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Abstract

Practical description logic systems play an ever-
growing role for knowledge representation and rea-
soning research even in distributed environments. In
particular, the often-discussed semantic web initia-
tive is based on description logics (DLs) and defines
important challenges for current system implementa-
tions. Recently, several standards for representation
languages have been proposed (RDF, OWL). By in-
troducing optimization techniques for inference algo-
rithms we demonstrate that sound and complete query
engines for semantic web representation languages can
be built for practically significant query classes. The
paper introduces and evaluates optimization techniques
for the instance retrieval problem w.r.t. the description
logic SHIQ(Dn)−, which covers large parts of OWL.
The paper discusses practical experiments with the de-
scription logic system RACER.

Introduction
Practical description logic systems play an ever-growing
role for knowledge representation and reasoning research.
In particular, the semantic web initiative (Berners-Lee,
Hendler, & Lassila 2001) is based on description logics
(DLs) and defines important challenges for current system
implementations. Recently, one of the main standards for
the semantic web has been proposed: the Web Ontology
Language (OWL) (van Harmelen et al. 2003). OWL is
based on two other standards: Resource Description For-
mat (RDF (Lassila & Swick 1999)) and its corresponding
“vocabulary language” RDF Schema (RDFS) (Brickley &
Guha 2002). In recent research efforts, these languages are
mainly considered as ontology representation languages (see
e.g. (Baader, Horrocks, & Sattler 2003a) for an overview).
The languages are used for defining classes of so-called ab-
stract objects. Now, many applications start to use the RDF
part of OWL for representing information about specific ab-
stract objects of a certain domain. Graphical editors such
as OilEd (Bechhofer, Horrocks, & Goble 2001) or Protégé
(Noy et al. 2001) support this way of using OWL quite well.
All information about specific objects (or entities) refers

to an ontology (expressed in OWL). Thus, in contrast to,
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for instance, simple relational databases, queries for retriev-
ing abstract objects described in RDF documents have to
be answered w.r.t. to a conceptual domain model (the on-
tology). The paper introduces and evaluates optimization
techniques for the instance retrieval problem w.r.t. the log-
ical basis of OWL DL, the description logic SHIQ(Dn)−
(Horrocks, Sattler, & Tobies 2000; Haarslev, Möller, &Wes-
sel 2001), and discusses practical experiments with the de-
scription logic system RACER. By introducing optimiza-
tion techniques for tableau-based inference algorithms we
demonstrate that sound and complete query engines for se-
mantic web representation languages can be built for practi-
cally significant query classes. The paper is aimed at seman-
tic web systems developers interested in applying and imple-
menting sound and complete knowledge representation and
reasoning technologies. Note that we consider soundness
and completeness as very important because incompleteness
of instance retrieval can even result in unsoundness if the
results are used for higher-level purposes in an unreflected
way.
The paper presupposes only basic knowledge about de-

scription logics (see, e.g., (Baader, Horrocks, & Sattler
2003b)). The interested reader can find a detailed intro-
duction in (Baader et al. 2003). A few words about the
relationship of description logics, semantic web representa-
tion languages, and systems such as RACER are appropriate,
however.
RACER reads OWL ontology documents from web

servers and represents ontology information as a so-called
T-box. T-boxes contain so-called generalized concept in-
clusions (GCIs). For details about description logic syntax
and semantics see, e.g., (Baader et al. 2003). RACER ac-
cepts the so-called OWL DL subset (van Harmelen et al.
2003) with some minimal restrictions such as approximated
reasoning for nominals and no full number restrictions for
datatype properties (see (Haarslev & Möller 2003) for de-
tails). DAML+OIL documents are interpreted with the same
restrictions as manifested in OWL DL (van Harmelen et al.
2003) (the sets of classes and instances are disjoint, no rei-
fied statements, no treatment of class metaobjects etc.). For
the results presented in the paper, these restrictions are of no
importance.
Descriptions in RDF documents (with OWL DL restric-

tions) are represented as A-boxes managed by the RACER
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System (for details see the RACER User’s Guide (Haarslev
& Möller 2003)). Basically, the instance retrieval problem
for a query concept Cq and an A-box A can be implemented
as a sequence of instance tests for all individuals that are
mentioned in an A-box. An instance test verifies that an
individual i is in the extension of a certain concept in all
models of a given T-box and A-box. Retrieving resources
described in OWL/RDF documents can be implemented us-
ing the A-box instance retrieval inference service (Haarslev
& Möller 2001). In this paper we discuss restricted versions
of conjunctive queries (Horrocks & Tessaris 2002). An in-
troduction to an XML-based query syntax is given in (Bech-
hofer, Möller, & Crowther 2003). For presenting examples,
however, in this paper, a DL-based syntax is used to ensure
readability.
The contribution of the paper is twofold. By introducing

and analyzing practical algorithms tested in one of the ma-
ture, sound, and complete description logic systems, which
is used in many research projects all over the world, the de-
velopment of even more powerful semantic web query en-
gines is directly supported. All example knowledge-bases
we discuss in this paper can be downloaded for verification
and comparison purposes (see the RACER download page).

Research Approach, Test Data, and
Benchmarks

For implementing sound and complete inference algorithms,
tableau-based algorithms are known to provide a power-
ful basis. Nowadays, almost all practical systems for
SHIQ(Dn)− employ highly optimized versions of tableau-
based algorithms. It should be emphasized that the research
approach behind RACER is oriented towards applications.
Thus, we start with optimization techniques for application-
specific knowledge bases in order to evaluate optimization
techniques in the context of instance retrieval problems. In
particular, we consider applications for which A-box rea-
soning is actually required (i.e., implicit information must
be derived from explicit A-box statements, and A-boxes are
not only used to store relational data). Thus, instance re-
trieval cannot be reduced to computing queries for (external)
relational databases (see, e.g., (Borgida & Brachman 1993),
(Bresciani 1995), (Li & Horrocks 2003)).

An Application-Specific Knowledge Base
For instance, in (Gabsdil, Koller, & Striegnitz 2001a; 2001b)
a case-study with the application of DL inference services in
a natural language (NL) interpretation system is presented.
In particular, the instance retrieval service is investigated for
various application-specific subtasks (e.g., resolution of re-
ferring expressions, content determination, and content re-
alization). In this application, many A-boxes are gener-
ated on the fly (see (Gabsdil, Koller, & Striegnitz 2001a;
2001b) for details) and for each A-box a specific instance re-
trieval query is computed. Similar approaches are described
in (Ludwig, Büchner, & Görz 2002). In order to achieve
good performance in the NL application, the performance
of the instance retrieval procedure provided by the DL sys-
tem is crucial. Furthermore, since A-boxes change quite

frequently, standard techniques for optimizing instance re-
trieval using indexing techniques (see below for an expla-
nation) can hardly be employed in order to improve perfor-
mance because of the overhead of computing index struc-
tures in beforehand.
The T-box used in (Gabsdil, Koller, & Striegnitz 2001a;

2001b) consists of 165 possibly cyclic GCIs for concepts as
well as domain and range restrictions for 18 roles. In the T-
box, many sufficient conditions for concept names are given
(with appropriate GCIs, see also declarations with sameCon-
ceptAs in OWL). In the A-box around 250 individuals are
mentioned in concept and role assertions. The DL used in
the knowledge base is a subset of OWL DL (actually, ALC
with inverse roles (Baader et al. 2003)).

Synthetic Knowledge Bases for Testing Behavior on
Mass Data
For evaluating specific aspects of DL inference engines, a set
of benchmarks containing synthetically generated KBs was
developed (Motik, Volz, & Maedche 2003). In this paper
we consider some of these tests, which are generated auto-
matically due to different strategies. The tests use a T-Box
whose concept names form a so-called symmetric concept
tree (SCT) w.r.t. the subsumption relation. An SCT is a bal-
anced tree of depth d and branching factor b. For each con-
cept n instances are declared. The instance retrieval query
refers to a concept name at the first layer (one of the chil-
dren of top). The second kind of test is similar to the first
one but also declares relations between the individuals (the
test is named “SCT rel”. An individual is set into relation
to a previously generated one via a so-called role assertion
(Baader et al. 2003). Only one role is used.
The following discussion about optimization techniques

starts with insights gained from application-knowledge
bases. Later on we use some synthetically generated bench-
marks to shed additional light on the behavior of the tech-
niques proposed.

Optimization Techniques and their Evaluation
For applications, which generate A-boxes on the fly as part
of their problem-solving processes and ask a few queries
w.r.t. each A-box, computing index-structures (with a pro-
cess called “realization”, see below) is not worth the effort.
In this section we discuss answering strategies for this kind
of application scenario. As we will see, the techniques can
also be exploited if index structures are to be computed (pos-
sibly off-line).

Transformation of A-Boxes
In order to make realization as fast as possible we inves-
tigated ways to maximize the effect of caching techniques
supplied by RACER’s A-box consistency checking architec-
ture. We transform the original A-box in such a way that
acyclic “chains” of roles and individuals are represented by
an appropriate exists restriction (see (Haarslev & Möller
2000) for a formal definition of the transformation rules).
The corresponding concept and role assertions representing
the chains are deleted from the A-box. We illustrate this
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Figure 1: An example for contracting an A-box. The A-box part in the rectangle is replaced with a concept assertion (see the
lower part for the resulting A-box).

contraction idea by an example presented in Figure 1. The
idea is to transform tree-like role assertions (or “chains”)
starting’ from an individual i into assertions with existen-
tial restrictions such that an equisatisfiable A-box is derived
(see (Haarslev & Möller 2000) for details). The reason is
that in RACER, caching (see also (Haarslev & Möller 2000))
is more effective for concepts rather than for A-box role as-
sertions. Contracting an A-box is part of the processes for
building internal data structures for A-box reasoning algo-
rithms.
If an A-box contains individuals that are not “connected”

by role assertions (or by constraints involving concrete do-
mains), RACER computes so-called subset A-boxes repre-
senting these “islands”, applies the algorithms described be-
low to each subset, and combines the results. We do not
mention this kind of processing explicitly in the following
subsections.

Optimized Linear Instance Retrieval

One possible alternative for implementing instance re-
trieval is to consider one individual at a time. Hence,
the procedure instance retrieval(Cq, A) can be
implemented by using the following procedure call:
linear retrieval(Cq, contract(i, A), individuals(A))
where individuals(A) returns the set of individuals men-
tioned in the A-box A and the function contract computes
a transformation of an A-box w.r.t. an individual. Except
for the contraction idea, linear instance retrieval was also
implemented in a similar way in first generation DL systems
(see, e.g., (Nebel 1990)).
We assume that ASAT is the standard A-box satisfiabil-

ity test implemented as an optimized tableau calculus (Hor-
rocks, Sattler, & Tobies 2000; Haarslev, Möller, & Wessel
2001). The function linear retrieval is specified by Algo-
rithm 1.
The function call instance?(i, C,A) could be implemented
as ¬ASAT (A ∪ {i : ¬C}). However, although this imple-
mentation of instance? is sound and complete, it is quite in-
efficient. A faster variant uses sound but incomplete initial
tests for detecting “obvious” non-instances: the individual
model merging test (see (Haarslev, Möller, & Turhan 2001))

Algorithm 1 linear retrieval(C, A, candidates):

result := {}
for all ind ∈ candidates do
if instance?(ind, C, A) then

result := result ∪ {ind}
end if

end for
return result

and a subsumption test involving the negation of the query
concept. These two tests (also referred to as “guards” for
avoiding to invoke the tableau algorithm) are implemented
by Algorithm 2.

Algorithm 2 obv non instance?(i, C, A):

return ind model merge poss?(i, neg concept(C), A)
∨ subsumes?(neg concept(C), ind concept(i))

Algorithm 3 subsumes?(C, D):

if pmodels mergable?({cmodel(C), cmodel(D)}) then
return false

else
return ¬SAT (D � ¬C)

end if

The subsumption test subsumes? is implemented in Al-
gorithm 3. Algorithm SAT uses a tableau prover for con-
cept consistency (w.r.t. a T-box). Experiences show that,
compared to ASAT , SAT is usually very fast (although
they are of the same worst-case complexity class). The rea-
son is that, at the current state of the art, more optimiza-
tion techniques have been developed for checking concept
consistency (e.g., the trace technique etc.) than for check-
ing A-box consistency. Model merging is a standard op-
timization technique used in description logic systems (for
details see (Horrocks 1997)). It is a fast test for determining
whether a concept C does not subsume a concept D. Individ-
ual model merging was introduced in (Haarslev, Möller, &
Turhan 2001). The main idea of the individual model merg-
ing is to extract a (pseudo) model for an individual i from a
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completion of the A-box A. If the individual model of i and
the (pseudo) model of ¬C do not “interact”, i can easily be
shown not to be an instance of C.
The algorithm ind model merge poss? used in Algo-

rithm 2 is reduced to a pseudo model merging test as follows.
It is assumed that imodel(i, A) returns the pseudo model of
individual i w.r.t. A and cmodel(D) the pseudo model of
concept D.

Algorithm 4 ind model merge poss?(i, D, A):

return pmodels mergable?({imodel(i, A), cmodel(D)})

The technique of using an individual model merging test
(see (Haarslev, Möller, & Turhan 2001)) is based on the
observation that individuals are usually members of only a
small number of concepts and the A-boxes resulting from
instance? tests are proven as consistent in most cases, i.e.,
the calls to instance? usually return false. The basic idea
is to design a cheap but sound test for the focused individual
i and the concept term ¬D without explicitly considering
role assertions and concept assertions for all the other indi-
viduals occurring in A. These “interactions” are reflected in
the “individual pseudo model” of i. This was the motivation
for devising the individual model merging technique.
For instance, in the DL ALC a pseudo model for an in-

dividual i mentioned in a consistent initial A-box A w.r.t. a
T-box T is defined as follows. Since A is consistent, there
exists a set of completions C of A. Let A′ ∈ C. An individ-
ual pseudo model M for an individual i in A is defined as
the tuple 〈MD,M¬D,M∃,M∀〉 w.r.t. A′ and A using the
following definition.

MD = {D | i : D ∈ A′, D is a concept name}
M¬D = {D | i : ¬D ∈ A′, D is a concept name}

M∃ = {R | i : ∃R.C ∈ A′} ∪ {R | (i, j) : R ∈ A}
M∀ = {R | i : ∀R.C ∈ A′}

The pseudo model of a concept D is defined analogously
by using the completion of an initial A-box A = {i : D}.
Note the distinction between the initial A-boxA and its com-
pletionA′. Whenever a role assertion exists, which specifies
a role successor for the individual i in the initial A-box, the
referenced role name is added to the set M∃. This is based
on the rationale that the cached pseudo model of i should
not refer to individual names occuring already in the ini-
tial A-box A. However, it is sufficient to reflect a role as-
sertion (i, j) : R ∈ A by adding the role name R to M∃.
This guarantees that possible interactions via the role R are
detected. The algorithm pmodels mergable? is defined in
Algorithm 5.

Algorithm 5 pmodels mergable?(MS )

return atoms mergable(MS) ∧ roles mergable(MS)

The algorithm atoms mergable tests for a possible prim-
itive clash between pairs of pseudo models. It is applied to

a set of pseudo models MS and returns false if there ex-
ists a pair {M1,M2} ⊆ MS with (MD

1 ∩ M¬D
2 ) 	= ∅ or

(M¬D
1 ∩ MD

2 ) 	= ∅. Otherwise it returns true .
The algorithm roles mergable tests for a possible role

interaction between pairs of pseudo models. It is applied to
a set of pseudo models MS and returns false if there exists
a pair {M1,M2} ⊆ MS with (M∃

1 ∩ M∀
2 ) 	= ∅ or (M∀

1 ∩
M∃

2 ) 	= ∅. Otherwise it returns true . The reader is referred
to (Haarslev, Möller, & Turhan 2001) for the proof of the
soundness of this technique and for further details.
Let us turn back to the function obv non instance? now.

If one of the “guards” in obv non instance? returns true,
the result of instance? is false. Otherwise, an “expen-
sive” instance test using the tableau algorithm is performed
in Algorithm 6. The function negated concept used in
obv non instance? returns the negation of its input con-
cept whereas the function individual concept returns the
conjunction of the concepts in all A-box concept assertions
for an individual. For role assertions found in an A-box, we
assume additional concept assertions. Role assertions for a
roleR with i on the left-hand side are represented by at-least
terms and, depending on the number of different role asser-
tions for i, corresponding conjuncts (≥ n R) are generated
by individual concept. With these auxiliaries, the function
instance? can be optimized for the average case but is still
sound and complete.

Algorithm 6 instance?(i, C, A):

if obv non instance?(i, C, A) then
return false

else
return ¬ASAT (A ∪ {i : ¬C})

end if

Although this variant of instance? is significantly faster
(mainly due to the individual model merging guard), in the
Game application discussed above, query answering times
in the range of 20 seconds were still unacceptable. Although
for many queries the result consists of a set of only very few
individuals (compared to 250 individuals mentioned in the
A-box) around a hundred individuals still cause the “expen-
sive” ASAT test to be invoked, regardless of the “guards”
in Algorithm 6. Thus, although eachASAT test is quite fast
(200 milliseconds), its number should be further reduced in
order to provide adequate performance.

Binary Instance Retrieval
How can A-box satisfiability tests be avoided at all? The
observation is that only very few additions to A of the kind
{i : ¬C} lead to an inconsistency in the function instance?
(i.e., in very few situations i is indeed an instance of C). We
found the following procedure to be advantageous.
We assume now that instance retrieval(Cq, A) is im-

plemented by calling the procedure binary retrieval(Cq,
contract(i, A), individuals(A)). The function partition
is defined in Algorithm 8, it divides a set into two parti-
tions of approximately the same size. Given the partitions,
binary retrieval calls the function partition retrieval.
The idea of partition retrieval (see Algorithm 10) is to
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Algorithm 7 binary retrieval(C, A, candidates):

if candidates = ∅ then
return ∅

else
(partition1, partition2) := partition(candidates)
return partition retrieval(C, A, partition1, partition2)

end if

first check whether none of the individuals in a partition is
an instance of the query concept C. This is done with the
function non instances? (see Algorithm 9).

Algorithm 8 partition(s): /* s[i] refers to the ith element of the
set s */
if |s| ≤ 1 then
return (s, ∅)

else
return ({s[1], . . . , s[	n/2
]}, {s[	n/2
 + 1], . . . , s[n]})

end if

Algorithm 9 non instances?(cands, C, A):

return ASAT (A ∪ {i : ¬C | i ∈ cands∧
¬obv non instance?(i, C, A)})

The evaluation we conducted with the natural language
application indicates that for instance retrieval queries which
return only very few individuals a performance gain of up to
a factor of 5-10 can be achieved with binary search (com-
pared to linear instance retrieval). The reason is that the
non instances? test is successful in many cases. Hence,
with one “expensive” A-box test a large set of candidates
can be eliminated. The underlying assumption is that, in
general, the computational costs of checking whether an A-
box (A ∪ {i : ¬C, j : ¬C, . . .}) is consistent is largely dom-
inated by A alone. Hence, it is assumed that the size of the
set of constraints added to A has only a limited influence on
the runtime. For knowledge bases with, for instance, cyclic
GCIs, this may not be the case, however. Partitioning a set of
candidates in two parts of approximately the same size can
be controlled by heuristics. This has not yet been explored.
Thus, further performance gains might be possible.

Dependency-based Instance Retrieval
Although binary retrieval is found to be faster in the aver-
age case, one can do better. If the function non instances?
returns false, one can analyze the dependencies of the
tableau structures (“constraints”) involved into all clashes
of the tableau branches. Analyzing dependency informa-
tion for a clash reveals the “original” A-box assertions re-
sponsible for the clash. If all clashes are due to an added
constraint i : ¬C, then, as a by-product of the test, the indi-
vidual i is known to be an instance of the query concept C.
The individual can be eliminated from the set of candidates
to be investigated, and it is definitely part of the solution
set. Dependency information is kept for other optimization
purposes as well (Horrocks 1997) and dependency analysis
does not involve much overhead.

Algorithm 10 partition retrieval(C, A, part1, part2):

if |part1| = 1 then
{i} = part1
if instance?(i, C, A) then
return {i} ∪ binary retrieval(C, A, part2)

else
return binary retrieval(C, A, part2)

end if
else if non instances?(part1, C, A) then
return binary retrieval(C, A, part2)

else if non instances?(part2, C, A) then
return binary retrieval(C, A, part1)

else
return binary retrieval(C, A, part1)

∪ binary retrieval(C, A, part2)
end if

Eliminating candidate individuals detected by depen-
dency analysis prevents the reasoner from detecting the
same clash over and over again until a partition of cardi-
nality 1 is tested. In the example application, runtimes are
reduced by another factor of 3 (compared to binary instance
retrieval). If the solution set is large compared to the set of
individuals in an A-box, there is some overhead compared
to linear instance retrieval because only one individual is re-
moved from the set of candidates at a time as well with the
additional cost of collecting dependency information during
the tableau proofs. In our investigations, dependency-based
instance retrieval was always faster than binary instance re-
trieval.

Static Index-based Instance Retrieval

The techniques introduced in the previous section can also
be exploited if indexing techniques are used for instance
retrieval (see, e.g., (Nebel 1990, p. 108f.)). Basically,
the idea is to reduce the set of candidates that have to
be tested by computing the direct types of every individ-
ual. The direct types of an individual i are defined to
be the most specific concept names (mentioned in a T-
box) of which i is an instance. An index is constructed
by deriving a function associated inds defined for each
concept name C mentioned in the T-box such that i ∈
associated inds(C) iff C ∈ direct types(i, A). Com-
puting the direct types for each individual and the corre-
sponding index associated inds is also called A-box real-
ization. The optimizations used in the RACER implementa-
tion are inspired by the marking and propagation techniques
described in (Baader et al. 1992; 1994) for exploiting ex-
plicitly given information as much as possible.
In the following we assume that CN is the set of

all concept names mentioned in the T-box (including the
name top). Furthermore, it is assumed that the func-
tion children(C) (parents(C)) returns the least spe-
cific subsumees (most specific subsumers) of C whereas
descendants(C) (ancestors(C)) returns all subsumees
(subsumers) of C. The descendants and ancestors of C in-
clude C. Subsumers and subsumees of a concept C are con-
cept names from CN . The function synonyms(C) returns
all concept names from CN which are equivalent to C.
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The standard way to compute the index is to compute
the direct types for each individual mentioned in the A-
box separately (one-individual-at-a-time approach). In or-
der to compute the direct types of individuals w.r.t. a T-box
and an A-box, the T-box must be classified, i.e., for each
concept name mentioned in the T-box (and the A-box) the
parents and children are precomputed. Thus, parents and
children are not really queries but just functions accessing
results stored in data structures. Another view is that the
children (or parents) relation defines a lattice whose nodes
are concept names (including top and bottom). The root
node is called top, the bottom node is called bottom. This
lattice is also referred to as the ”taxonomy”.
Static index-based instance retrieval was investigated in

(Nebel 1990, p. 108f.) and is implemented as follows.

Algorithm 11 static index based retrieval(C, A):

if ∃N ∈ CN : N ∈ synonyms(C) then
return

S
D∈descendants(C) associated inds(D)

else
known :=

S
D∈descendants(C) associated inds(D)

candidates :=
S

P∈parents(C)S
D∈descendants(P )

associated inds(D) (*)
return known∪

instance retrieval(C, A, candidates \ known)
end if

It is obvious that instance retrieval can be implemented
by any of the techniques introduced above.
Computing the index structures (i.e., the function

associated inds) is known to be time-consuming. Our
findings indicate that for many applications this takes sev-
eral minutes, i.e. index computation is only possible in a
setup phase. Since for many applications this is not tolera-
ble, new techniques had to be developed. The main problem
is that for computing the index structure associated inds
the direct types are computed for every individual in isola-
tion. Rather than asking for the direct types of every indi-
vidual in a separate query, we investigated the idea of using
sets of individuals which are “sieved” into the taxonomy,
We call the approach the sets-of-individuals-at-a-time ap-
proach (see Algorithm 12 and Algorithm 13). The traverse
algorithm (Algorithm 12) sets up the index has member,
which is used in compute index sets of inds at a time
(Algorithm 13). For a given concept name the func-
tion has member returns the instances. The idea of
compute index sets of inds at a time is to check if the
instances of a concept name are not instances of the children
of the concept name. Being this the case, the concept name
is marked as one of the direct types of each of the instances.
This is done by setting the index associated inds appropri-
ately.
In the natural language application we investigated, an-

swering a specific query with realization-based instance
retrieval and the set-of-individuals-at-a-time approach re-
quires about 30 seconds using dependency-based instance
retrieval (and 80 seconds using binary instance retrieval).
Thus, for this specific application the performance gain for

Algorithm 12 traverse(inds, C, A, has member):

if inds �= ∅ then
for allD ∈ children(C) do
if has member(D) = unknown then

instances of D := instance retrieval(D, inds, A)
has member(D) := instances of D
traverse(instances of D, D, A, has member)

end if
end for

end if

realization is a factor of three. So it is possible to speed
up realization-based instance retrieval to some extent such
that queries w.r.t. “static” A-boxes can be processed after
quite a short delay. But it still holds that, if A-boxes are not
static, i.e., A-boxes are computed on the fly and only very
few queries are posed w.r.t. the A-boxes, the direct imple-
mentation of instance retrieval as search without exploiting
indexes is much faster (and it is possible even without T-box
classification).

Algorithm 13 compute index sets of inds at a time(A):

for all C ∈ CN do
has member(C) := unknown
associated inds(C) := ∅

end for
traverse(individuals(A), top, A, has member);
has member(top) := individuals(A)
for all C ∈ CN do
if has member(C) �= unknown then
for all ind ∈ has member(C) do
if ¬∃D ∈ children(C) : ind ∈ has member(D)
then

associated inds(C) :=
associated inds(C) ∪ {ind}

end if
end for

end if
end for

Dynamic Index-based Instance Retrieval
Computing a complete index (realization) as described in the
previous subsection is possible if many queries are posed
w.r.t. a “fixed” A-box (and T-box). However, sometimes
realization is too time-consuming. Therefore, we devised
a new strategy that exploits (i) explicitly given information
(e.g., from A-box assertions of the form i : A where A is
a concept name) and (ii) the results of previous instance re-
trieval queries.
The idea can be explained as follows. The function

associated inds associates a set Inds of individuals with
each concept name C such that for each i ∈ Inds it holds
that i is an instance of C, for each D ∈ descendants(C)
the individual i 	∈ associated inds(D), and for each D ∈
ancestors(C) the individual i 	∈ associated inds(D).
The function associated inds is updated due to the re-

sults of queries. Let us assume i ∈ associated inds(C)
and C ∈ ancestors(E). If it turns out that i is an instance
of E, the function associated inds is changed accordingly.
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Thus, the index evolves as instance retrieval queries are an-
swered. Therefore, we call this strategy dynamic index-
based instance retrieval.
In this new approach, the function associated inds(C)

returns an individual i even if C is not “most specific”, i.e.
even if there might exist a subconcept D of C such that i is
also an instance ofD. The consequence is that Algorithm 11
is no longer complete. The idea of only considering the par-
ents of the query concept (see the line marked with an as-
terisk in Algorithm 11) must be dropped. Before we give
a complete algorithm for dynamic index-based instance re-
trieval, further optimization techniques are introduced.
Let us assume concept D is a subsumer of C. In addi-

tion, let us assume in order to answer some previous query
the direct types for an individual i are computed. If it
is known for an individual i ∈ associated inds(D) that
D ∈ direct types(i), then i is removed from the set of can-
didates for the query concept C. Since D is a subsumer of
C and D is a direct type (i.e., D is most specific), i cannot
be an instance of C.
With each concept name we also associate a set of non-

instances. The non-instances are found by queries for the
direct types of an individual (the non-instances are asso-
ciated with the children of each direct type) or by ex-
ploiting previous calls to the function instance retrieval.
If an individual i is found not to be an instance of a
query concept D, this is recorded appropriately by includ-
ing i in associated non instance(D) if there is no E ∈
ancestors(D) such that i ∈ associated non instance(E)
(non-redundant caching). The non-instances of a query
concept can then be discarded from the set of candidates.
The new algorithm for instance retrieval is shown in Algo-
rithm 14.

Algorithm 14 dynamic index based retrieval 1(C, A):

known :=
S

D∈descendants(C) associated inds(D)

possible candidates :=S
D∈(ancestors(C)\{C}) associated inds(D)

candidates := possible candidates \S
D∈ancestors(C) associated non instances(D)

return known∪
instance retrieval(C, A, candidates \ known)

Note that instead of testing the parents as done in Al-
gorithm 11 (see the line marked with an asterisk), in Al-
gorithm 14 the descendants of the query concept C are
taken into consideration for possible candidates. In other
words, it is not a problem if an individual i is returned by
associated inds(D) although there exist subconcepts ofD
of which i is also an instance.
In order to evaluate the proposed algorithm, we first use

a very simple T-box {Article � Document, Book �
Document, CS Book � Book} and consider an A-box
with the following assertions (for n we use different
settings):

doc 1 : Article, doc 2 : Article, . . . , doc n : Article,
doc n+1 : Book, doc n+2 : Book, . . . , doc n+n : Book,

doc n + n + 1 : CS Book,
doc n + n + 2 : CS Book,
. . .
doc n + n + n : CS Book

In order to evaluate Algorithm 14, queries for Book and for
CS Book are executed. Queries can be ordered with re-
spect to subsumption. Given the partial order induced by
subsumption, an optimal execution sequence for answer-
ing multiple queries can be generated with a topological
sorting algorithm. The more general queries are processed
first, yielding a (possibly reduced) set of candidates for
more specific queries as a by-product. This is demonstrated
by considering the query set {retrieve((?x), Book(?x)),
retrieve((?x), CS Book(?x))}. There are two strategies,
either all instances of CS Book are retrieved first (Strategy
1) or all instances of Book are retrieved first (Strategy 2).
The runtimes of the query sets under different strategies are
indicated in Table 1.

n Gen. Time ASAT Strategy 1 Strategy 2
10000 1 6 7 5
20000 3 10 29 19
30000 22 15 79 42
40000 34 23 164 115
50000 54 34 320 200
60000 80 42 904 552

Table 1: Runtimes (in secs) of instance retrieval query sets
with different strategies.

In the first column the number n is specified (note that
the A-box contains three times as many individuals), in the
second column the time to generate the problem (i.e., the
time to “fill” the A-box) is specified, in the third column
the time for the initial A-box consistency test is displayed,
and in the last two columns the runtimes for the different
strategies are indicated. All tests were performed on a 1GHz
Powerbook running Mac OS X. Memory requirements are
neglectable for all experiments (≤ 100MB). Table 1 reveals
that for larger values of n, Strategy 2, i.e., to first retrieve
all instances of the superconcept Book, is approximately
twice as fast as Strategy 1. The reason is that with Strat-
egy 2 the set of candidates for the second instance retrieval
query can be considerably reduced due to dynamic index-
based instance retrieval.
In order to compare static index-based instance retrieval

(one-by-one and set-based realization) with dynamic index-
based instance retrieval, we used the synthetically gener-
ated A-box benchmarks described in the previous section on
“Synthetic Knowledge Bases”.
The test characteristics are specified in the first four

columns (SCT stands for symmetric concept tree, SCT rel
stands for symmetric concept tree and individuals associ-
ated to one another using relations, see above). In column
‘L’ the time to load the problem from a file is given, and in
column ‘B’ the time to build the index structures required
by consistency checking and instance retrieval is indicated.
The column ‘ASAT’ contains the time for the initial A-box
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Name d b n L B ASAT static (1) static (2) dynamic
SCT 3 5 20 0.4 0.5 1.3 6.1 2.7 1.4
SCT 3 5 30 0.5 0.8 2.4 9.9 4.5 2.9
SCT 4 5 10 1.1 1.6 5.4 36.0 7.3 6.2
SCT 4 5 30 3.7 5.1 15.9 330.5 40.7 17.6
SCT 5 5 10 10.9 16.4 18.3 1528.0 70.6 31.7
SCT 5 5 30 62.8 54.8 76.8 timed out 184.7 160.3
SCT rel 3 5 10 0.5 0.8 1.4 2.8 3.6 2.6
SCT rel 4 5 10 3.3 7.5 10.2 40.3 17.4 17.7
SCT rel 5 5 10 22.0 120.0 144.6 1751.0 190.6 159.1

Table 2: Runtimes (in secs) for processing retrieval queries with static and dynamic index-based instance retrieval techniques.

consistency test (including the index building time from col-
umn B). The column ‘static (1)’ indicates the time for in-
stance retrieval using the sets-of-individuals-at-a-time real-
ization approach whereas ‘static (2)’ indicates the time using
the one-individual-at-a-time approach. The last column con-
tains the runtime for dynamic index-based instance retrieval.
The results obtained from analyzing the experiments can be
summarized as follows.
One-individual-at-a-time realization is much faster for

these tests than using sets-of-individuals-at-a-time realiza-
tion. In these synthetic benchmarks, there exist n instances
for each of the bd concept names. The assumption that
the result set contains only few individuals is not met in
these benchmarks (the result set contains b(d−1) elements).
Furthermore, it can be seen that dynamic index-based in-
stance retrieval causes almost no overhead for these syn-
thetic benchmarks (this may be due to the fact that the re-
trieval concept is located close to the root of the taxonomy).
In addition it becomes apparent that the runtime for instance
retrieval is mostly dominated by the initial A-box satisfia-
bility test (which cannot be easily eliminated). In particular,
building index structures is an expensive process (see col-
umn B) and cannot be neglected. Faster query evaluation
results for RACER can be achieved by optimizing this pro-
cess.

More Expressive Queries
In previous sections we have discusses simple instance re-
trieval queries. The instances to be retrieved are described
by concepts. However, for many application purposes a
more expressive query language is appropriate. In this sec-
tion, an extension to the previously mentioned query lan-
guage is introduced by discussing several examples. The
implementation of the query language in the RACER sys-
tem is based on the instance retrieval service for which
optimization techniques are introduced in this paper. Fur-
thermore, standard optimization techniques for conjunctive
queries (Chandra & Merlin 1977) are included.
We assume that the T-box is extended with the following

axioms for stating that the range of the function (datatype
property) n copies sold is integer, the inverse of the
role (property) has author is author of , and some other
constraints. For instance, if at least 3000 copies are sold, a
CS Document becomes a CS Best Seller.

attribute(n copies sold, integer),
inverse(has author, author of),
Document � ∃has author.Author,
CS Document � Document,
min(n copies sold, 3000) � CS Document �

CS Best Seller

The A-box is assumed to be extended with appropriate
assertions to specify documents, authors, and sold copies.
For instance, (doc 1, author 1) : has author. Now we
consider queries over the knowledge base.

• Retrieve the fillers of a role has author w.r.t. a given in-
dividual doc 1:
ans(x) ← has author(doc 1, x).

• Retrieve all tuples (x, y) such that x is aDocument with
author y and at least 5000 copies sold:
ans(x, y) ←

Document(x) ∧
has author(x, y) ∧
Author(y) ∧
min(n copies sold, 5000)(x).

• Retrieve all tuples (x, y) such that both x and y are in-
stances of Author and both are author of the same
book:
ans(x, y) ←

Author(x) ∧
Author(y) ∧
Book(z) ∧
author of(x, z) ∧
author of(y, z).

• Retrieve all books x for which there does not exist an au-
thor:
ans(x) ←

Book(x) ∧
neg((∃has author.�)(x)).

• Retrieve all pairs (x, y) of books and authors for which it
cannot be proven that the tuple (x, y) is an element of the
relation has author:
ans(x, y) ←

Book(x) ∧
Author(y) ∧
neg(has author(x, y)).

The result of a query is a set of vectors of individuals. Query
languages are investigated in detail in (Donini et al. 1992;
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1996), and we follow this work in assigning a model the-
oretic semantics to queries. For instance, the semantics of
concept predicates such as Book(?x) is defined as the in-
tersection of the extensions of the concept determined for
every model. The semantics of two-place predicates such
as has author(?x, ?y) is defined as the intersection of the
extensions of the relation has author over all models. In
other words, in query results variables are only bound to
domain elements that are the image of individuals explic-
itly mentioned in the A-box (in databases we call this the
active-domain semantics). If a query is “negated” (oper-
ator neg), the complement w.r.t. the domain (unary pred-
icates) or the cross-product of the domain (binary predi-
cates) is indicated. In other words, this corresponds to
a negation as failure semantics (see (Donini et al. 1992;
1996) for details).

Pragmatic Considerations
It is obvious that in the document retrieval scenario intro-
duced above, only some individuals are expected to be in
the result set of an instance retrieval query. In our scenario
these “root” individuals are the documents, e.g., doc 1. For
other individuals that we could introduce, e.g. authors of
books, it might be known in advance that they are only
accessed as role fillers of root individuals (see the query
examples above). Therefore, in RACER it is possible to
explicitly indicate so-called “public” individuals. This is
called publishing an individual in RACER terminology. For
the example A-box we assume that the following statement
is executed:

publish({doc 1, doc 2, doc 3})

Published individuals can be returned in the result sets
of specific instance retrieval queries (for other queries, e.g.
role filler retrieval, publication is not relevant). Using the
RACER system, clients can subscribe to a “channel” on
which individuals are announced that are instances of a
given query concept. As an example we consider a sub-
scription named q 1 with query concept Book and server
"mac1.sts.tu-harburg.de" running at port 8080.
After the query q 1 is registered, RACER running at node
"racer.sts.tu-harburg.de" sends the following
message string to "mac1.sts.tu-harburg.de" lis-
tening on port 8080: "((q 1 doc 2) (q 1 doc 3))". Of
course, the client is responsible for interpreting the result
appropriately. In our agent scenario we assume that two
documents, doc 2 and doc 3, are recorded as possible hits
to the query (possibly together with retrieved values for the
number of copies sold etc.), but we do not go into details
here.
Next, we assume that the document information repos-

itory represented by the A-box is subsequently filled with
information about new documents.

doc 4 : CS Document

Much less is known about doc 4, and after publishing it, no-
body will be notified. Although there is a subscription to a

channel for Book, it cannot be proven that doc 4 is an in-
stance of this concept.
Now we assume there are two additional subscrip-

tions q 2 and q 3 to the concepts CS Document and
CS Best Seller, respectively. For query q 2 RACER
immediately generates a message ((q 2 doc 4)) and
redirects it to the channel specified with the subscription
statement. However, for q 3 no message can be generated at
subscription time. As time evolves, it might be the case that
the number of copies sold for doc 4 becomes known. The
A-box is extended with the following assertions:

(doc 4, n copies 4) : n copies sold,
equal(n copies 4, 4000)

Since the information in the A-box now implies that doc 4
is an instance of the query concept in subscription q 3, the
client is notified accordingly using the same techniques as
discussed above.
The example sketches how description logics in general,

and the publish and subscribe interface of RACER in partic-
ular, can be used to implement a document retrieval system
(for additional examples and details on the publish and sub-
scribe interface see the RACER User’s Guide (Haarslev &
Möller 2003)). For answering registered queries, RACER ex-
ploits query subsumption as explained above. Furthermore,
for incrementally answering queries after additions to an A-
box, the set of known results (see, e.g., Algorithm 14) can be
extended by exploiting cached results of registered queries.

Conclusion
In this paper we demonstrated optimization techniques that
make A-box inferences based on tableau-based DL systems
suitable for many non-naive applications. We motivated the
techniques described in this paper with the semantic web
scenario and its representation language OWL/RDF. In this
context, reasoning over individuals (e.g., instance retrieval)
cannot be easily reduced to database lookups. The examples
we gave here do not cover the full expressivity of OWL,
however, they already demonstrate the need for more ad-
vanced optimization techniques.
For very restricted sublanguages of OWL (i.e., no exis-

tential restrictions at all), initial experiments indicate that
datalog-based approaches could become an alternative to
tableau-based approaches (Motik, Volz, & Maedche 2003).
However, research in this area has just started and no sta-
ble implementations are available at the time of this writ-
ing. We have shown that tableau-based algorithms provide
a sound basis for applications, provided the implementation
technique proposed in this paper are implemented in practi-
cal systems. Nevertheless, the experiments also show some
limitations of current DL technology. Experiences indicate
that only up to approximately 30,000 individuals (see Ta-
ble 1) can be appropriately handled by current system im-
plementations. Further research is necessary (in particular
for contexts such as the semantic web) to provide for ap-
propriate internal data structures used in the tableau prover
in order to avoid unnecessary overhead for large A-boxes.
This will be investigated in future versions of RACER.
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Bechhofer, S.; Möller, R.; and Crowther, P. 2003. The DIG
description interface. In Proc. International Workshop on
Description Logics – DL’03.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
semantic web. Scientific AmericanMay 2001.
Borgida, A., and Brachman, R. 1993. Loading data into
description reasoners. ACM SIGMOD Record 22(2):217–
226.
Bresciani, P. 1995. Querying databases from description
logics. In Knowledge Representation Meets Databases.
Brickley, D., and Guha, R. 2002. RDF vo-
cabulary description language 1.0: RDF Schema,
http://www.w3.org/tr/2002/wd-rdf-schema-20020430/.
Chandra, A. K., and Merlin, P. M. 1977. Optimal imple-
mentation of conjunctive queries in relational data bases.
In Proceedings of the Nineth ACM Symposium on Theory
of Computing, 77–90.

Donini, F. M.; Lenzerini, M.; Nardi, D.; Nutt, W.; and
Schaerf, A. 1992. Adding epistemic operators to concept
languages. In Proc. of the 3rd Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning (KR’92),
342–353. Morgan Kaufmann, Los Altos.

Donini, F. M.; Lenzerini, M.; Nardi, D.; Nutt, W.; and
Schaerf, A. 1996. Adding epistemic operators to descrip-
tion logics. Technical Report 16-96, Dipartimento di Infor-
matica e Sistemistica, Università di Roma “La Sapienza”.
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Ludwig, B.; Büchner, K.; and Görz, G. 2002. Mapping se-
mantics onto pragmatics. In Görz, G.; Haarslev, V.; Lutz,
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