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Abstract

We consider Dung’s argumentation framework, in which an
argument system consists of a set of arguments and a binary
relation between arguments representing the notion of a con-
flict. The semantics given by Dung define (with respect to
each argument system) acceptable sets of arguments called
extensions. For his so-called stable semantics, Dung also
gives an alternative definition in terms of an equation that a
set satisfies if and only if that set is a stable extension. How-
ever, neither the original definition nor the equation reflect
the fact that the stable semantics (similarly to all of Dung’s
semantics) rely upon the notion of an admissible set. More-
over, none of Dung’s other semantics have been characterized
by such an equation.
Our first goal is to provide such characterizations for the other
semantics: We capture Dung’s semantics by means of equa-
tions that a set satisfies if and only if it is an extension under
the semantics at hand. Not only do we give such equations,
but we also take care of providing them as a unified character-
ization expressing the common grounds of Dung’s semantics.
Beyond Dung’s semantics, we are interested in semantics
(within Dung’s argumentation framework) relying upon the
notion of an admissible set. Our second goal is to show that
many of those semantics are captured like Dung’s, using the
same unified characterization.

Introduction
Argumentation is a reasoning model which amounts to
building and evaluating arguments, often conflicting ones.
An argument can be seen as a reason supporting some claim.
Conflicts between arguments arise for example when the
claim or the reason supporting it is contradicted by another
argument. Evaluation then aims at selecting the most ac-
ceptable arguments.

Modelling argumentation is an important research topic
whose main approaches are surveyed in (Chesñevar, Magui-
tman, & Loui 2000; Prakken & Vreeswijk 2002). One of
these approaches is Dung’s argumentation framework (Dung
1995) in which argument systems have an abstract structure,
thereby allowing it to unify many other approaches proposed
for argumentation on the one hand and formalisms mod-
elling non-monotonic reasoning on the other hand.
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A Dung argument system consists of a set of arguments
and a binary relation between arguments representing the
notion of a conflict. An argument is thus an abstract entity
whose internal structure, nature, origin (and so on) are not
known. Therefore, such a system shifts the focus to con-
flicts between arguments as well as evaluation of arguments.
The semantics given by Dung for acceptability define (with
respect to each argument system) one or several acceptable
sets of arguments called extensions. All of Dung’s seman-
tics rely upon the notion of an admissible set, but this does
not show in the original definitions (cf the notion of a stable
extension for example).

For his so-called stable semantics, Dung gives a definition
in terms of an equation that a set satisfies if and only if the
set is an extension under the stable semantics. Such a char-
acterization is rather simple but has not been given for the
other semantics. Our first goal in this paper is to give such
characterizations for the other semantics, that is, we want to
characterize Dung’s semantics by means of equations that a
set satisfies if and only if it is an extension under the seman-
tics at hand. These equations should stress that admissibility
is the core notion of Dung’s semantics. Not only do we want
to provide such characterizations, but we also want them to
be as close as possible to one another. Notice that we do not
aim at providing charaterizations computationally efficient.

Beyond our interest in Dung’s semantics, we are more
generally interested in semantics relying upon the notion of
an admissible set. Our second goal is to investigate whether
some of those semantics could be characterized like Dung’s,
with characterizations as similar as possible.

Formal preliminaries
In this section, we give the definition of a Dung argument
system and of the various semantics that Dung proposed for
the acceptability of sets of arguments.
Definition 1 (Dung 1995) An argument system is a pair
(A,R) where A is a set whose elements are called argu-
ments and R is a binary relation over A (R ⊆ A × A).
Given two arguments a and b, (a, b) ∈ R or equivalently
aRb means that a attacks b (a is said to be an attacker of
b). Moreover, a set S of arguments attacks an argument a if
some argument in S attacks a. Finally, a set S of arguments
attacks a set S′ of arguments if some argument in S attacks
some argument in S′.
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An argument system can simply be represented as a di-
rected graph whose vertices are the arguments and edges
correspond to the elements of R.

In the following definitions, we assume that an argument
system (A,R) is given.

Dung gave several semantics for acceptability. These di-
verse semantics induce one or several acceptable sets of ar-
guments, called extensions. The most popular semantics is
certainly the stable semantics. Its definition is merely based
on the notion of an attack:

Definition 2 (Dung 1995) A subset S ⊆ A is conflict-free
iff there are no arguments a and b in S such that a attacks
b. A conflict-free S ⊆ A is a stable extension iff for each
argument which is not in S, there exists an argument in S
that attacks it.

The other semantics for acceptability rely upon the notion
of defense1:

Definition 3 An argument a ∈ A is defended by a set S ⊆
A (or S defends a) iff for each argument b in A that attacks
a there exists an argument in S that attacks b.

According to Dung, an acceptable set of arguments under
any semantics must be a conflict-free set which defends all
its elements. This constraint is captured by the notion of
admissibility:

Definition 4 (Dung 1995) A conflict-free S ⊆ A is admis-
sible iff each argument in S is defended by S.

Even if the definition of a stable extension does not rely
upon the notion of defense, a stable extension is an admissi-
ble set. Admissibility has an advantage over stable seman-
tics: given an argument system, there need not be any stable
extension but there always exists at least one admissible set
(the empty set is always admissible). A drawback of admis-
sibility is that an argument system may have a large number
of admissible sets. This is why other notions of acceptabil-
ity which select only some admissible sets were designed.
Besides the stable semantics, three semantics refining ad-
missibility have been introduced by Dung:

Definition 5 (Dung 1995) A preferred extension is a maxi-
mal (wrt set inclusion) admissible subset of A. An admissi-
ble S ⊆ A is a complete extension iff each argument which
is defended by S is in S. The least (wrt set inclusion) com-
plete extension is the grounded extension.

Notice that a stable extension is also a preferred exten-
sion and a preferred extension is also a complete extension.
Stable, preferred and complete semantics admit multiple ex-
tensions whereas the grounded semantics ascribes a single
extension to a given argument system.

Example 1 Let (A,R) be the argument system such that

A = {a, b, c, d, e} and

R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.

1What is called defense here is called in (Dung 1995) accept-
ability of an argument with respect to a set of arguments.

The graph representation of (A,R) is indicated on Figure 1.
The admissible sets of (A,R) are ∅, {a}, {c}, {d}, {a, c}
and {a, d}. Dung’s semantics induce the following accept-
able sets:

• Stable extension(s): {a, d}
• Preferred extensions: {a, c}, {a, d}
• Complete extensions: {a, c}, {a, d}, {a}
• Grounded extension: {a}.

a b c d e

Figure 1: Graph representation of the argument system of
Example 1.

Characterizing Dung’s semantics
We want to characterize Dung’s semantics by means of fix-
point equations expressed in terms of defense and attack,
since these two notions are the core of admissibility. A char-
acterization close to the ones we are looking for has been es-
tablished by Dung himself for the stable semantics (Lemma
14 in (Dung 1995)). Prior to giving this characterization,
we introduce2 some notations: Given an argument system
(A,R), for every set S ⊆ A:

S
def
= A \ S

Def(S)
def
= {a ∈ A | S defends a}

R+(S)
def
= {a ∈ A | S attacks a}

R−(S)
def
= {a ∈ A | a attacks S}

The notation Def is not primitive according to the fol-
lowing Proposition:

Proposition 1 (Amgoud & Cayrol 1998) Let (A,R) be an
argument system and let S ⊆ A. Then Def(S) =

R+(R+(S)).

Proposition 2 (Dung 1995) Let (A,R) be an argument sys-
tem. S ⊆ A is a stable extension iff S = R+(S).

The above equation shows that the stable semantics relies
upon the notion of an attack while omitting the notion of
defense, thereby failing to disclose that the stable semantics
is based on admissibility, too.

In order to characterize the stable semantics and Dung’s
other semantics by way of equations stressing that all these
semantics rely upon admissibility, let us first list some prop-
erties satisfied by admissible sets.

Recall that an admissible set is a conflict-free set which
defends all its elements. Clearly, a set S defends all its el-
ements if and only if S ⊆ Def(S). Let this be supple-
mented with a property presented in (Amgoud & Cayrol
1998): S ⊆ A is conflict-free if and only if S ⊆ R+(S).
Therefore:

2The notations R
+ and R

− are derived from graph-theoretic
terminology in which they stand for successor and predecessor.
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Proposition 3 Given (A,R), S ⊆ A is an admissible set iff
S ⊆ Def(S) ∩ R+(S).

A dual characterization is obtained:

Proposition 4 Given (A,R), S ⊆ A is an admissible set iff
S ⊆ Def(S ∩ R−(S)).

One way to characterize complete extensions is to enrich
the characterization of admissible sets in order to capture
the fact that any argument defended by the extension must
belong to the extension. In other words, a set S is a complete
extension if and only if S is admissible and Def(S) ⊆ S.
This leads us to a simple characterization:

Proposition 5 Given (A,R), S ⊆ A is a complete exten-
sion iff S = Def(S) ∩ R+(S).

This characterization can be extended. For any subset X

of Def(S) ∩ R+(S), S ⊆ A is a complete extension if and
only if S = Def(S ∪ X) ∩ R+(S).

For one thing, if S is a complete extension then for any
set X , if X ⊆ Def(S) ∩ R+(S) then the equation S =

Def(S ∪ X) ∩ R+(S) holds. Conversely, for any set X , if
X ⊆ Def(S) ∩ R+(S) and S = Def(S ∪ X) ∩ R+(S)
then S is a complete extension.

A dual characterization can be obtained: For any subset
X of Def(S) ∩ R+(S), S ⊆ A is a complete extension if
and only if S = Def((S ∪ X) ∩ R−(S)).

These two equations characterizing complete extensions
also capture stable and preferred extensions, considering a
different condition on the set X . The result stating this uni-
form characterization of Dung’s semantics is as follows:

Theorem 1 Let (A,R) be an argument system. For S ⊆ A,
the statements below are equivalent:

• S is a Dung extension under the t semantics

• S = Def(S ∪ X) ∩ R+(S)

• S = Def((S ∪ X) ∩ R−(S))

where X is an arbitrary set of arguments such that

– case t = complete
{

∅ ⊆ X ⊆ Def(S) ∩ R+(S)

– case t = preferred







∅ ⊆ X ⊆ Def(S) ∩ R+(S)
if S is a preferred extension,

R+(S) ⊆ X ⊆ A otherwise

– case t = stable
{

R+(S) ⊆ X ⊆ A

For the notion of complete or stable extensions, the char-
acterization provided by Theorem 1 is very general due to
the wide range allowed for X . Here is an example illustrat-
ing that this range cannot be extended:

Counter-example Let (A,R) be the argument system indi-
cated in Figure 2. Consider S = {a}.
Let us first deal with the complete case. Take X = {d}
(hence, X is not as required in the theorem because d 6∈
Def(S) ∩ R+(S) due to Def(S) = {a}). Clearly, S is a
complete extension but {a} 6= Def({a} ∪ {d}) ∩ {a, c, d}

(that is, the equation in the theorem fails).
Let us now deal with the stable case. Take X = {a, c}
(hence, X is not as required in the theorem because
R+(S) 6⊆ {a, c} due to R+(S) = {a, c, d}). Then, S =
Def({a} ∪ {a, c})∩{a, c, d}. That is, S = Def(S ∪X)∩

R+(S) for X = {a, c}. If it were not for X being a proper
subset of R+(S), the equation would be satisfied although
S is not a stable extension.

a b d c

Figure 2: Argument system illustrating the restriction of the
range of X in Theorem 1.

As far as stable extensions are concerned, it seems that
the condition R+(S) ⊆ X rather means R+(S) \ S ⊆ X
but the latter formulation is more cumbersome while clearly
equivalent with the former because stable extensions must
be conflict-free.

The clause about preferred extensions in Theorem 1 may
seem to exhibit a circularity. Actually, such is not the case.
Once S is given, the status of S wrt being a preferred exten-
sion is fixed (although we do not know what it is3). Accord-
ingly, whatever X is chosen, the status of X wrt being as
mentioned in Theorem 1 is fixed (although we do not know
what it is). Stated otherwise, it is not the result of check-
ing the equation that determines whether X is appropriate
or not: There is no circularity.

In other words, when choosing a value for X in order to
check the equation, we do not know whether the value is
appropriate or not (unless we already found out, by another
method, whether S is a preferred extension). Of course, ap-
propriate values do exist but we do not know what they are:
In this sense, using the equation to check whether S is a
preferred extension is not effective.

Contrast this with the case of using the equation to check
whether S is a complete extension for example. Once S
is given, we can decide whether an element of A is in
Def(S) ∩ R+(S) and therefore we can check that a given
collection of such elements is an appropriate value for X

(i.e., a subset of Def(S) ∩ R+(S)). Thus, using the equa-
tion to check whether S is a complete extension is effective.
The same holds for stable extensions.

The grounded semantics has been characterized by Dung
as the least fixpoint of Def . This least fixpoint can be com-
puted applying iteratively Def to the empty set. This is not
a characterization of the kind we are investigating here be-
cause the function to be used is not explicited (even consid-
ering only the case that α in S = Defα(∅) is finite, its value
is not known in advance).

3Very much as when we are given an even natural number,
a very large one, the status of that number wrt being a counter-
example for Goldbach’s conjecture is fixed but we do not know
that status.
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Other admissibility-based semantics
Dung has proposed four semantics based on admissibility
(the grounded, complete, preferred and stable semantics).
Theorem 1 exhibits a uniform characterization of Dung’s
extensions. Could other semantics refining admissibility be
captured by the same characterization?

In this section, we focus on such semantics which would
give rise to some new notions of extensions intermediate be-
tween complete extensions and stable extensions. Given an
argument system (A,R), any such semantics characterizes
some set E of admissible sets which are both proper subsets
of C (the set of all complete extensions of (A,R)) and proper
supersets of S (the set of all stable extensions of (A,R)). An
example of such a set E is the one whose elements are ex-
actly the complete extensions which contain a maximum of
defenders. In Example 1, this E collapses with the set of
preferred extensions, but it is not the case in the example
below:

Example 2 Let (A,R) be the argument system indicated on
Figure 3. Consider the sets S = {c, g} and S ′ = {c, g, d}.
These sets are complete extensions but S does not contain
a maximum of defenders because d defends g against f and
S can be supplemented with d to form a complete extension
(actually, S′ = S ∪ {d}). As for a different matter, observe
that S′ is not a preferred extension.

j

a

g

ih

f

b
c

de

Figure 3: Argument system of Example 2.

The next two results show that such sets E can be cap-
tured by the two equations used in Theorem 1 to character-
ize Dung’s extensions, that is S = Def(S ∪ X) ∩ R+(S)

and S = Def((S ∪X)∩R−(S)), considering that X is the
set attached to S by a function χ : 2A → 2A.

Theorem 2 Let (A,R) be an argument system. Consider E
such that S ⊆ E ⊆ C.

• There exists χ : 2A → 2A such that S ∈ E iff S =

Def(S ∪ χ(S)) ∩ R+(S).
• There exists χ : 2A → 2A such that S ∈ E iff S =

Def((S ∪ χ(S)) ∩ R−(S)).

This very general result induces that three of Dung’s se-
mantics, namely complete, preferred and stable semantics,
and any other set of extensions intermediate between com-
plete and stable extensions are captured by the two equations
S = Def(S ∪χ(S))∩R+(S) and S = Def((S ∪χ(S))∩

R−(S)).
Conversely, the next result shows that for any function χ

satisfying some conditions, both equations define a set E of
admissible sets intermediate between complete extensions
and stable extensions.

Theorem 3 Let (A,R) be an argument system.

• Consider χ : 2A → 2A such that for all S ⊆ A, if S =

Def(S ∪χ(S))∩R+(S) then S ∪χ(S) is an admissible
set.
Then, {S ⊆ A | S = Def(S ∪ χ(S)) ∩ R+(S)} is some
E satisfying S ⊆ E ⊆ C.

• Consider χ : 2A → 2A such that for all S ⊆ A, if S =

Def((S∪χ(S))∩R−(S)) then S∪χ(S) is an admissible
set.
Then, {S ⊆ A | S = Def((S ∪ χ(S)) ∩ R−(S))} is
some E satisfying S ⊆ E ⊆ C.

Of course, not all notions of an extension captured in The-
orem 2 as well as Theorem 3 are natural. Some of them are
even technically weird. An example is any E such that there
exist S ∈ C and S′ ∈ C which satisfy S ⊆ S′ but S ∈ E
whereas S′ 6∈ E (accordingly, χ(S) ⊆ Def(S) ∩ R+(S)

while χ(S′) 6⊆ Def(S′) ∩ R+(S′)). In order to prevent
such cases to arise, it is enough to impose that:

1. if S ⊆ S′ for S ∈ E and S′ ∈ C then S′ ∈ E

2. if S ⊆ S′ where

• S = Def(S ∪ χ(S)) ∩ R+(S) or
S = Def((S ∪ χ(S)) ∩ R−(S))

and

• S′ = Def(S′) ∩ R+(S′) or S′ = Def(S′ ∩ R−(S′))

then χ(S′) ⊆ Def(S′) ∩ R+(S′).

The above results are concerned with existence properties
only. A more effective account is as follows. The equations
using a function

χ : 2A → 2A

such that for a given set S and a given attached4 set FS ,

χ(S) = FS whenever S ∪ FS is an admissible set

and χ(S) = ∅ otherwise,

define some E such that S ⊆ E ⊆ C.

Let us consider two such functions χ. First, given (A,R),
χ1 : 2A → 2A is defined as:

χ1(S) =

{

R−(R+(S)) if S ∪ R−(R+(S))
is an admissible set,

∅ otherwise.

Let E1 denote the set

{S ⊆ A | S = Def(S ∪ χ1(S)) ∩ R+(S)}.

Second, consider the following function: Given (A,R),
χ2 : 2A → 2A is defined as:

χ2(S) =

{

R−(R−(Def(S))) if S ∪ R−(R−(Def(S)))
is an admissible set,

∅ otherwise.

4It is assumed that, with each set S, a set FS is associated (by
whatever means).
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Let E2 denote the set

{S ⊆ A | S = Def(S ∪ χ2(S)) ∩ R+(S)}.

Theorem 3 shows that E1 and E2 are subsets of the set of
complete extensions and supersets of the set of stable ex-
tensions. Moreover, E1 and E2 are supersets of the set of
preferred extensions. In addition, it can be shown that a set
S ∈ E1 is not always a set which belongs to E2 and vice
versa.

Clearly, any set E such that S ⊆ E ⊆ C is a set of com-
plete extensions that share a specific property. When E is
described by means of a function χ as illustrated above, it is
possible to express that property.

Indeed, the extensions in the sets E1 and E2 can be char-
acterized in a more natural way similar to the way Dung
originally defined his semantics. The result stating this char-
acterization is the following one:

Proposition 6 Given (A,R),

• S ∈ E1 iff S is a complete extension such that if S ∪
R−(R+(S)) is an admissible set then R−(R+(S)) ⊆ S;

• S ∈ E2 iff S is a complete extension such that
if S ∪ R−(R−(Def(S))) is an admissible set then
R−(R−(Def(S))) ⊆ S.

This is a special case of a more general result:

Theorem 4 Given (A,R), let each S ⊆ A be attached some
FS ⊆ A. Define χ : 2A → 2A to be the function such that

χ(S) =

{

FS if S ∪ FS is an admissible set
∅ otherwise.

For all S ⊆ A, the statements below are equivalent:

• S is a complete extension such that if S ∪FS is an admis-
sible set then FS ⊆ S

• S = Def(S ∪ χ(S)) ∩ R+(S)

• S = Def((S ∪ χ(S)) ∩ R−(S))

In Example 1 for instance, E1 is the set of preferred ex-
tensions and E2 is the set of complete extensions. Consider
the following example where E1 and E2 collapse neither with
the set of preferred extensions nor with the set of complete
extensions:

Example 3 (Example 2 continued) Consider S = {c, g}.
This set is a complete extension and belongs to E1 but it does
not belong to E2. Actually, R−(R−(Def(S))) = {c, d} and
S ∪ {c, d} is an admissible set but it is not included in S, so
S does not belong to E2. That is, E2 does not collapse with
the set of all complete extensions of (A,R) since S is not in
E2.
Consider now the set S′ = {c, g, d}. S′ is a complete exten-
sion and belongs to E2 but it does not belong to E1. Actually,
R−(R+(S)) = {c, d, i} and S′ ∪ {c, d, i} is an admissible
set but it is not included in S′. That is, E1 does not collapse
with the set of all complete extensions of (A,R) since S ′ is
not in E1.
Neither S nor S′ are preferred extensions, hence neither E1

nor E2 collapse with the set of all preferred extensions (of
(A,R)).

Further results
Proposition 3 and Proposition 4 are only two variants for the
characterization of admissible sets, here is a longer list:

Theorem 5 Let (A,R) be an argument system.

S ⊆ A is an admissible set iff S ⊆ Def(S) ∩ R+(S)

iff S ⊆ Def(S ∩ R−(S))

iff S ⊆ Def(S) ∩ R−(S)

iff S ⊆ Def(S ∩ R+(S)).

The same applies to the case of complete extensions, but
the generalization goes even further:

Theorem 6 Let (A,R) be an argument system. Let S ⊆ A.
For all X ⊆ A and for all Y ⊆ A such that

• X ⊆ Def(S) ∩ R−(S) or X ⊆ Def(S) ∩ R+(S)

and

• R−(S) ∩ R+(S) ⊆ Y ⊆ R−(S) ∪ R+(S)

the following holds:

S is a complete extension iff S = Def(S ∪ X) ∩ Y

iff S = Def((S ∪ X) ∩ Y ).

As regards stable extension, an analogous parameterized
characterization is:

Theorem 7 Let (A,R) be an argument system. Let S ⊆ A.
For all X ⊆ A and for all Y ⊆ A such that

• R−(S) ∩ R+(S) ⊆ X ⊆ R−(S) and
R+(S) ⊆ Y ⊆ R−(S) ∪ R+(S)

or

• X = R−(S) ∩ R+(S) and
R−(S) ∩ R+(S) ⊆ Y ⊆ R−(S) ∪ R+(S)

the following holds:

S is a stable extension iff S = Def(S ∪ X) ∩ Y

iff S = Def((S ∪ X) ∩ Y ).

The characterization of stable extensions also includes:

Theorem 8 Let (A,R) be an argument system. Let S ⊆ A.

• For all X ⊆ A and for all Y ⊆ A such that at least one
of the conditions below is satisfied

1. R−(S) ∩ R+(S) ⊆ X ⊆ R−(S) ∪ R+(S) and
R+(S) ⊆ Y ⊆ R−(S) ∪ R+(S)

2. R−(S) ∩ R+(S) ⊆ X ⊆ Y ⊆ R+(S)

the following property holds:

S is a stable extension iff S = Def(S ∪ X) ∩ Y

• For all X ⊆ A and for all Y ⊆ A such that at least one
of the conditions below is satisfied

1. R+(S) ∩ R−(S) ⊆ X ⊆ R−(S) and R+(S) ∩

R−(S) ⊆ Y ⊆ R+(S) ∪ R−(S)
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2. R+(S) ∩ R−(S) ⊆ X and R+(S) ∩ R−(S) ⊆

Y ⊆ R−(S)

the following property holds:

S is a stable extension iff S = Def((S ∪ X) ∩ Y )

Fact 1 The equivalence

S is a stable extension iff S = Def(S ∪ X) ∩ Y

fails in each of the following cases:

(1) X = R−(S) Y = R+(S) ∩ R−(S)

(2) X = R+(S) Y = R+(S) ∩ R−(S)

(3) X = R+(S) ∪ R−(S) Y = R+(S) ∩ R−(S)

(4) X = R−(S) Y = R−(S)

(5) X = R+(S) Y = R−(S)

(6) X = R+(S) ∪ R−(S) Y = R−(S)

Counter-example. Let (A,R) be as indicated on Fig-
ure 4.

d c b a

Figure 4: Argument system illustrating a counter-example
of Fact 1 points (4) and (6).

Clearly, S = {a, d} is not a stable extension. Now,
R−(S) = {a, c, d} and R+(S) = {a, b, d}.
(4) X = {a, c, d} and Y = {a, c, d}. Then, Def(S ∪X) =
{a, b, d}. Hence, Def(S ∪ X) ∩ Y = S.
(6) X = {a, b, c, d} and Y = {a, c, d}. Then, Def(S ∪
X) = {a, b, d}. So, Def(S ∪ X) ∩ Y = S.

Let (A,R) be as indicated on Figure 5.

d c

e

b

a

Figure 5: Argument system giving a counter-example for
Fact 1 point (1).

Clearly, S = {a, d} is not a stable extension. However,
R−(S) = {a, c, d} and R+(S) = {a, b, d, e}.
(1) X = {a, c, d} and Y = {a, d}. Then, Def(S ∪ X) =
{a, b, d, e}. Therefore, Def(S ∪ X) ∩ Y = S.

Let (A,R) be as indicated on Figure 6.

b

c

a

Figure 6: Argument system giving a counter-example for
Fact 1 points (2),(3) and (5).

Clearly, S = {a} is not a stable extension. However,
R−(S) = {a} and R+(S) = {a, b, c}.

(2) (3) (5) X = {a, b, c} and Y = {a}. Thus, Def(S ∪
X) = {a, b, c}. So, Def(S ∪ X) ∩ Y = S.

Fact 2 The equivalence

S is a stable extension iff S = Def((S ∪ X) ∩ Y )

fails in each of the following cases:

(1) X = R+(S) Y = R+(S)

(2) X = R+(S) ∪ R−(S) Y = R+(S)

(3) X = R+(S) Y = R+(S) ∪ R−(S)

Counter-example. Let (A,R) be as indicated on Fig-
ure 7. Clearly, S = {a, b, g} is not a stable extension. Now,
R+(S) = {b, c, d} and R−(S) = {d, e, f, g}.
(1) X = {b, c, d} and Y = {b, c, d}. Then, (S ∪ X) ∩ Y =
{b, c, d}. Hence, Def((S ∪ X) ∩ Y ) = S.
(2) X = {b, c, d, e, f, g} and Y = {b, c, d}. Then, (S∪X)∩
Y = {b, c, d}. So, Def((S ∪ X) ∩ Y ) = S.
(3) X = {b, c, d} and Y = {b, c, d, e, f, g}. So, (S ∪ X) ∩
Y = {b, c, d} and Def((S ∪ X) ∩ Y ) = S.

abcd

e f g

Figure 7: Argument system giving a counter-example for
Fact 2.

The equations we provide make no claim to computa-
tional value: They are driven by the aim of exhibiting the
sameness of the various notions of an extension as intro-
duced by Dung. Anyway, it is unlikely that our equations
for stable extensions be of any computational interest. Per-
haps, the equations for complete extensions could speed up
refuting that a set S is a complete extension (by choosing X
to consist of an element that “obviously” prevents the equa-
tion to hold) but a careful analysis need to be conducted.

Finally, the results of the previous section extend to the
generalized equations just presented.

Conclusion
Here, we have investigated semantics for acceptability in
Dung’s argument systems, those being semantics that rely
upon his notion of admissibility.

The first admissibility-based semantics have been pro-
posed by Dung himself. We have shown that three of them
(stable, preferred and complete semantics) can be defined in
terms of simple equations that a set satisfies if and only if
the set is an extension under this semantics. These equa-
tions exhibit that admissibility is the core notion of Dung’s
semantics. The characterizations obtained are not only very
general, but they also are close to one another and actually
form a unified characterization. The fourth semantics de-
fined by Dung (the grounded semantics) seems out of the
scope of our characterization.
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Among the other possibilities for admissibility-based se-
mantics, the ones that induce extensions intermediate be-
tween stable extensions and complete extensions are cap-
tured by our unified characterization. We have not settled
the case of the remaining admissibility-based semantics, but
they presumably fall beyond the realm of our characteriza-
tion.

Some semantics departing from admissibility can be
found in the literature. For instance, Jakobovits and Vermeir
propose in (Jakobovits & Vermeir 1999) various semantics
relying upon a weaker notion of defense. It might be inter-
esting to study whether these semantics could be captured
by means of a unified characterization similar to ours.

Appendix

Proposition 1 (Amgoud & Cayrol 1998) Let (A,R) be an
argument system and let S ⊆ A. Then Def(S) =

R+(R+(S)).

Proof. (Sketch) By definition, all the attackers of an
argument defended by S are attacked by S. Consequently,
an argument defended by S is not attacked by arguments not

attacked by S, that is Def(S) ⊆ R+(R+(S)).

Let a ∈ R+(R+(S)). Then no attacker of a belongs to
R+(S). Consequently, all the attackers of a are attacked by
S, and hence a ∈ Def(S).

Proposition 3 Given (A,R), S ⊆ A is an admissible set iff
S ⊆ Def(S) ∩ R+(S).

Proof. (only if direction) Let S be admissible. S is
conflict-free. So, S ⊆ R+(S) clearly follows. Since S is
admissible, S defends each element of S. I.e., S ⊆ Def(S).
Overall, S ⊆ Def(S) ∩ R+(S).
(if direction) Let S ⊆ Def(S)∩R+(S). First, S ⊆ R+(S).
This implies that S is conflict-free. Second, S ⊆ Def(S).
Hence, S defends each argument in S. Together with S be-
ing conflict-free, this means that S is an admissible set.

Lemma 1 Given (A,R), let S ⊆ A and X ⊆ A be such
that S ∪ X does not attack S. Then, Def((S ∪ X) ∩

R−(S)) = Def(S ∪ X) ∩ R+(S).

Proof. Assume that Def(S ∪ X) 6⊆ R+(S): There ex-
ists a ∈ Def(S ∪ X) such that a /∈ R+(S). That is,
a ∈ R+(S). Hence, there is b ∈ S such that bRa holds.
Now, a ∈ Def(S ∪X) means that there must be c ∈ S ∪X
satisfying cRb. However, cRb contradicts the fact that S∪X

does not attack S. Thus, Def(S ∪ X) ⊆ R+(S). Accord-
ingly, Def(S ∪ X) = Def(S ∪ X) ∩ R+(S).

Proposition 4 Given (A,R), S ⊆ A is an admissible set iff
S ⊆ Def(S ∩ R−(S)).

Proof. (only if direction) Since S is an admissible set, it
is conflict-free. In other words, S does not attack S. Then,

apply Lemma 1 (taking X = ∅) in view of Proposition 3.
(if direction) Let S ⊆ Def(S ∩ R−(S)). Assume that S
fails to be conflict-free. I.e., there exist a and b both in S
such that a attacks b. Any c ∈ S defending b would be in
R−(S) because a ∈ S. So, b cannot be defended by an
argument in S ∩ R−(S). This means that b 6∈ Def(S ∩

R−(S)), contradicting S ⊆ Def(S ∩ R−(S)). Hence, S is
conflict-free. Then, apply Lemma 1 (take X = ∅) in view of
Proposition 3.

Lemma 2 S is a stable extension iff S = Def(S ∪ X) ∩

R+(S) where R+(S) ∩ R−(S) ⊆ X ⊆ A.

Proof. (only if direction) Let S ⊆ A be a stable ex-
tension. S is an admissible set and Proposition 3 yields
S ⊆ Def(S)∩R+(S). So, S ⊆ Def(S∪X)∩R+(S). By
Proposition 2, if S is a stable extension then R+(S) ⊆ S.
Thus, Def(S ∪ X) ∩ R+(S) ⊆ S. To sum up, S =

Def(S ∪ X) ∩ R+(S).
(if direction) Let S = Def(S ∪X)∩R+(S) and R+(S) ⊆

X ⊆ A. So, S ⊆ R+(S). Using Proposition 2 in order
to prove that S is a stable extension, there remains to show
R+(S) ⊆ S. Let a ∈ R+(S) and assume that a /∈ S;
a ∈ R+(S) means that either a is not attacked at all, or a is
attacked only by arguments which do not belong to S.
(1) If a is not attacked at all, then trivially a ∈ Def(S ∪X)

and a ∈ R+(S) makes a ∈ S to ensue: A contradiction
arises.
(2) So, a is attacked but only by arguments which do not
belong to S. Assume that some attackers of a are not at-
tacked. In other words, assume that there exists some b 6∈ S
such that bRa and b is not attacked. The latter entails both
b ∈ Def(S ∪ X) and b ∈ R+(S), yielding b ∈ S. This is a
contradiction. Hence, all the attackers b of a are attacked.
(a) If some attacker b of a (thus, b 6∈ S) has all its at-
tackers in S ∩ X , they all are in R+(S) ∪ R−(S) (cf
R+(S) ∩ R−(S) ⊆ X). Those in R+(S) are attacked by
S hence S ∪ X , those in R−(S) are attacked by S ∪ X due
to S = Def(S ∪ X) ∩ R+(S). So, b ∈ Def(S ∪ X).
That b has all its attackers in S ∩ X yields b ∈ R+(S). By
S = Def(S ∪X)∩R+(S), b ∈ S ensues: A contradiction.
(b) So, each attacker of a has at least one attacker in S ∪X .
Therefore, a ∈ Def(S ∪ X). Then, a ∈ R+(S) yields
a ∈ S which leads to a contradiction.
To sum up, there exist no argument a which belongs to
R+(S) and which does not belong to S. Combined with
the fact that S ⊆ R+(S), we have S = R+(S), i.e. S is a
stable extension.

Lemma 3 For X and for Y such that R+(S) ∩ R−(S) ⊆

Y ⊆ R+(S) ∪ R−(S), if S is a stable extension then S =
Def((S ∪ X) ∩ Y ).

Proof. S being conflict-free, S = S ∩ R+(S) ∩ R−(S).
Then, S ⊆ S∩Y . Also, S∩Y ⊆ (S∪X)∩Y trivially holds.
So, S ⊆ (S ∪ X) ∩ Y . As Def is monotone increasing,
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Def(S) ⊆ Def((S∪X)∩Y ). Since S is a stable extension,
S = Def(S) and S ⊆ Def((S ∪ X) ∩ Y ) follows.
In order to show the converse inclusion, assume that it is
false: There exists a ∈ Def((S ∪X)∩ Y ) such that a 6∈ S.
Applying Proposition 2, a ∈ R+(S). By the definition, bRa
for some b ∈ S. In view of a ∈ Def((S ∪ X) ∩ Y ), there
thus exists c ∈ (S∪X)∩Y satisfying cRb. So, c ∈ Y . There
are only two possibilities. The first one is c ∈ R−(S), which
contradicts cRb and b ∈ S. The second one is c ∈ R+(S).
Due to cRb and b ∈ S = Def(S), there must exist d ∈ S
such that dRc. Hence, c ∈ R+(S) and a contradiction arises
as well.

Lemma 4 For X and Y such that R+(S) ∩ R−(S) ⊆ X

and R+(S) ∩ R−(S) ⊆ Y ⊆ R−(S), if S = Def((S ∪
X) ∩ Y ) then S is a stable extension.

Proof. Let S = Def((S∪X)∩Y ). In order to show S ⊆

R+(S), assume that S fails to be conflict-free. There exist
a ∈ S and b ∈ S such that bRa. However, S = Def((S ∪
X) ∩ Y ) then entails that a must be defended against b by
c ∈ (S ∪ X) ∩ Y . So, cRb and c ∈ Y . By Y ⊆ R−(S), it
follows that c ∈ R−(S). The latter is contradicted by cRb
because b ∈ S. Hence, S is conflict-free. Consequently,
S ⊆ R+(S). Using Proposition 2, there only remains to
apply Lemma 5.

Lemma 5 Let X ⊆ A and Y ⊆ A be such that R+(S) ∩

R−(S) ⊆ X and R+(S) ∩ R−(S) ⊆ Y . If S = Def((S ∪

X) ∩ Y ) and S is conflict-free then R+(S) ⊆ Def((S ∪
X) ∩ Y ).

Proof. Let S = Def((S∪X)∩Y ). Let a ∈ R+(S). As-
sume a 6∈ Def((S ∪X)∩ Y ). There exists b ∈ A such that
bRa and c ∈ Y ∪ (S ∩ X) whenever cRb. Of course, b 6∈ S

due to a ∈ R+(S). So, b 6∈ Def((S∪X)∩Y ). Hence, there
exists c ∈ A such that cRb and d ∈ (S ∩ X) ∪ Y whenever
dRc. As indicated, c ∈ Y ∪ (S ∩ X). I.e., c ∈ X ∪ Y . By
R+(S)∩R−(S) ⊆ X and R+(S)∩R−(S) ⊆ Y , either c ∈
R−(S) or c ∈ R+(S). In view of S = Def((S ∪ X) ∩ Y ),
the former case requires d ∈ (S ∪ X) ∩ Y to exist such that
dRc, which is impossible as just shown. The second case
implies that there exists d ∈ S such that dRc. However,
d ∈ (S ∩ X) ∪ Y (cf above). Then, d ∈ Y and a conse-
quence of R+(S) ∩ R−(S) ⊆ Y is that either d ∈ R+(S)
or d ∈ R−(S) holds. Either option is contradicted by
d ∈ S because S is conflict-free. Accordingly, the assump-
tion must be false. Therefore, R+(S) ⊆ Def((S∪X)∩Y ).

Lemma 6 Let X and Y be such that R+(S)∩R−(S) ⊆ X

and R+(S)∩R−(S) ⊆ Y ⊆ R−(S). S is a stable extension
iff S = Def((S ∪ X) ∩ Y ).

Proof. Apply Lemma 4 and Lemma 3.

Lemma 7 Given (A,R), S ⊆ A is a preferred extension iff
S = Def(S ∪ X) ∩ R+(S) where ∅ ⊆ X ⊆ Def(S) ∩

R+(S) if S is a preferred extension and R+(S) ⊆ X ⊆ A
otherwise.

Proof. Let S ⊆ A and X ⊆ A be such that ∅ ⊆ X ⊆
Def(S) ∩ R+(S) if S is a preferred extension whereas
R+(S) ⊆ X ⊆ A if S is not a preferred extension.
(only if direction) S is a preferred extension. In view of
the assumption, ∅ ⊆ X ⊆ Def(S) ∩ R+(S). Now, S
is also a complete extension hence Theorem 6 implies that
S = Def(S ∪ X) ∩ R+(S).
(if direction) Consider the case that S is not a preferred ex-
tension even though S = Def(S ∪ X) ∩ R+(S). By the
assumption, R+(S) ⊆ X ⊆ A. Lemma 2 then implies that
S = Def(S ∪X) ∩R+(S) fails and a contradiction arises.

Lemma 8 Given (A,R), S ⊆ A is a preferred extension iff
S = Def((S ∪ X) ∩ R−(S)) where ∅ ⊆ X ⊆ Def(S) ∩

R+(S) if S is a preferred extension and R+(S) ⊆ X ⊆ A
otherwise.

Proof. Let S ⊆ A and X ⊆ A be such that ∅ ⊆ X ⊆
Def(S) ∩ R+(S) if S is a preferred extension whereas
R+(S) ⊆ X ⊆ A if S is not a preferred extension.
(only if direction) S is a preferred extension. In view of
the assumption, ∅ ⊆ X ⊆ Def(S) ∩ R+(S). Now, S
is also a complete extension hence Theorem 6 yields S =

Def((S ∪ X) ∩ R−(S)).
(if direction) Consider the case that S is not a preferred ex-
tension. By the assumption, R+(S) ⊆ X ⊆ A. Lemma 4
then implies that S = Def((S ∪ X) \ R−(S)) fails, which
is a contradiction.

Theorem 1 Let (A,R) be an argument system. For S ⊆ A,
the statements below are equivalent:

• S is a Dung extension under the t semantics

• S = Def(S ∪ X) ∩ R+(S)

• S = Def((S ∪ X) ∩ R−(S))

where X is an arbitrary set of arguments such that

– case t = complete
{

∅ ⊆ X ⊆ Def(S) ∩ R+(S)

– case t = preferred







∅ ⊆ X ⊆ Def(S) ∩ R+(S)
if S is a preferred extension,

R+(S) ⊆ X ⊆ A otherwise

– case t = stable
{

R+(S) ⊆ X ⊆ A

Proof.

• case t = complete: Theorem 6.

• case t = preferred: Lemma 7 and Lemma 8.

• case t = stable: Lemma 2 and Lemma 6.

Theorem 2 Let (A,R) be an argument system. Consider E
such that S ⊆ E ⊆ C.

• There exists χ : 2A → 2A such that S ∈ E iff S =

Def(S ∪ χ(S)) ∩ R+(S).
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• There exists χ : 2A → 2A such that S ∈ E iff S =

Def((S ∪ χ(S)) ∩ R−(S)).

Proof. Consider E such that S ⊂ E ⊂ C (the two cases
for improper inclusion have been dealt with in Theorem 1)
and we show that there exists χ : 2A → 2A which makes
the equations to characterize E as indicated in the statement
of the theorem.
For all S ⊆ A, define χ(S) so as to enforce both

(i) ∅ ⊆ χ(S) ⊆ Def(S) ∩ R+(S) if S ∈ E and
(ii) R+(S) ⊆ χ(S) ⊆ A if S 6∈ E .

Clearly, there exists at least one such function χ (for (i), take
χ(S) = ∅ and for (ii), take χ(S) = A). So, let χ be any
function from 2A to 2A satisfying (i) and (ii). Let S ⊆ A.
Consider first the case S 6∈ E . By the assumption, R+(S) ⊆
χ(S) ⊆ A. Also, S is not a stable extension due to S ⊂ E ⊂

C. Applying Theorem 1, S = Def(S ∪χ(S))∩R+(S) and
S = Def((S∪χ(S))\R−(S)) both fail. By contraposition,
if S satisfies any of the equations then S ∈ E .
Consider now the case S ∈ E . By the assumption, ∅ ⊆
χ(S) ⊆ Def(S) ∩ R+(S). As S is a complete extension
due to S ⊂ E ⊂ C, Theorem 1 yields S = Def(S∪χ(S))∩

R+(S) and S = Def((S ∪ χ(S)) ∩ R−(S)). That is, if
S ∈ E then S satisfies both equations.

Lemma 9 Whatever X ⊆ A, if S is a stable extension then
S = Def(S ∪ X) ∩ R+(S).

Proof. Let S ⊆ A be a stable extension. As a conse-
quence, S is an admissible set and Proposition 3 yields S ⊆
Def(S) ∩R+(S). Therefore, it follows that S ⊆ Def(S ∪

X)∩R+(S). By Proposition 2, if S is a stable extension then
R+(S) ⊆ S. Accordingly, Def(S ∪ X) ∩ R+(S) ⊆ S. To
sum up, S = Def(S ∪ X) ∩ R+(S).

Lemma 10 Let X : 2A → 2A. If S is a stable extension
then S = Def(S ∪ X(S)) ∩ R+(S) and S = Def((S ∪
X(S)) \ R−(S)).

Proof. By Lemma 9 and Lemma 3 where Y = R−(S).

Lemma 11 Whatever X ⊆ A, if S = Def(S∪X)∩R+(S)

or S = Def((S ∪ X) ∩ R−(S)) then S is conflict-free.

Proof. Let S ⊆ A such that S = Def(S ∪ X) ∩ R+(S).
Then S ⊆ R+(S), so S is conflict-free.
Let S ⊆ A such that S = Def((S∪X)∩R−(S)). Assume
that S fails to be conflict-free. So, there exist a ∈ S and
b ∈ S such that aRb. Yet, S = Def((S ∪ X) \ R−(S))
entails that b is defended against a by c ∈ (S∪X)\R−(S).
In symbols, cRa and c ∈ S ∪ X while c 6∈ R−(S). The
latter is contradicted by cRa because a ∈ S. Thus, S is
conflict-free.

Lemma 12 Whatever X ⊆ A, if S ⊆ A is a self-defending
set satisfying either S = Def(S ∪ X) ∩ R+(S) or S =
Def((S ∪ X) \ R−(S)) then S is a complete extension.

Proof. Let S ⊆ A be such that S ⊆ Def(S) and
S = Def(S ∪ X) ∩ R+(S). I.e., S ⊆ R+(S) and S is

conflict-free. Assume that Def(S) ⊆ R+(S) fails: there
exists a ∈ Def(S) while a 6∈ R+(S). So, a ∈ Def(S) and
a ∈ R+(S). By a ∈ R+(S), there must exist b ∈ S such
that bRa. By a ∈ Def(S), there must then exist c ∈ S such
that cRb. As both b and c are in S, this contradicts the fact
that S is conflict-free. Therefore, the assumption must be
false. So, Def(S) ⊆ R+(S). However, a consequence of
Def being monotone increasing is Def(S) ⊆ Def(S∪X).
Combining this with Def(S) ⊆ R+(S) as was just proved,
Def(S) ⊆ Def(S ∪ X) ∩ R+(S). Hence, Def(S) ⊆ S.
Together with the fact that S is a self-defending set and S is
conflict-free, this means that S is a complete extension.
Let S ⊆ A be such that S ⊆ Def(S) and S = Def((S ∪
X) \ R−(S)). According to Lemma 11, S is conflict-free.
As Def is monotone increasing, Def(S) ⊆ Def(S ∪

(X \ R−(S))). Due to S being conflict-free, S ⊆ R−(S)
and S = S \ R−(S). Therefore, Def(S) ⊆ Def((S \
R−(S)) ∪ (X \ R−(S))). I.e., Def(S) ⊆ Def((S ∪ X) \
R−(S)). Since S = Def((S ∪X)\R−(S)), it follows that
Def(S) ⊆ S.

Theorem 3 Let (A,R) be an argument system.

• Consider χ : 2A → 2A such that for all S ⊆ A, if S =

Def(S ∪χ(S))∩R+(S) then S ∪χ(S) is an admissible
set.
Then, {S ⊆ A | S = Def(S ∪ χ(S)) ∩ R+(S)} is some
E satisfying S ⊆ E ⊆ C.

• Consider χ : 2A → 2A such that for all S ⊆ A, if S =

Def((S∪χ(S))∩R−(S)) then S∪χ(S) is an admissible
set.
Then, {S ⊆ A | S = Def((S ∪ χ(S)) ∩ R−(S))} is
some E satisfying S ⊆ E ⊆ C.

Proof. Consider χ : 2A → 2A such that for all S ⊆ A,
if S = Def(S ∪ χ(S)) ∩ R+(S) (resp., S = Def((S ∪

χ(S)) ∩ R−(S))) then S ∪ χ(S) is an admissible set. We
aim at proving that the solutions of the equations form some
E ⊆ 2A such that S ⊆ E ⊆ C.
Let E denote the set of all S ⊆ A such that S = Def(S ∪

χ(S)) ∩ R+(S) (resp., S = Def((S ∪ χ(S)) ∩ R−(S))).
Consider S ⊆ A satisfying the equation at hand. By the
property that χ is assumed to enjoy, it follows that S ∪χ(S)
is an admissible set. Applying Lemma 12, S is a complete
extension. We have thus shown E ⊆ C. We now turn to
the case that S is a stable extension. By Lemma 10, S =

Def(S ∪ χ(S)) ∩ R+(S) (resp., S = Def((S ∪ χ(S)) ∩

R−(S))). Therefore, S ⊆ E .

Theorem 4 Given (A,R), let each S ⊆ A be attached some
FS ⊆ A. Define χ : 2A → 2A to be the function such that

χ(S) =

{

FS if S ∪ FS is an admissible set
∅ otherwise.

For all S ⊆ A, the statements below are equivalent:

• S is a complete extension such that if S ∪FS is an admis-
sible set then FS ⊆ S
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• S = Def(S ∪ χ(S)) ∩ R+(S)

• S = Def((S ∪ χ(S)) ∩ R−(S))

Proof. (only if direction) Let S = Def(S ∪ χ(S)) ∩

R+(S) where χ(S) = FS if S ∪ FS is an admissible set
and χ(S) = ∅ otherwise. First, if S ∪ FS is not an admissi-
ble set then S = Def(S) ∩ R+(S). According to Theorem
1, S is then a complete extension. Second, if S ∪ FS is an
admissible set then S = Def(S ∪ FS) ∩ R+(S). Let us
show that in this case, FS ⊆ S. Since S ∪ FS is an admis-
sible set (and thus a conflict-free set), S ∪ FS ⊆ R+(S).
Since S ∪ FS is an admissible set, S ∪ FS defends all its
elements. In symbols, S ∪ FS ⊆ Def(S ∪ FS). To sum up,
S ∪ FS ⊆ Def(S ∪ FS) ∩ R+(S). I.e., S ∪ FS ⊆ S. So,
S ∪ FS = S. Hence, S = Def(S) ∩ R+(S). By Theorem
1, S is a complete extension.
Let S = Def((S ∪ χ(S)) ∩ R−(S)) where χ(S) = FS if
S∪FS is an admissible set and χ(S) = ∅ otherwise. First, if
S ∪FS is not an admissible set then S = Def(S ∩R−(S)).
According to Theorem 1, S is then a complete extension.
Second, if S ∪ FS is an admissible set then S = Def((S ∪

FS) ∩ R−(S)). Let us show that in this case, FS ⊆ S.
Since S ∪ FS is an admissible set (and thus a conflict-free
set), S ∪ FS ⊆ R−(S). So (S ∪ FS) ∩ R−(S) = S ∪ FS .
Since S ∪ FS is an admissible set, S ∪ FS defends all its
elements. In symbols, S ∪ FS ⊆ Def(S ∪ FS). To sum up,
S ∪ FS ⊆ Def((S ∪ FS) ∩ R−(S)). I.e. S ∪ FS ⊆ S. So,
S ∪ FS = S. Hence, S = Def(S ∩ R−(S)). By Theorem
1, S is a complete extension.
(if direction) Let S be a complete extension such that if
S ∪ FS is an admissible set then FS ⊆ S. Consider the
function χ : 2A → 2A such that χ(S) = FS if S ∪ FS is an
admissible set and χ(S) = ∅ otherwise. Since S is a com-
plete extension, Theorem 1 yields S = Def(S) ∩ R+(S)

and S = Def(S ∩ R−(S)). If S ∪ FS is an admissible
set then S ∪ FS = S and χ(S) = FS . Therefore, S =

Def(S∪χ(S))∩R+(S) and S = Def((S∪χ(S))∩R−(S))
hold if S ∪ FS is an admissible set.

Theorem 5 Let (A,R) be an argument system.

S ⊆ A is an admissible set iff S ⊆ Def(S) ∩ R+(S)

iff S ⊆ Def(S ∩ R−(S))

iff S ⊆ Def(S) ∩ R−(S)

iff S ⊆ Def(S ∩ R+(S)).

Proof.

• S ⊆ A is an admissible set iff S ⊆ Def(S)∩R+(S): by
Proposition 3.

• S ⊆ A is an admissible set iff S ⊆ Def(S ∩R−(S)): by
Proposition 4.

• S ⊆ A is an admissible set iff S ⊆ Def(S) ∩ R−(S):

– (only if direction) Let S ⊆ A be an admissible set. By
the definition, S is conflict-free. Hence, S ⊆ R−(S).

That S is an admissible set yields S ⊆ Def(S). Over-
all, S ⊆ Def(S) ∩ R−(S).

– (if direction) Assume that S ⊆ Def(S)∩R−(S) holds.
Therefore, S ⊆ Def(S) (i.e., S defends each element
of S) and S ⊆ R−(S) (that is, S is conflict-free). So,
S is an admissible set.

• S ⊆ A is an admissible set iff S ⊆ Def(S ∩ R+(S)):

– (only if direction) Let S ⊆ A be an admissible set.
Therefore, S is conflict-free: S ⊆ R+(S). So, S =

S ∩ R+(S). As S is an admissible set, S ⊆ Def(S).
Substituting, S ⊆ Def(S ∩ R+(S)).

– (if direction) Let S ⊆ Def(S ∩ R+(S)). Trivially,
S ∩ R+(S) ⊆ S. Since Def is monotone increasing,
Def(S ∩ R+(S)) ⊆ Def(S). That is, S ⊆ Def(S).
Assume now that S fails to be conflict-free: There ex-
ist a and b in S such that bRa holds. By a ∈ S

and S ⊆ Def(S ∩ R+(S)), there exists c ∈ S such
that cRb and c 6∈ R+(S). In view of b ∈ S and
S ⊆ Def(S ∩ R+(S)), there exists d ∈ S such that
dRc. This contradicts c 6∈ R+(S). So, S is conflict-
free. Hence, S is an admissible set.

Lemma 13 For all X ⊆ Def(S) and for all Y such that
R−(S) ∩ R+(S) ⊆ Y , if S is a complete extension then
S = Def(S ∪ X) ∩ Y and S = Def((S ∪ X) ∩ Y ).

Proof. As S is a complete extension, it is conflict-free:
S ⊆ R−(S)∩R+(S). Then, S ⊆ Y . I.e., S∩Y = S. A con-
sequence of S being a complete extension is S = Def(S).
Accordingly, X ⊆ S. Hence S ∪ X = S. On the one hand,
applying S = Def(S) and S ∪ X = S to S = S ∩ Y yield
S = Def(S) ∩ Y = Def(S ∪ X) ∩ Y . On the other hand,
applying S = S ∩ Y and S ∪ X = S to S = Def(S) yield
S = Def(S ∩ Y ) = Def((S ∪ X) ∩ Y ).

Lemma 14 For X ⊆ Def(S) such that X ⊆ R−(S) or
X ⊆ R+(S) and for Y ⊆ R−(S) ∪ R+(S), if S =
Def((S ∪ X) ∩ Y ) then S is conflict-free.

Proof. Assume that S is not conflict-free: There exist a
and b in S such that bRa. So, there exist c ∈ S ∪ X and
c ∈ Y such that cRb. Similarly, there exist d ∈ S ∪ X
and d ∈ Y such that dRc. That c ∈ Y gives only two
possibilities. Observe that c ∈ R−(S) is impossible since
cRb and b ∈ S. Then, c must be in R+(S). So, d 6∈ S. That
is, d ∈ X . Consider first the case X ⊆ R−(S). Hence, d ∈

R−(S). It follows that c 6∈ S. So, c ∈ X and c ∈ R−(S).
This is impossible as already noticed. Second, consider the
case X ⊆ R+(S). Hence, d ∈ R+(S). Whether c ∈ X
or c ∈ S, there exists e ∈ S ∪ X satisfying eRd. Yet,
d ∈ R+(S) implies e ∈ X . Also, d ∈ X ⊆ Def(S) entails
fRe for some f ∈ S and a contradiction arises as e ∈ X
yields e ∈ R+(S). To sum up, S is conflict-free.
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Lemma 15 Let X ⊆ Def(S) and Y be such that R−(S)∩

R+(S) ⊆ Y where S is conflict-free. If S = Def((S∪X)∩
Y ) then S is a complete extension.

Proof. Let S = Def((S ∪ X) ∩ Y ). Let us first show
X ⊆ Y . The fact that S is conflict-free and X ⊆ Def(S)
clearly make it impossible for an element of X to be attacked
by S. In symbols, X ⊆ R+(S). In order to prove X ⊆ Y ,
there only remains to show X ⊆ R−(S). Assume that the
contrary holds: bRa for some a ∈ S and some b ∈ X . By
a ∈ S = Def((S ∪ X) ∩ Y ), there exists c ∈ S ∪ X such
that cRb. In view of b ∈ X ⊆ Def(S), there exists d ∈ S

such that dRc. Hence, c 6∈ R+(S) and X ⊆ R+(S) en-
tails c 6∈ X . So, c ∈ S. Yet, cRb and b ∈ X contradict
X ⊆ R+(S). As a result, the assumption must be false. I.e.,
X ⊆ R−(S). Overall, X ⊆ Y .
Since S is conflict-free, S ⊆ R−(S) ∩ R+(S). As a con-
sequence, S ⊆ Y and S ∩ Y = S. Clearly, X ⊆ Y yields
X ∩ Y = X . Therefore, S ∪ X = (S ∩ Y ) ∪ (X ∩ Y ) =
(S ∪ X) ∩ Y . By substitution, S = Def(S ∪ X). As Def
is monotone increasing, Def(S) ⊆ Def(S ∪ X) hence
Def(S) ⊆ S. So, X ⊆ Def(S) yields X ⊆ S and
S ∪ X = S. Since S = Def(S ∪ X) was just proven,
S = Def(S). Now, S is also conflict-free and it follows
that S is a complete extension.

Lemma 16 For X ⊆ Def(S) such that X ⊆ R−(S) or
X ⊆ R+(S) and for Y ⊆ R−(S)∪R+(S), if S = Def(S∪
X) ∩ Y then S is conflict-free.

Proof. Let S = Def(S ∪ X) ∩ Y where Y ⊆ R−(S) ∪

R+(S). Assume that S fails to be conflict-free: There exist
a ∈ S and b ∈ S satisfying bRa. By S = Def(S ∪X)∩Y ,
it follows that b is in Y . Clearly, b 6∈ R−(S). In view of Y ⊆

R−(S) ∪ R+(S), the only possibility remaining for b to be
in Y is b ∈ R+(S). However, bRa and a ∈ S = Def(S ∪
X) ∩ Y imply that there exists c ∈ S ∪ X such that cRb.
Then, b ∈ R+(S) makes c to be in X . Should X ⊆ R−(S),
it follows that c ∈ R−(S) which is a contradiction because
cRb and b ∈ S. Should X ⊆ R+(S), it follows that c ∈

R+(S). By cRb and b ∈ S = Def(S∪X)∩Y , there exists
d ∈ S ∪ X satisfying dRc. As c ∈ X ⊆ Def(S), there
exists e ∈ S such that eRd. Now, c ∈ R+(S) prevents d to
be in S. So, d ∈ X and d ∈ R+(S). This is a contradiction
due to e ∈ S and eRd. Overall, the assumption must be
false. Therefore, S is conflict-free.

Lemma 17 Let X ⊆ Def(S) and Y be such that R−(S)∩

R+(S) ⊆ Y where S is conflict-free. If S = Def(S ∪X)∩
Y then S = Def(S).

Proof. In order to prove Def(S) ⊆ Y , assume that
there exists some a ∈ Def(S) such that a 6∈ Y . Ac-
cording to R−(S) ∩ R+(S) ⊆ Y , either a 6∈ R−(S) or
a 6∈ R+(S). I.e., a ∈ R−(S) or a ∈ R+(S). Consider first
a ∈ R−(S). By the definition, aRb for some b ∈ S. Due to
S = Def(S∪X)∩Y , there exists c ∈ S∪X such that cRa.
In view of a ∈ Def(S), there exists d ∈ S satisfying dRc.

As S is conflict-free, c 6∈ S. Hence, c ∈ X ⊆ Def(S).
There must then be e ∈ S such that eRd, which contradicts
S being conflict-free. Second, consider a ∈ R+(S). By the
definition, bRa holds for some b ∈ S. By a ∈ Def(S),
there exists c ∈ S satisfying cRb. A contradiction arises, in
view of S being conflict-free. Therefore, Def(S) ⊆ Y .
Trivially, S ⊆ S ∪ X . Therefore, Def(S) ⊆ Def(S ∪ X).
So, Def(S) ∩ Y ⊆ Def(S ∪ X) ∩ Y . By substitu-
tion, Def(S) ∩ Y ⊆ S. In view of X ⊆ Def(S) and
X ⊆ Y (which X ⊆ Def(S) and Def(S) ⊆ Y en-
tail), X ⊆ S follows. Hence, S ∪ X = S. Then,
Def(S∪X)∩Y = Def(S)∩Y . That is, S = Def(S)∩Y .
Using Def(S) ⊆ Y then yields S = Def(S).

Theorem 6 Let (A,R) be an argument system. Let S ⊆ A.
For all X ⊆ A and for all Y ⊆ A such that

• X ⊆ Def(S) ∩ R−(S) or X ⊆ Def(S) ∩ R+(S)

and

• R−(S) ∩ R+(S) ⊆ Y ⊆ R−(S) ∪ R+(S)

the following holds:

S is a complete extension iff S = Def(S ∪ X) ∩ Y

iff S = Def((S ∪ X) ∩ Y ).

Proof. S is a complete extension implies both S =
Def(S∪X)∩Y and S = Def((S∪X)∩Y ) by Lemma 13.
S = Def(S ∪X)∩Y implies S is a complete extension by
Lemma 14 and Lemma 15. S = Def((S∪X)∩Y ) implies
S is a complete extension by Lemma 16 and Lemma 17.

Due to lack of space, proofs of Theorem 7 and Theorem
8 are omitted but can be found in (Besnard & Doutre 2003).
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