inductive
step. And, indeed, most authors have, for various reasons,
rejected this step (see, for example, [Dummett 1975; Soren-
son 2001; Williamson 1994] for typical discussions). As I
suggested in the introduction, it appears that rejecting the
inductive step requires committing to the existence of ann
such thatn grains of sand is a heap andn− 1 is not. While
I too reject the inductive step, it doesnot follow that there is
such ann in the framework I have introduced here, because I
do not assume an objective notion of heap (whose extension
is the set of natural numbersn such thatn grains of sands
form a heap). What constitutes a heap in my framework de-
pends not only on the objective aspects of the world (i.e.,
the number of grains of sand), but also on the agent and her
subjective state.

To be somewhat more formal, assume for simplicity that
there is only one agent. Consider models where the objective
part of the world includes the number of grains of sand in a
particular pile of sand being observed by the agent, and the
agent’s subjective state includes how many times the agent
has been asked whether a particular pile of sand constitutes a
heap. What I have in mind here is that the sand is repeatedly
added to or removed from the pile, and each time this is
done, the agent is asked “Is this a heap?”. Of course, the
objective part of the world may also include the shape of the
pile and the lighting conditions, while the agent’s subjective
state may include things like the agent’s sense perception of
the pile under some suitable representation. Exactly what is
included in the objective and subjective parts of the world
do not matter for this analysis.

In this setup, rather than being interested in whether a pile
of n grains of sand constitutes a heap, we are interested in
the question of whether, when viewing a pile ofn grains of
sand, the agent would report that it is a heap. That is, we are
interested in the formulaS(n), which I take to be an abbre-
viation ofPile(n) ⇒ R(Heap). The formulaPile(n) is true
at a worldw if, according to the objective component ofw,
there are in factn grains of sand in the pile. Note thatPile is
not a vague predicate at all, but an objective statement about
the number of grains of sand present.6 By way of contrast,

6While I am not assuming that the agent knows the number of

Heap is vague; its truth depends on both the objective situ-
ation (how many grains of sand there actually are) and the
agent’s subjective state.

There is no harm in restricting to models where
S(1, 000, 000) holds in all worlds andS(1) is false in all
worlds where the pile actually does consist of one grain of
sand. If there are actually 1,000,000 grains of sand in the
pile, then the agent’s subjective state is surely such that she
would report that there is a heap; and if there is actually
only one grain of sand, then the agent would surely report
that there is not a heap. We would get the paradox if the in-
ductive step,∀n > 1(S(n) ⇒ S(n−1)) holds in all worlds.
However, it does not, for reasons that have nothing to do
with vagueness. Note that in each world,Pile(n) holds for
exactly one value ofn. Consider a worldw where there
is 1 grain of sand in the pile and taken = 2. ThenS(2)
holds vacuously (because its antecedentPile(2) is false),
while S(1) is false, since in a world with 1 grain of sand,
by assumption, the agent reports that there is not a heap.

The problem here is that the inductive statement∀n(n >
1(S(n) ⇒ S(n−1)) does not correctly capture the intended
inductive argument. Really what we mean is more like “if
there aren grains of sand and the agent reports a heap, then
when one grain of sand is removed, the agent will still report
a heap”.

Note that removing a grain of sand changes both the ob-
jective and subjective components of the world. It changes
the objective component because there is one less grain of
sand; it changes the subjective component even if the agent’s
sense impression of the pile remains the same, because the
agent has been asked one more question regarding piles of
sand. The change in the agent’s subjective state may not
be uniquely determined, since the agent’s perception of a
pile of n − 1 grains of sand is not necessarily always the
same. But even if it is uniquely determined, the rest of my
analysis holds. In any case, given that the world changes, a
reasonable reinterpretation of the inductive statement might
be “For all worldsw, if there aren grains of sand in the
pile in w, and the agent reports that there is a heap inw,
then the agent would report that there is a heap in all the
worlds that may result after removing one grain of sand.”
This reinterpretation of the inductive hypothesis cannot be
expressed in the logic, but the logic could easily be extended
with dynamic-logic like operators so as to be able to express
it, using a formula such as

Pile(n)∧R(Heap) ⇒ [remove 1 grain](Pile(n−1)∧R(Heap).

Indeed, with this way of expressing the inductive step, there
is no need to includePile(n) or Pile(n − 1) in the formula;
it suffices to writeR(Heap) ⇒ [remove 1 grain]R(Heap).

Is this revised inductive step valid? Again, it is not hard
to see it is not. Consider a world where there is a pile of

grains of sand present, it would actually not affect my analysis at
all if the agent was told the exact number.
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1,000,000 grains of sand, and the agent is asked for the first
time whether this is a heap. By assumption, the agent reports
that it is. As more and more grains of sand are removed, at
some point the agent (assuming that she has the patience to
stick around for all the questions) is bound to say that it is
no longer a heap.7

Although the framework makes it clear that the induction
fails (as it does in other approaches to formulating the prob-
lem), the question still remains as to why people accept the
inductive argument so quickly. One possible answer may be
that it is “almost always” true, although making this precise
would require having a probability measure or some other
measure of uncertainty on possible worlds. While this may
be part of the answer, I think there is another, more natural
explanation. When people are asked the question, they do
not consider worlds where they have been asked the ques-
tion many times before. They are more likely to interpret
it as “If, in a world where I have before never been asked
whether there is a heap, I report that there is a heap, then I
will still report that there is a heap after one grain of sand is
removed.” Observe that this interpretation of the induction
hypothesis is consistent with the agent always reporting that
a pile of 1,000,000 grains of sand is a heap and always re-
porting that a pile of 1 grain is not a heap. More importantly,
I suspect that the inductive hypothesis is in fact empirically
true. After an agent has invested the “psychic energy” to de-
termine whether there is a heap for the first time, it seems to
me quite likely that she will not change her mind after one
grain of sand is removed. While this will not continue to be
true as more and more grains of sand are removed, it does
not seem to me that this is not what people think of when
they answer the question.

Bottom line: not only does the framework introduced here
make it clear why the inductive step, interpreted in the naive
way, fails, it also gives a psychologically plausible interpre-
tation that is consistent. Of course, a similar analysis applies
to all the other sorites-like paradoxes in the literature.

4 Relations to Other Approaches
In this section I consider how the approach to vagueness
sketched in the previous section is related to other ap-
proaches to vagueness that have been discussed in the lit-
erature.

4.1 Fuzzy Logic
Fuzzy logic[Zadeh 1975] seems like a natural approach to
dealing with vagueness, since it does not require a predicate

7There may well be an in-between period where the agent is un-
comfortable about having to decide whether the pile is a heap. As
I observed earlier, the semantics implicitly assumes that the agent
is willing to answer all questions with a “Yes” or “No”, but it is
easy to modify things so as to allow “I’m not prepared to say”. The
problem of vagueness still remains: At what point does the agent
first start to say “I’m not prepared to say”?

be necessarily true or false; rather, it can be true to a certain
degree. As I suggested earlier, this does not immediately re-
solve the problem of vagueness, since a statement like “this
cup of coffee is sweet to degree .8” is itself a crisp statement,
when the intuition suggests it should also be vague.

Although I have based my approach on a two-valued
logic, there is a rather natural connection between my ap-
proach and fuzzy logic. We can take the degree of truth of a
formulaϕ in worldw to be the fraction of agentsi such that
(M,w, i) |= ϕ. We expect that, in most worlds, the degree
of truth of a formula will be close to either 0 or 1. We can
have meaningful communication precisely because there is a
large degree of agreement in how agents interpret subjective
notions thinness, tallness, sweetness.

Note that the degree of truth ofϕ in (o, s1, . . . , sn) does
not depend just ono, sinces1, . . . , sn are not determinis-
tic functions ofo. But if we assume that each objective
situationo determines a probability distribution on tuples
(s1, . . . , sn), then if n is large, for many predicates of in-
terest (e.g.,Thin , Sweet, Tall ), I expect that, as an empiri-
cal matter, the distribution will be normally distributed with
a very small variance. In this case, the degree of truth of
such a predicate in an objective situationo can be taken to
be the expected degree of truth ofP , taken over all worlds
(o, s1, . . . , sn) whose first component iso.

This discussion shows that my approach to vagueness is
compatible with assigning a degree of truth in the interval
[0, 1] to vague propositions, as is done in fuzzy logic. More-
over non-vague propositions (calledcrisp in the fuzzy logic
literature) get degree of truth either 0 or 1. However, while
this is a way of giving a natural interpretation to degrees of
truth, and it supports the degree of truth of¬ϕ being 1 minus
the degree of truth ofϕ, as is done in fuzzy logic, it does not
support the semantics for∧ typically taken in fuzzy logic,
where the degree of truth ofϕ ∧ ψ is taken to be the mini-
mum of the degree of truth ofϕ and the degree of truth ofψ.
Indeed, under my interpretation of degree of truth, there is
no functional connection between the degree of truth ofϕ,
ψ, andϕ ∧ ψ

4.2 Supervaluations

TheD operator also has close relations to the notion ofsu-
pervaluations[Fine 1975; van Fraassen 1968]. Roughly
speaking, the intuition behind supervaluations is that lan-
guage is not completely precise. There are various ways of
“extending” a world to make it precise. A formula is then
taken to be true at a worldw under this approach if it is
true under all ways of extending the world. Both theRj

andDi operators have some of the flavor of supervaluations.
If we consider just the objective component of a worldo,
there are various ways of extending it with subjective com-
ponents(s1, . . . , sn). Diϕ is true at an objective worldo if
(M,w, i) |= ϕ for all worldsw that extendo. (Note that
the truth ofDjϕ depends only on the objective component
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of a world.) Similarly, given just a subjective component
sj of a world,Rjϕ is true ofsj if (M,w, i) |= ϕ for all
worlds that extendsi. Not surprisingly, properties of super-
valuations can be expressed usingRj orDj . Bennett [1998]
has defined a modal logic that formalizes the supervaluation
approach.

4.3 Higher-Order Vagueness
In many approaches towards vagueness, there has been dis-
cussion ofhigher-order vagueness(see, for example, [Fine
1975; Williamson 1994]). In the context of the supervalua-
tion approach, we can say thatDϕ (“definitely ϕ”) holds at
a worldw if ϕ is true in all extensions ofw. ThenDϕ is
not vague; at each world, eitherDϕ or ¬Dϕ (andD¬Dϕ)
is true (in the supervaluation sense). But using this seman-
tics for definitely, it seems that there is a problem. For under
this semantics, “definitelyϕ” implies “definitely definitely
ϕ” (for essentially the same reasons thatDiϕ ⇒ DiDiϕ in
the semantics that I have given). But, goes the argument,
this does not allow the statement “This is definitely red”
to be vague. A rather awkward approach is taken to deal-
ing with this by Fine [1975] (see also [Williamson 1994]),
which allows different levels of interpretation. Here the sit-
uation is much simpler. Higher-order vagueness is repre-
sented by considering combinations ofRi andDi. We can
consider when agenti would report that something is red
(RiRed), when he definitely would report it (DiRiRed),
when we would report that he would definitely report it
(RiDiRiRed), and so on. It is easy to see thatDiRip does
not implyDiRiDiRip; lower-order vagueness does not im-
ply higher-oder vagueness. However,DiRiDiRiϕ does im-
ply DiRiϕ (this follows using the fact thatDiϕ ⇒ ϕ and
RiRiϕ⇒ Riϕ are both valid). That is, higher-order vague-
ness does imply lower-order vagueness. However, this de-
pends on the assumption that agents are introspective.

4.4 Williamson’s Approach
One of the leading approaches to vagueness in the recent lit-
erature is that of Williamson; see [Williamson 1994, Chap-
ters 7 and 8] for an introduction. Williamson considers an
epistemic approach, viewing vagueness as ignorance. Very
roughly speaking, he uses “know” where I use “report”.
However, he insists that it cannot be the case that if you
know something, then you know you know it, whereas my
notion of reporting has the property thatRi impliesRiRi. It
is instructive to examine the example that Williamson uses to
argue that you cannot know what you know, to see where his
argument breaks down in the framework I have presented.

Williamson considers a situation where you look at a
crowd and do not know the number of people in it. He
makes what seem to be a number of reasonable assumptions.
Among them is the following:

I know that if there are exactlyn people, then I do not
know that there are not exactlyn− 1 people.

This may not hold in my framework. This is perhaps eas-
ier to see if we think of a robot with sensors. If there are
n grains of sugar in the cup, it is possible that a sensor
reading compatible withn grains will preclude there being
n − 1 grains. For example, suppose that, as in Section 2, if
there aren grains of sugar, and the robot’s sensor reading
is betweenb(n − 4)/10c andb(n + 4)/10c. If there are in
fact 16 grains of sugar, then the sensor reading could be 2
(= b(16 + 4)/10c). But if the robot knows how its sensor
works, then if its sensor reading is 2, then it knows that if
there are exactly 16 grains of sand, then (it knows that) there
are not exactly 15 grains of sugar. Of course, it is possible
to change the semantics ofRi so as to validate Williamson’s
assumptions. But this point seems to be orthogonal to deal-
ing with vagueness.

Quite apart from his treatment of epistemic matters,
Williamson seems to implicitly assume that there is an ob-
jective notion of what I have been calling subjectively vague
notions, such as red, sweet, and thin. This is captured by
what he calls thesupervenience thesis, which roughly says
that if two worlds agree on their objective part, then they
must agree on how they interpret what I have called sub-
jective propositions. Williamson focuses on the example of
thinness, in which case his notion of supervenience implies
that “If x has exactly the same physical measurements in a
possible situations andy has in a possible situationt, then
x is thin in s if and only if y is thin in t” [Williamson 1994,
p. 203]. I have rejected this viewpoint here, since, for me,
whetherx is this depends also on the agent’s subjective state.
Indeed, rejecting this viewpoint is a central component of
my approach to intransitivity and vagueness.

Despite these differences, there is one significant point of
contact between Williamson’s approach and that presented
here. Williamson suggests modeling vagueness using a
modal operatorC for clarity. Formally, he takes a modelM
to be a quadruple(W,d, α, π), whereW is a set of worlds
andπ is an interpretation as above (Williamson seems to
implicitly assume that there is a single agent), whered is a
metric onW (so thatd is a symmetric function mapping
W × W to [0,∞) such thatd(w,w′) = 0 iff w = w′

andd(w1, w2) + d(w2, w3) ≤ d(w1, w3)), andα is a non-
negative real number. The semantics of formulas is defined
in the usual way; the one interesting clause is that forC:

(M,w) |= Cϕ iff
(M,w′) |= ϕ for all w′ such thatd(w,w′) ≤ α.

Thus,Cϕ is true at a worldw if ϕ is true at all worlds within
α of w.

The intuition for this model is perhaps best illustrated by
considering it in the framework discussed in the previous
section, assuming that there is only one proposition, say
Tall(TW) , and one agent. Suppose thatTall(TW) is taken
to hold if TW is above some threshold heightt∗. Since
Tall(TW) is the only primitive proposition, we can take the
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objective part of a world to be determined by the actual
height of TW. For simplicity, assume that the agent’s subjec-
tive state is determined by the agent’s subjective estimate of
TW’s height (perhaps as a result of a measurement). Thus,
a world can be taken to be a tuple(t, t′), wheret is TW’s
height andt′ is the agent’s subjective estimate of the height.
Suppose that the agent’s estimate is withinα/2 of TW’s ac-
tual height. Thus, theR relation is taken to consist of all
pairs ((t, t′), (u, u′)) of worlds such that|t′ − u′| ≤ α/2.
Assume that all worlds are plausible (so thatP = W ). It
is then easy to check that(M, (t, t′)) |= DR(Tall(TW))
iff t ≥ t∗ + α. That is, the agent will definitely say that
TW is Tall iff TW’s true height is at leastα more than the
thresholdt∗ for tallness, since in such worlds, the agent’s
subjective estimate of TW’s height is guaranteed to be at
leastt∗ + α/2.

To connect this to Williamson’s model, suppose that the
metric d is such thatd((t, t′), (u, u′)) = |t − u|; that is,
the distance between worlds is taken to be the difference be-
tween TW’s actual height in these worlds. Then it is im-
mediate that(M, (t, t′)) |= C(Tall(TW) ) iff t ≥ t∗ + α.
Bottom line: given all the assumptions here, the semantics
of C agrees with that ofDR.

Williamson does not give examples of how the metric
should be interpreted. Under my interpretation, it would be
more reasonable to have a different metric for each propo-
sition. But ignoring this point, the agreement betweenC
is DR is more than just a superficial one. For example,
Williamson provides a complete axiomatization ofC; it is
not hard to show that if all worlds are plausible (that is, if
P = W , so thatR becomes an S5 relation), then the com-
binationDR is characterized by exactly the same axioms as
C.

Williamson suggests that a propositionϕ should be taken
to be vague if¬Cϕ holds is satisfiable. In Section 3, I sug-
gested that¬DRϕ could also be taken to be a reasonable
interpretation of vagueness. Thus, I can capture much the
same intuition for vagueness as Williamson, without having
to make what seem to me unwarranted epistemic assump-
tions.

5 Discussion
I have introduced what seems to me a natural approach to
dealing with intransitivity of preference and vagueness. Al-
though various pieces of the approach seem certainly have
appeared elsewhere, it seems that this particular packaging
of the pieces is novel. The approach leads to a straightfor-
ward logic of vagueness, while avoiding many of the prob-
lems that have plagued other approaches.
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