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Abstract

Although sorts and unary predicates are semantically
identical in order-sorted logic, they are classified as dif-
ferent kinds of properties in formal ontology (e.g. sortal
and non-sortal). This ontological analysis is an essen-
tial notion to deal with properties (or sorts) of objects in
knowledge representation and reasoning. In this paper,
we propose an extension of an order-sorted logic with
the ontological property classification. This logic con-
tains types (rigid sorts), non-rigid sorts and unary pred-
icates to distinguishably express the properties: sub-
stantial sorts, non-substantial sorts and non-sortal prop-
erties. We define a sorted Horn-clause calculus for
such property expressions in a knowledge base. Based
on the calculus, we develop a reasoning algorithm for
many separated knowledge bases where each knowl-
edge base can extract rigid property information from
other knowledge bases (called rigid property deriva-
tion).

Introduction
Order-sorted logic (Oberschelp 1962; Cohn 1987; Walther
1988; Weibel 1997) involves many sorts and their hierar-
chy (called sort-hierarchy). The advantages of order-sorted
logic are the following three points. The first is a reduc-
tion of the search space, by restricting the domains and
ranges of functions, predicates and variables to subsets of
the universe (Walther 1985; 1987; 1988). The second is
structural knowledge representation by means of partially
ordered sorts, whereas the description of first-order logic is
flat (Cohn 1989). In the field of artificial intelligence, the use
of sorts has facilitated two kinds of knowledge representa-
tion: assertions and class-hierarchies, in logic programming
languages and deduction systems (Aı̈t-Kaci & Nasr 1986;
Kifer, Lausen, & Wu 1995; Smolka 1989; Kaneiwa & Tojo
1999). The third is the detection of sort errors in well-sorted
formulas (Oberschelp 1989), like typed programming lan-
guages. For example, let breathing(x : animal) be well-
sorted. The formula breathing(1 : int) contains a sort error,
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as opposed to being a false formula. However, in unsorted
logic, we cannot detect sort errors even if the sorted formula
breathing(x : animal) is expressible by animal(x) ⇒
breathing(x), since, animal(1) ⇒ breathing(1) is re-
garded as a well-formed formula.

In sort theory (Beierle et al. 1992; Frisch 1989) and con-
straint logic (Bürckert 1994), the subsort relation s < s′
in a sort-hierarchy is represented by its equivalent impli-
cation form s(x) ⇒ s′(x) in first-order logic. This trans-
lation motivates us to consider whether or not sorts and
unary predicates are logically and semantically identical.
In the literature of ontology, these sorts and unary predi-
cates correspond to properties as sets of individuals. Fur-
thermore, in (Guarino, Carrara, & Giaretta 1994), properties
are subdivided into sortal and non-sortal (Strawson 1959;
Lowe 1989) where sortal is classified as substantial (e.g. ap-
ple) and non-substantial (e.g. student), and non-sortal is
as pseudo-sortal (e.g. gold) and characterizing (e.g. red).
This property classification is important in order to take ac-
count of the differences between sorts and unary predicates
in structural knowledge systems.

However, the formalization of order-sorted logic does not
include an ontological property classification, such as sor-
tal and non-sortal. On the other hand, ontology researchers
do not seem to be concerned with incorporating such notions
into an alternative logical system, by defining the syntax, se-
mantics and inference system (cf. (Carrara & Giaretta 2001;
Kaplan 2001; Gangemi, Guarino, & Oltramari 2001)).

In this paper, we refine an order-sorted logic by combin-
ing it with the ontological property classification. Specif-
ically, we take the notions of substantial sorts, non-
substantial sorts and non-sortal properties expressed as types
τ (Guarino & Welty 2000a), non-rigid sorts σ and unary
predicates p (as shown in Table 1). The distinction between
properties varies the meaning of instantiation of properties
(i.e. a term t is an instance of a property). Semantically, the
instantiation of a type τ(t) means that t eternally belongs to
τ since all types are rigid. In contrast, the instantiation of a
non-rigid sort σ(t) and a unary predicate p(t) is not always
true since non-rigid sorts and unary predicates are not rigid.
For example, let person be a type, student be a non-rigid
sort, and happy be a unary predicate. Then, person(john)
can be true anytime, but the truth of student(john) and
happy(john) is changeable in different situations. Using
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Table 1: Rigidity of types, sorts and unary predicates

property expression instance of subsumption
substantial sort type τ τ(t) rigid τ1 < τ2

non-substantial sort sort s non-rigid sort σ σ(t) σ1 < τ2 for all situations
non-rigid σ1 < σ2

non-sortal property unary predicate p p(t) p1(x)⇒ p2(x) for some situations

our logic, subsumption between properties (i.e. a prop-
erty subsumes a property) can be expressed by either of the
two forms : subsort and implication. The subsort relations
τ1 < τ2, σ1 < τ2 and σ1 < σ2 are declared to be true in
all situations, but the implication form p1(x)⇒ p2(x) holds
only in some situations. For example, student < person is
true in any situation, but the truth of rich(x) ⇒ happy(x)
depends on each situation. This specification indicates that
the implication form s1(x)⇒ s2(x) is inadequate to render
subsumption between sorts s1, s2 rigid1. Hence, we should
choose the subsort relation s1 < s2 to express subsump-
tion between sorts. Additionally, any relation of the form
τ1 < σ2 (i.e. a type is a subsort of a non-rigid sort) is not
allowed as subsumption due to the consideration of rigid and
non-rigid properties in (Guarino & Welty 2000b).

To suitably formalize these notions in logic, we employ an
order-sorted logic with sort predicates (Beierle et al. 1992;
Kaneiwa 2004a) as a basic language. For types τ and non-
rigid sorts σ, this logic allows us to express their correspond-
ing unary predicates pτ and pσ (called sort predicates)2

when denoting atomic formulas p(t) of unary predicates p.
Our approach carefully addresses the rigidity of types, non-
rigid sorts and unary predicates in sorted expressions of the
logic. In standard order-sorted logic, a variable x of sort s
is denoted by x : s and a constant c of sort s is by c : s. In
contrast, we allow the expressions x : τ , x : σ and c : τ , but
do not allow the expression c : σ. For example, x1 : person
and x2 : student are variables of the type (rigid sort) person
and the non-rigid sort student, and john : person is a con-
stant of the type person. However, a constant of a non-rigid
sort c : σ may be meaningless, e.g., john : student if John
is not a student eternally. Namely, since the elements of
non-rigid sorts are not fixed, an element may not belong to
a non-rigid sort in a situation. Thus, we require that such a
non-rigid sort be used as a sort of variables x : σ and as a
sort predicate σ(t) (or pσ(t)). For example, we can describe
the formulas

excellent(x : student)
⇒ getting a scholarship(x : student)

and student(john).
This paper presents a reasoning algorithm for dealing with

the rigidity of types, non-rigid sorts and unary predicates
and their hierarchies. Following the notion of rigidity, in-

1Note that we here discuss rigidity of subsumption but not rigid-
ity of properties.

2A sort predicate ps is simply denoted by s when this will not
cause confusion.

stantiation and subsumption of properties behave meaning-
fully toward reasoning in many knowledge bases. Figure 1
shows many knowledge bases separately constructed in their
respective situations, together with the hierarchies of sorts
and types. In this case, each knowledge base can commonly
make use of sorts and types in the hierarchies, and further-
more it might be able to extract rigid property information
from other knowledge bases. As a motivating example, we
consider the following knowledge bases (with the sort and
type hierarchies in Figure 2):

Knowledge base 1:

(1a) male student(john : person),
(1b) excellent(john : person),
(1c) excellent(x : student)

⇒ getting a scholarship(x : student)

Knowledge base 2:

(2a) teacher(mary : person),
(2b) likes(mary : person, x : student),
(2c) likes(mary : person, x : bird)

Knowledge base 3:

(3a) canary(peter : animal),
(3b) bird(x : animal)⇒ canfly(x : animal)

Knowledge base 4:

(4a) father(tony : animal, peter : animal),
(4b) father(y : animal, x : animal)

∧ bird(x : animal)⇒ bird(y : animal)

Instantiation (3a) is true in knowledge base 3, and if the
subsumption canary < bird holds in the sort and type
hierarchies, then bird(peter : animal) can be derived in
knowledge base 3. This is also true in any other knowl-
edge bases since the valuation of the type bird does not
depend on a particular situation, i.e., it is rigid. In other
words, the elements of the type bird can be fixed (Peter is
eternally a bird), unlike the elements of the non-rigid sort
student. Hence, since instantiation as rigid property infor-
mation must be true in all situations, bird(peter : animal)
is extensively true in knowledge bases 1, 2 and 4. By
this additional information, knowledge base 2 concludes the
new fact likes(mary : person, peter : animal) from (2c),
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p2(x : σ1, y : σ2) ∧ p3(x : σ1)⇒ τ3(x : σ1)

extraction of rigid property
information from other
knowldge bases

Figure 1: Many knowledge bases with sort and type hierarchies

which cannot be derived without importing the rigid prop-
erty information. Moreover, knowledge base 4 can de-
rive bird(tony : animal) (Tony is a bird) from fact (4a)
and rule (4b). This instantiation bird(tony : animal) (as
rigid property information) recursively3 and furthermore re-
sults in canfly(tony : animal) in knowledge base 3 and
likes(mary : person, tony : animal) in knowledge base
2. However, when instantiation (1a) and the subsumption
male student < student hold, student(john : person)
is true only in knowledge base 1 because student is not
rigid. Hence, (2b) does not derive likes(mary : person,
john : student) in knowledge base 3.

This paper is organized as follows. First, we formalize an
order-sorted logic extended with types, non-rigid sorts and
sort predicates. Next, we develop a Horn-clause calculus
with sorted and unsorted substitutions and inference rules of
sort predicates. Based on the calculus, we present a deriva-
tion method of rigid properties for many separated knowl-
edge bases. Then, we prove the completeness of the sorted
Horn-clause calculus and the rigid property derivation. Fi-
nally, we discuss the conclusions and future work.

An Order-sorted Logic with Rigidity and Sort
Predicates

We introduce the classified property expressions: types,
non-rigid sorts and unary predicates in the syntax and se-
mantics of an order-sorted logic with sort predicates (based
on (Socher-Ambrosius & Johann 1996; Schmidt-Schauss
1989; Manzano 1993)).

Syntax
Definition 1 The alphabet of a sorted first-order language
L with rigidity and sort predicates contains the following
symbols:

1. T : a countable set of type symbols τ1, τ2, . . . including
the greatest type �

2. N : a countable set of non-rigid sort symbols σ1, σ2, . . .
with T ∩N = ∅
3First, knowledge base 3 exports rigid property information to

knowledge base 4. Then, a new fact can be derived in knowledge
base 4, and inversely, knowledge base 3 imports the new fact as
rigid property information from knowledge base 4.

3. C: a countable set of constant symbols
4. Fn: a countable set of n-ary function symbols
5. Pn: a countable set of n-ary predicate symbols
6. ←, (, ): the connective and auxiliary symbols

We generally call type symbols (denoted τ, τ1, τ2, . . . ) or
non-rigid sort symbols (denoted σ, σ1, σ2, . . . ) sort symbols
(denoted s, s1, s2, . . . ). Namely, T∪N is the set of sort sym-
bols. Vs denotes an infinite set of variables x : s, y : s, z : s,
. . . of sort s. The set of variables of all sorts is denoted by
V =

⋃
s∈T∪N Vs. For all sorts s ∈ T ∪N , the unary predi-

cates ps ∈ P1 indexed by the sorts s (called sort predicates)
are introduced, and the set of sort predicates is denoted by
PT∪N = {ps | s ∈ T ∪N}. In particular, the predicate pτ

indexed by a type τ is called a type predicate, and the pred-
icate pσ indexed by a non-rigid sort σ is called a non-rigid
sort predicate. In what follows, we assume that the language
L contains all the sort predicates in PT∪N .

Definition 2 (Sorted Signatures with Rigidity)
A signature of a sorted first-order language L with rigidity
and sort predicates (called sorted signature) is a tuple Σ =
(T,N,Ω,≤,≤+) such that:

1. (T,≤) is a partially ordered set of types (called a type
hierarchy) where T is the same as the set of type symbols
in L;

2. (T ∪ N,≤+) is a partially ordered set of sorts (called a
sort hierarchy) where

(a) T ∪ N is the union of the set of type symbols and the
set of non-rigid symbols in L,

(b) each ordered pair is not of the form τ ≤+ σ (i.e. it is
of the form σi ≤+ σj , σ ≤+ τ or τk ≤+ τl), and

(c) if τi ≤ τj , then τi ≤+ τj ;
3. if c ∈ C , then there is a unique constant declaration of

the form c : → τ ∈ Ω (which means c : ∅ → τ ∈ Ω);
4. if f ∈ Fn, then there is a unique function declaration of

the form f : τ1 × · · · × τn → τ ∈ Ω;
5. if p ∈ Pn, then there is a unique predicate declaration of

the form p : s1 × · · · × sn ∈ Ω (in particular, for all sort
predicates ps ∈ PT∪N , ps : � ∈ Ω).

Constants and functions are required to be rigidly sorted.
Specifically, constant and function declarations are defined
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by types τi in order to avoid the non-rigid domains and
ranges of constants and functions. In contrast, predicate
declarations are defined by any sorts si (types or non-rigid
sorts), since the domains of predicates can be not rigid. For
instance, consider the constant and function declarations:

john : → person ∈ Ω
father : person→ person ∈ Ω

for john ∈ C , father ∈ F1 and person ∈ T , and the
predicate declaration:

getting a scholarship : student ∈ Ω

for getting a scholarship ∈ P1 and student ∈ N . If un-
rigidly sorted constants and functions are allowed for, then
the following declarations:

john : → student ∈ Ω
father : person→ teacher ∈ Ω

for student, teacher ∈ N give rise to the sorted terms:

john : student

father(john : student) : teacher.

The first expresses the constant john of the non-rigid sort
student, and the second represents the function father
with the argument john : student the range of which is
the non-rigid sort teacher. From the perspective of rigid-
ity, we regard these expressions as meaninglessly sorted be-
cause John and John’s father are not a student and a teacher
eternally.

The type hierarchy in a sorted signature corresponds to
the backbone taxonomy consisting only of rigid proper-
ties (Welty & Guarino 2001). By the consideration of sub-
sumption in (Guarino & Welty 2000b), any relation of the
form τ ≤+ σ is not allowed in the sort hierarchy, since types
τ are rigid but non-rigid sorts σ are not rigid. Next, we de-
fine terms, atoms (atomic formulas), goals and clauses of a
sorted first-order language with rigidity and sort predicates.

Definition 3 (Typed Terms) Let Σ = (T,N,Ω,≤,≤+) be
a sorted signature. The set T −

τ of terms of type τ is defined
by the following:

1. If x : τ ∈ Vτ , then x : τ ∈ T −
τ .

2. If c ∈ C and c : → τ ∈ Ω, then c : τ ∈ T −
τ .

3. If t1 ∈ T −
τ1

, . . . , tn ∈ T −
τn

, f ∈ Fn and f : τ1×· · ·×τn →
τ ∈ Ω, then f(t1, . . . , tn) : τ ∈ T −

τ .

4. If t ∈ T −
τ′ and τ ′ ≤ τ , then t ∈ T −

τ .

Note that the set T −
τ of terms of type τ contains terms

of subtypes τ ′ with τ ′ ≤ τ (by the forth clause in Defini-
tion 3). For example, let person, animal be types and let
person ≤ animal ∈ Ω. Then, john : person belongs to
the set T −

animal of terms of the type animal.

Definition 4 (Non-rigid Sorted Terms) Let Σ = (T,N,Ω,
≤,≤+) be a sorted signature. The set T −

σ of terms of non-
rigid sort σ is defined by the following:

1. If x : σ ∈ Vσ , then x : σ ∈ T −
σ .

2. If t ∈ T −
σ′ and σ′ ≤+ σ, then t ∈ T −

σ .

By this definition, the only non-rigid sorted terms are vari-
ables. We call a typed term or a non-rigid sorted term a
sorted term.

Definition 5 (Sorted Terms) Let Σ = (T,N,Ω,≤,≤+) be
a sorted signature. The set Ts of terms of sort s is defined by
the following:

1. If t ∈ T −
s , then t ∈ Ts.

2. If t ∈ Ts′ and s′ ≤+ s, then t ∈ Ts.

The set of terms of all sorts is denoted by T =⋃
s∈T∪N Ts. The function sort is a mapping from sorted

terms to their sorts, defined by (i) sort(x : s) = s, (ii)
sort(c : τ) = τ and (iii) sort(f (t1, . . . , tn) : τ) = τ .

Definition 6 The function V ar : T → 2V is defined by the
following:

1. V ar(x : s) = {x : s},
2. V ar(c : τ) = ∅ for c ∈ C , and
3. V ar(f(t1, . . . , tn) : τ) =

⋃
1≤i≤n V ar(ti) for f ∈ Fn.

A sorted term is called ground if it is without variables.
T0 = {t ∈ T |V ar(t) = ∅} is the set of ground sorted
terms. The set of ground terms of sort s is denoted by T0,s =
T0 ∩ Ts. In the following, Horn clauses (Lloyd 1987; Doets
1994) are defined by sorted formulas of the language.

�

animal

person male bird

teacher student

male student

canary

sort hierarchy

type hierarchy

Figure 2: Sort and type hierarchies in a sorted signature

Definition 7 Let Σ = (T,N,Ω,≤,≤+) be a sorted signa-
ture. The set A of atoms, the set G of goals and the set C of
clauses are defined by the following:

1. If t1 ∈ Ts1 , . . . , tn ∈ Tsn
, p ∈ Pn and p : s1×· · ·× sn ∈

Ω, then p(t1, . . . , tn) ∈ A.
2. If L1, . . . , Ln ∈ A (n ≥ 0), then {L1, . . . , Ln} ∈ G.
3. If G ∈ G and L ∈ A, then L← G ∈ C.

An atom ps(t) with a sort predicate is simply denoted by
s(t) when this will not cause confusion. The clauses L← G
are denoted by L← if G = ∅.
Definition 8 The function EV ar : A ∪ G ∪ C → 2V is de-
fined by the following:
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1. EV ar(p(t1, . . . , tn)) = V ar(t1) ∪ · · · ∪ V ar(tn)
2. EV ar({L1, . . . , Ln}) = EV ar(L1) ∪ · · · ∪ EV ar

(Ln)
3. EV ar(L← G) = EV ar(L) ∪ EV ar(G)
Example 1 Let us consider the sorted signature Σ =
(T,N,Ω,≤∗,≤∗

+) such that

T = {male, person, canary, bird, animal, � },
N = { teacher, student, male student },
Ω = { john : → person, mary : → person,

peter : → animal, tony : → animal,

excellent : person, likes : animal × �,

getting a scholarship : student,

father : �×�, canfly : � } ∪
{ ps : � | s ∈ T ∪N },

≤ = { (canary, bird), (bird, animal), (animal,�),
(person, animal), (male, animal) },

≤+ = ≤ ∪ { (male student,male),
(teacher, person), (student, person),
(male student, student) }.

and ≤∗,≤∗
+ are the reflexive and transitive closures of ≤,

≤+. This sorted signature declares the sort and type hierar-
chies in Figure 2. The expressions:

student(john : person)←,

canfly(x : animal)← {bird(x : animal)}
are clauses in the sorted first-order language.

Semantics
The semantics of an order-sorted logic with rigidity and sort
predicates is defined by a Kripke model. This characterizes
the rigidity of types and non-rigid sorts by interpreting them
in the set of worlds.

Definition 9 (Σ-model) Let Σ be a sorted signature. A
sorted Σ-model M is a tuple (W,U, I) such that

1. W is a non-empty set of worlds,
2. U is a non-empty set of individuals,
3. I = {Iw | w ∈ W} is the set of interpretation functions

Iw for all worlds w ∈W with the following conditions:
(a) if s ∈ T ∪N , then Iw(s) ⊆ U (in particular, Iw(�) =

U ),
(b) if si ≤+ sj for si, sj ∈ T ∪N , then Iw(si) ⊆ Iw(sj),
(c) if c ∈ C and c : → τ ∈ Ω, then Iw(c) ∈ Iw(τ),
(d) if f ∈ Fn and f : τ1 × · · · × τn → τ ∈ Ω, then

Iw(f) : Iw(τ1)× · · · × Iw(τn)→ Iw(τ),
(e) if p ∈ Pn and p : s1 × · · · × sn ∈ Ω, then Iw(p) ⊆

Iw(s1)× · · · × Iw(sn).
By restricting Σ-models, we give the class of rigid Σ-

models as follows.

Definition 10 (Rigid Σ-model) Let Σ be a sorted signa-
ture. A rigid sorted Σ-model is a sorted Σ-model M =
(W,U, I) such that for all wi, wj ∈ W , Iwi

(τ) = Iwj
(τ),

Iwi
(c) = Iwj

(c) and Iwi
(f) = Iwj

(f).

A (rigid) sorted Σ-model M = (W,U, I) is said to be a
(rigid) sorted Σ+-model if the following conditions hold:

1. If s ∈ T ∪N , then Iw(s) = Iw(ps).

2. If si ≤+ sj , then Iw(psi
) ⊆ Iw(psj

).

In the sorted Σ+-models, the interpretation of sorts s
is equivalent to the interpretation of the sort predi-
cates ps. A variable assignment on a Σ-model M =
(W,U, I) is a function αw : V → U where αw(x : s) ∈
Iw(s). The variable assignment αw[x : s/d] is defined by
αw\{(x : s, αw(x : s))}∪ {(x : s, d)}. A Σ-interpretation I
is a pair (M, α) of a Σ-model M and a set of variable assign-
ments α = {αw | w ∈ W} on M . Let I = (M, α). The
Σ-interpretation (M, α\{αw} ∪ {αw[x : s/d]}) is denoted
by Iαw [x : s/d].

Definition 11 Let I = (M, α) be a Σ-interpretation. The
denotation [[ ]]w,α : T → U is defined by the following:

1. [[x : s]]w,α = αw(x : s),

2. [[c : τ ]]w,α = Iw(c),

3. [[f(t1, . . . , tn) : τ ]]w,α = Iw(f)([[t1]]w,α, . . . , [[tn]]w,α).

The satisfiability of atoms, goals and clauses are defined
for a Σ-interpretation I and a world w ∈ W .

Definition 12 (Σ-satisfiability Relation) Let I = (M, α)
with M = (W,U, I) be a Σ-interpretation, let F ∈ A∪G∪C
and w ∈ W . The Σ-satisfiability relation I, w |= F is
defined inductively as follows:

1. I, w |= p(t1, . . . , tn) iff ([[t1]]w,α, . . . , [[tn]]w,α) ∈
Iw(p).

2. I, w |= {L1, . . . , Ln} iff I, w |= L1, . . . , I, w |= Ln.
3. I, w |= L ← G iff for all d1 ∈ Iw(s1), . . . ,dn ∈

Iw(sn), Iαw [x1 : s1/d1, . . . , xn : sn/dn], w |= G im-
plies Iαw[x1 : s1/d1, . . . , xn : sn/dn], w |= L where
EV ar (L← G) = {x1 : s1, . . . , xn : sn}.
Let Γ be a set of formulas inA∪G∪C. We write I, w |= Γ

if, for every formula F ∈ Γ, I, w |= F . A formula F is
said to be Σ-satisfiable if for some Σ-interpretation I and
world w, I, w |= F . Otherwise, it is Σ-unsatisfiable. F
is a consequence of Γ in the class of Σ-interpretations (de-
noted Γ |= F ) if for any Σ-interpretation I and w ∈ W ,
I, w |= Γ implies I, w |= F . A Σ-interpretation I =
(M, α) is a Σ+-interpretation if M is a Σ+-model. Anal-
ogously, Σ+-satisfiability and consequences in the class of
Σ+-interpretations (denoted Γ |=+ F ) can be defined.

Knowledge Base Reasoning with Rigid
Properties

In this section, we develop a knowledge base reasoning sys-
tem for our order-sorted logic with rigid properties. We first
extend a Horn-clause calculus (Hanus 1992) by incorporat-
ing sorted and unsorted substitutions and inference rules of
type predicates. Based on the calculus, we define a rigid
property derivation method for many separated knowledge
bases.
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Extended Horn-clause Calculus
We define a sorted substitution such that each sorted variable
x : s is replaced with a well-sorted term in Ts.

Definition 13 (Sorted Substitution) A sorted substitution
is a partial function θ : V → T such that θ(x : s) ∈
Ts − {x : s} and Dom(θ) is finite.

Moreover, an unsorted substitution is defined as a substi-
tution operationally ignoring the sort of each variable which
may lead to ill-sorted terms.

Definition 14 (Unsorted Substitution) An unsorted sub-
stitution is a partial function θu : V → T such that
θu(x : s) ∈ T − {x : s} and Dom(θu) is finite.

For example, for student ≤+ person, θu(x : student)
= john : person is an unsorted substitution, but not a sorted
substitution. Each of sorted and unsorted substitutions can
be represented by {x1 : s1/t1, . . . , xn : sn/tn}. Let θ be a
sorted substitution. θ is called a ground sorted substitution
if for every variable x : s ∈ Dom(θ), θ(x : s) is a ground
sorted term. The restriction of a sorted substitution θ to
V ′(⊆ V ) is defined by θ ↑V ′ = {x : s/θ(x : s) | x : s ∈
V ′ ∩ Dom(θ)}. θ is a ground sorted substitution for V ′ if
V ′ ⊆ Dom(θ) and θ ↑V ′ is a ground sorted substitution.
The identity substitution is denoted by ε (i.e. Dom(ε) = ∅).
Similarly, these notions are defined for unsorted substitu-
tions θu.

In the usual manner of logic, sorted and unsorted substi-
tutions are extended to terms, atoms, goals and clauses. Let
E be an expression, θ be a sorted substitution and θu be an
unsorted substitution. The sorted and unsorted substitutions
to variables in E are denoted by Eθ and Eθu.

Definition 15 　Let E ∈ T ∪A∪G∪C and let γ be a sorted
substitution θ or an unsorted substitution θu. The expression
Eγ is defined by the following:

1. x : sγ = γ(x : s) if x : s ∈ Dom(γ),
2. x : sγ = x : s if x : s �∈ Dom(γ),
3. f(t1, . . . , tn) : τγ = f(t1γ, . . . , tnγ) : τ ,
4. p(t1, . . . , tn)γ = p(t1γ, . . . , tnγ),
5. {L1, . . . , Ln}γ = {L1γ, . . . , Lnγ},
6. (L← G)γ = Lγ ← Gγ.

Let t be a sorted term. The term tθu is called an ill-sorted
term if tθu �∈ T . θ (resp. θu) is a ground sorted sub-
stitution (resp. ground unsorted substitution) for E if Eθ
(resp. Eθu) is ground. The composition θ1θ2 of sorted
substitutions θ1 and θ2 (resp. unsorted substitutions θu

1
and θu

2 ) is defined by (x : s)θ1θ2 = ((x : s)θ1)θ2 (resp.
(x : s)θu

1 θu
2 = ((x : s)θu

1 )θu
2 ).

Lemma 1 Let I = (M, α) with M = (W,U, I) be a Σ-
interpretation, L← G be a clause, θ be a sorted substitution
and let w ∈W . If I, w |= L← G, then I, w |= (L← G)θ.

Proof. Suppose I, w |= L ← G. By Definition 12, for
all d1 ∈ Iw(s1), . . . ,dn ∈ Iw(sn), Iαw [x1 : s1/d1, . . . ,
xn : sn/dn], w |= G implies Iαw[x1 : s1/d1, . . . ,
xn : sn/dn], w |= L. Let d′

1 ∈ Iw(s′1), . . . ,d′
m ∈ Iw(s′m)

where EV ar((L ← G)θ) = {y1 : s′1, . . . , ym : s′m},

and let di = [[θ(xi : si)]]w,α′ for α′ = α\{αw} ∪
{αw[y1 : s′1/d′

1, . . . , ym : s′m/d′
m]}. This derives I, w |=

(L← G)θ.
Definition 16 (Knowledge Base) Let Σ = (T,N,Ω,≤,
≤+) be a sorted signature. A knowledge base K is a finite
set of clauses in C.

Let θ be a sorted substitution and C be a clause. Cθ is
called an instance of C . The set of all ground instances of C
is denoted by ground(C). In the following, we define infer-
ence rules in an extended Horn-clause calculus with sorted
and unsorted substitutions.

Definition 17 (Sorted Horn-clause Calculus) Let C be a
ground clause and K be a knowledge base. A derivability
of C from K (denoted K � C) in the sorted Horn-clause
calculus is defined as follows:
• Sorted substitution rule: Let L ← G ∈ K and θ is a

ground substitution for L← G. K � (L← G)θ
• Cut rule: Let L ← G and L′ ← G′ ∪ {L} be ground

clauses. If K � L ← G and K � L′ ← G′ ∪ {L}, then
K � L′ ← G ∪G′

• Subsort rule: Let ps(t)← G and ps′(t)← G be ground
clauses. If K � ps(t) ← G and s <+ s′, then K �
ps′(t)← G.
• Type predicate rule: Let t be a ground sorted term. If

sort(t) ≤+ τ , then K � pτ (t)←.
• Unsorted type predicate rule: Let t be a sorted term

where EV ar(t) = {x1 : s1, . . . , xn : sn} and let
psi

(ti) ← Gi be a ground clause. If sort(t) ≤+ τ and
K � ps1(t1) ← G1, . . . , K � psn

(tn) ← Gn, then
K � pτ (t){x1 : s1/t1, . . . , xn : sn/tn}← G1∪· · ·∪Gn.
• Unsorted substitution rule: Let L ← G ∈ K where
{x1 : s1, . . . , xn : sn} ⊆ EV ar(L ← G) and let
psi

(ti) ← Gi be a ground clause. If K � ps1(t1) ←
G1, . . . , K � psn

(tn) ← Gn, then K � (L ← G ∪
G1 ∪ · · · ∪Gn){x1 : s1/t1, . . . , xn : sn/tn}θ where θ is
a ground sorted substitution for (L ← G ∪ G1 ∪ · · · ∪
Gn){x1 : s1/t1, . . . , xn : sn/tn}.
We write K � L if K � L←. The sorted substitution rule

and the cut rule serve as sorted inference rules in ordinary
order-sorted logic. The subsort rule actualizes an inference
of the implication form ps(t) ⇒ ps′(t) with respect to the
subsort relation s <+ s′. The type predicate rule derives
axioms pτ (t) of type predicates with sort(t) ≤+ τ . For
example, animal(john : person) is valid if person ≤+

animal. Furthermore, the unsorted type predicate rule and
the unsorted substitution rule are unsorted variants of the
type predicate rule and the sorted substitution rule respec-
tively. These inference rules are based on the sorted resolu-
tion system with sort predicates in (Beierle et al. 1992). In
order to deal with the rigidity of sorts, we distinguish types
and non-rigid sorts in the calculus. In particular, the un-
sorted type predicate rule and the unsorted substitution rule
are necessary for reasoning over non-rigid sorted terms. For
a non-rigid sort student ∈ N , if student(john : person)
is true, then x : student can be unsortedly substituted with a
sorted term john : person while the sort of john : person
is not a subsort of student.
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Example 2 Suppose we have the sorted signature Σ =
(T,N,Ω,≤∗,≤∗

+) of Example 1. Consider the following
knowledge bases K1,K2,K3,K4:

K1 = {male student(john : person)←,

excellent(john : person)←,

getting a scholarship(x : student)
← {excellent(x : student)} }

K2 = { teacher(mary : person)←,

likes(mary : person, x : student)←,

likes(mary : person, x : bird)← }
K3 = { canary(peter : animal)←,

canfly(x : animal)← {bird(x : animal)} }
K4 = { father(tony : animal, peter : animal)←,

bird(y : animal)← {bird(x : animal),
father(y : animal, x : animal)} }

Figure 3 shows derivations fromK1, K3 in the sorted Horn-
clause calculus. In the first we can derive the ill-sorted ex-
pression

getting a scholarship(john : person)

where for person ∈ T and student ∈ N , person �≤+

student and getting a scholarship : student ∈ Ω. This
is obtained by an application of the unsorted substitution
rule to the clauses

student(john : person)←,

getting a scholarship(x : student)
← {excellent(x : student)}

with the unsorted substitution

θu = {x : student/john : person}.

Rigid Property Derivation in Knowledge Bases
Normally, the conclusions in each knowledge base are not
derivable from another knowledge base, since knowledge
bases are separately constructed for their respective situa-
tions. Nevertheless, each knowledge base can derive some-
thing from rigid property information in other knowledge
bases. For this idea, we present a derivation method of rigid
properties in a finite set of knowledge bases (called rigid
property derivation).

Let S = {K1, . . . ,Kn} be a finite set of knowledge
bases where K1, . . . ,Kn have the same sorted signature
Σ. A Σ-model M = (WS , U, I) is said to be a knowl-
edge base Σ-model (or simply KB Σ-model) for S if WS =
{wK1

, . . . , wKn
} is the set of knowledge base worlds of

K1, . . . ,Kn. Afterwards we assume that every model is a
KB Σ-model. A (rigid) Σ-interpretation is called a (rigid)
KB Σ-interpretation if its model is a (rigid) KB Σ-model.
We denoteKi |=+

S F if for every rigid KB Σ+-interpretation
I for S , I, wK1

|= K1, . . . , I, wKn
|= Kn implies I, wKi

|=
F . Let us denote by A0 the set of ground atoms. We define
the theory of K as Th(K) = {L ∈ A0 | K � L}.

In order to define rigid property derivation, an expansion
of knowledge bases is introduced. The expansion of each

knowledge base is obtained from other knowledge bases by
extracting rigid property information.

Definition 18 (Expansion of Knowledge Bases) Let S =
{K1, . . . ,Kn} be a finite set of knowledge bases. The ex-
panded knowledge bases Km

i of Ki in S are defined by the
following:

K0
i = Ki

Km+1
i = Km

i ∪∆(Th(Km
1 ) ∪ · · · ∪ Th(Km

n ))

where ∆(X) = {pτ (t) ∈ A0 | τ ∈ T and pτ (t) ∈ X}
Each knowledge base Ki is expanded to K0

i ,K1
i , . . . by

adding rigid atomic formulas pτ (t) derivable in one of the
knowledge bases K1, . . . ,Kn ∈ S . Note that the expansion
is not dependent upon an ordering of S , namely, the final
expansion of all elements of S is uniquely obtained, regard-
less of the ordering. Using this expansion, we define rigid
property derivation in a finite set of knowledge bases.

Definition 19 (Rigid Property Derivation in S) Let S =
{K1, . . . , Kn} be a finite set of knowledge bases. A ground
atom L is derivable from Ki in S (denoted Ki �S L ) if
there exists an expanded knowledge base Km

i of Ki such
that Km

i � L.

Let us consider rigid property derivation in the knowledge
bases K1,K2,K3,K4 of Example 2.

Example 3 Suppose we have the sorted signature Σ =
(T,N,Ω,≤∗,≤∗

+) of Example 1 and the knowledge bases
K1,K2,K3,K4 of Example 2. By the expanded knowledge
bases K0

i ,K1
i , . . . of each Ki in S = {K1,K2,K3,K4}, the

following derivations can be obtained.
Initially, for the knowledge bases K1,K2,K3,K4, we

have the theories Th(K1), Th(K2), Th(K3), Th(K4) as
follows:

Th(K1) = Γ ∪ { excellent(john : person),
getting a scholarship(john : person),
male student(john : person),
student(john : person),
male(john : person) }

Th(K2) = Γ ∪ { teacher(mary : person) }
Th(K3) = Γ ∪ { canfly(peter : animal),

bird(peter : animal),
canary(peter : animal) }

Th(K4) = Γ ∪
{ father(tony : animal, peter : animal) }

where

Γ = { person(john : person), animal(john : person),
person(mary : person), animal(mary : person),
animal(peter : animal), animal(tony : animal) }.

Note that the theories Th(K1) and Th(K3) contain
the rigid atomic formulas male(john : person); and
bird(peter : animal), canary(peter : animal) respec-
tively. In the following steps, the knowledge bases K0

1, K0
2,

K0
3,K0

4 are expanded by adding these rigid atomic formulas:
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K1 � getting a scholarship(john : person):

excellent(john : person)←

male student(john : person)←
student(john : person)←

getting a scholarship(john : person)← {excellent(john : person)}
getting a scholarship(john : person)←

K3 � canfly(peter : animal):

canfly(peter : animal)← {bird(peter : animal)}
canary(peter : animal)←

bird(peter : animal)←
canfly(peter : animal)←

Figure 3: An example of derivations

Step 1:

K0
i = Ki (1 ≤ i ≤ 4)

Step 2:

K1
i = K0

i ∪∆(T 0) (1 ≤ i ≤ 4) where
T 0 = Th(K1) ∪ Th(K2) ∪ Th(K3) ∪ Th(K4) and
∆(T 0) = {male(john : person),

bird(peter : animal), canary(peter : animal) }

Step 3:

Th(K1
1) = Th(K1) ∪∆(T 0)

Th(K1
2) = Th(K2) ∪∆(T 0)

∪{ likes(mary : person, peter : animal) }
Th(K1

3) = Th(K3) ∪∆(T 0)
Th(K1

4) = Th(K4)∪∆(T 0)∪{ bird(tony : animal) }

In Step 3, as a result of the expansion, the new con-
clusions likes(mary : person, peter : animal) in Th(K1

2)
and bird(tony : animal) in Th(K1

4) can be derived in
the Horn-clause calculus. Moreover, the rigid atomic for-
mula bird(tony : animal) expands the knowledge bases
K1

1,K1
2,K1

3 ,K1
4 as follows:

Step 4:

K2
i = K1

i ∪∆(T 1) (1 ≤ i ≤ 4) where
T 1 = Th(K1

1) ∪ Th(K1
2) ∪ Th(K1

3) ∪ Th(K1
4) and

∆(T 1) = ∆(T 0) ∪ { bird(tony : animal) }

Step 5:

Th(K2
1) = Th(K1

1) ∪∆(T 1)
Th(K2

2) = Th(K1
2) ∪∆(T 1)

∪{ likes(mary : person, tony : animal) }
Th(K2

3) = Th(K1
3) ∪∆(T 1)

∪{ canfly(tony : animal) }
Th(K2

4) = Th(K1
4) ∪∆(T 1)

In Step 5, the further new results likes(mary : person,
tony : animal) in Th(K2

2) and canfly(tony : animal) in
Th(K2

3) are generated from the expanded knowledge bases

K2
1,K2

2,K2
3 ,K2

4.

Step 6:

K3
i = K2

i ∪∆(T 2) (1 ≤ i ≤ 4) where
T 2 = Th(K2

1) ∪ Th(K2
2) ∪ Th(K2

3) ∪ Th(K2
4) and

∆(T 2) = ∆(T 1).

The derivation terminates in Step 6 because K2
1,K2

2,K2
3 ,K2

4
are not expanded anymore.

In this example, the following conclusions are derivable
from each knowledge base in S .

K1 �S student(john : person)
K2 ��S likes(mary : person, john : person)

However, the knowledge baseK2 cannot extract the instanti-
ation student(john : person) from the knowledge base K1

because the sort student is not rigid. This means that we do
not find whether or not John is a student in the situation of
the knowledge base K2.

K2 �S likes(mary : person, peter : animal)
(but K2 �� likes(mary : person, peter : animal))
K2 �S likes(mary : person, tony : animal)

(but K2 �� likes(mary : person, tony : animal))
K3 �S canfly(tony : animal)

(but K3 �� canfly(tony : animal))

These were not derivable in the Horn-clause calculus with-
out rigid property derivation. Our method can derive them
from the knowledge basesK2

2,K2
3 expanded by means of ex-

tracting the rigid property information that Tony and Peter
are birds, i.e.,

K4 �S bird(tony : animal)
K3 �S bird(peter : animal).

Completeness of Rigid Property Derivation
In this section, we prove the completeness of the sorted
Horn-clause calculus and the rigid property derivation for
many knowledge bases.
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Theorem 1 (Soundness of the Horn-clause Calculus) Let
S = {K1, . . . , Kn} be a finite set of knowledge bases and
L be a ground sorted or ill-sorted atom. If Ki � L, then
Ki |=+L.

The set of derivable sorted and ill-sorted terms for sort
s in Ki is defined as T Ki

0,s = {t | Ki � ps(t)}. We
define the set of derivable terms for all sorts in Ki by
T Ki

0 =
⋃

s∈T∪N T
Ki

0,s . To prove the completeness of the
Horn-clause calculus and the rigid property derivation, we
construct a Herbrand model for a finite set of knowledge
bases.

Definition 20 (Herbrand Model) Let S = {K1, . . . ,Kn}
be a finite set of knowledge bases. A Herbrand model MH

for S is a tuple (WS , UH , IH ) such that

1. WS = {wK1
, . . . , wKn

},
2. UH =

⋃
Ki∈S T

Ki
0 ,

3. IH = {IwKi
| wKi

∈ WS} is the set of interpretation
functions for all wKi

∈WS with the following conditions:

(a) IwKi
(s) = T Ki

0,s ,

(b) if c ∈ C and c : → τ ∈ Ω, then IwKi
(c) = c : τ ,

(c) if f ∈ Fn and f : τ1 × · · · × τn → τ ∈ Ω, then
IwKi

(f)(t1, . . . , tn) = f(t1, . . . , tn) : τ where tk ∈
IwKi

(τk) for 1 ≤ k ≤ n, and

(d) if p ∈ Pn and p : s1 × · · · × sn ∈ Ω, then IwKi
(p) ⊆

IwKi
(s1)× · · · × IwKi

(sn).

The set of rigid derivable sorted and ill-sorted terms for
sort s in Ki is defined as RT Ki

0,s = {t | Ki �S ps(t)}. We
define the set of rigid derivable terms for all sorts in Ki by
RT Ki

0 =
⋃

s∈T∪N RT
Ki
0,s.

Definition 21 (Rigid Herbrand Model) A rigid Herbrand
model MH for S is a tuple (WS , UH , IH ) with UH =
⋃

Ki∈S RT
Ki
0 , IwKi

(s) = RT Ki
0,s and the other conditions

of Herbrand models.

A (rigid) Herbrand interpretation IH for S is a pair
(MH , α) such that MH is a (rigid) Herbrand model for S
and α is a set of variable assignments on MH . We define
ground+(L ← G) = ground(L ← G) ∪

⋃

θu

ground((L ←

G)θu) with θu = {x1 : s1/t1, . . . , xn : sn/tn} where Ki �
psk

(tk) for 1 ≤ k ≤ n and {x1 : s1, . . . , xn : sn} ⊆
EV ar(L ← G). In the following, we define a canonical
interpretation for a finite set of knowledge bases.

Definition 22 (Canonical Interpretation for S) Let S =
{K1, . . . ,Kn} be a finite set of knowledge bases and L be a
ground atom. A canonical interpretation (resp. rigid canon-
ical interpretation) for S is a Herbrand interpretation (resp.
rigid Herbrand interpretation) IS = (MH , α) for S such
that

IS , wKi
|= L iff Ki � L (resp. Ki �S L).

We show that this canonical interpretation is a (KB) Σ+-
interpretation and satisfies each knowledge base Ki in S .

Lemma 2 Let S = {K1, . . . ,Kn} be a finite set of knowl-
edge bases. Let IS be a canonical interpretation for S and
L← G be a clause. Then, the following statements hold:

1. IS , wKi
|= L ← G if and only if IS , wKi

|= ground+

(L← G).
2. IS is a (KB) Σ+-interpretation of Ki.

Proof. 1. (⇒) By Lemma 1, IS , wKi
|= (L ← G)θ

(∈ ground(L← G)). Let (L← G)θuθ ∈ ground+((L←
G)θu) with θu = {x1 : s1/t1, . . . , xn : sn/tn}. By Def-
inition 20, we have t1 ∈ IwKi

(s1), . . . , tn ∈ IwKi
(sn).

Hence, IS , wKi
|= (L ← G)θu. Therefore, by Lemma 1,

IS , wKi
|= (L ← G)θuθ. (⇐) Let θ0(xk : sk) = tk for

any ground term tk in IwKi
(sk) where Dom(θ0) = EV ar

(L ← G)(= {x1 : s1, . . . , xn : sn}). We divide it by
θ = {(xk : sk, θ0(xk : sk)) | θ0(xk : sk) ∈ T0,sk

} and
θu = θ0 − θ. So, we obtain (L← G)θuθ ∈ ground+(L←
G). By assumption, for all t1 ∈ IwKi

(s1), . . . ,tn ∈
IwKi

(sn), Iαw[x1 : s1/t1, . . . , xn : sn/tn], wKi
|= G im-

plies Iαw [x1 : s1/t1, . . . , xn : sn/tn], wKi
|= L.

2. We show that IS is a Σ-interpretation. By Defini-
tion 20, the conditions 1,2,3-(a) and 3-(e) of Σ-models (Def-
inition 9) hold. The condition 3-(c) is shown by the follow-
ing. If c ∈ C and c : → τ ∈ Ω, then we have IwKi

(c) = c : τ

(by Definition 20 3-(b)). By the type predicate rule in the
Horn-clause calculus, Ki � pτ (c : τ). So, by Definition 20
3-(a), c : τ ∈ IwKi

(τ). Thus, IwKi
(c) ∈ IwKi

(τ). The con-
ditions 3-(b) and 3-(d) can be shown by the subsort rule and
unsorted type predicate rule. Furthermore, by the definition
of T Ki

0,s and Definition 22, we can derive that IS is a Σ+-
interpretation.

Next, we prove that IS satisfies Ki. Let L ← G ∈ Ki

where EV ar(L ← G) = {x1 : s1, . . . , xn : sn}. So
we want to show IS , wKi

|= ground+(L ← G). Case
1: let (L ← G)θ ∈ ground+(L ← G) where θ =
{x1 : s1/t1, . . . , xn : sn/tn} is a ground sorted substitution
for L← G. Suppose IS , wKi

|= {L1, . . . , Ln}θ where G =
{L1, . . . , Ln}. By definition 22, Ki � L1θ, . . . , Ki � Lnθ.
So, we haveKi � (L← {L1, . . . , Ln})θ (by the sorted sub-
stitution rule). By the cut rule, Ki � Lθ is derivable. Hence,
by Definition 22, IS , wKi

|= Lθ. Therefore, IS , wKi
|=

(L ← G)θ. Case 2: let (L ← G)θuθ ∈ ground+(L ← G)
where θu = {x1 : s1/t1, . . . , xn : sn/tn} is a ground un-
sorted substitution such that Ki � psk

(tk) for 1 ≤ k ≤ n
and {x1 : s1, . . . , xn : sn} ⊆ EV ar(L ← G), and θ is
a ground sorted substitution for (L ← G)θu. Suppose
IS , wKi

|= {L1, . . . , Ln}θuθ where G = {L1, . . . , Ln}.
By definition 22, Ki � L1θ

uθ, . . . , Ki � Lnθuθ. Then,
Ki � (L ← {L1, . . . , Ln})θuθ (by the unsorted substitu-
tion rule and Ki � psk

(tk) for 1 ≤ k ≤ n). By the cut
rule, Ki � Lθuθ. Hence, by Definition 22, IS , wKi

|= Lθuθ.
Therefore, IS , wKi

|= (L ← G)θuθ. By the first statement
in Lemma 2, we obtain IS , wKi

|= L← G.

Theorem 2 (Completeness of the Horn-clause Calculus)
Let S = {K1, . . . , Kn} be a finite set of knowledge bases
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and L be a ground sorted or ill-sorted atom. If Ki |=+ L,
then Ki � L.

Proof. Suppose Ki |=+ L. By Lemma 2, IS , wKi
|= Ki.

Hence, we have IS , wKi
|= L. Therefore, Ki � L by Defini-

tion 22.

Lemma 3 Let S = {K1, . . . , Kn} be a finite set of knowl-
edge bases and I be a rigid KB Σ+-interpretation for S . If
I, wK1

|= Km
1 , . . . , I, wKn

|= Km
n , then I, wK1

|= Km+1
1 ,

. . . , I, wKn
|= Km+1

n .

Proof. Suppose I, wK1
|= Km

1 , . . . ,I, wKn
|= Km

n . Let x ∈
{1, . . . , n}. By Definition 18, Km+1

x =Km
x ∪∆(Th(Km

1 )∪
· · · ∪ Th(Km

n )). By Theorem 1 and Th(Km
x ) = {L |

Km
x � L}, I, wK1

|= Th(Km
1 ), . . . ,I, wKn

|= Th(Km
n ).

Let pτ (t) ∈ ∆(Th(Km
1 ) ∪ · · · ∪ Th(Km

n )). Then, there ex-
ists Km

l such that pτ (t) ∈ Th(Km
l ). By assumption and

the soundness of the Horn-clause calculus, I, wKl
|= pτ (t).

So, [[t]]wKl
,α ∈ IwKl

(τ) because I is a Σ+-interpretation.

Then, by Definition 10 (saying that for all wi, wj ∈ W ,
Iwi

(τ) = Iwj
(τ), Iwi

(c) = Iwj
(c) and Iwi

(f) = Iwj
(f)),

[[t]]wKx
,α ∈ IwKx

(τ). Hence, I, wKx
|= pτ (t). Therefore, we

have I, wKx
|= Km+1

x .

Theorem 3 (Soundness of Rigid Property Derivation)
Let S = {K1, . . . , Kn} be a finite set of knowledge bases
and L be a ground sorted or ill-sorted atom. If Ki �S L,
then Ki |=+

S L.

Proof. Suppose Ki �S L. By Definition 19, there exists an
expanded knowledge base Km

i of Ki such that Km
i � L. So

we have Km
i |=+ L (by Theorem 1). Let I be a rigid KB

Σ+-interpretation for S . Assume I, wK1
|= K1(= K0

1), . . . ,
I, wKn

|= Kn(= K0
n). By Lemma 3, I, wK1

|= Km
1 , . . . ,

I, wKn
|= Km

n . Hence, I, wKi
|= L. Therefore, we obtain the

conclusion.

We now define the set rigid-ground+(L ← G) =
ground(L ← G) ∪

⋃

θu

ground((L ← G)θu) with θu =

{x1 : s1/t1, . . . , xn : sn/tn} where Ki �S psk
(tk) for 1 ≤

k ≤ n and {x1 : s1, . . . , xn : sn} ⊆ EV ar(L← G).

Lemma 4 Let S = {K1, . . . ,Kn} be a finite set of knowl-
edge bases. Let IS be a rigid canonical interpretation for
S and L ← G be a clause. Then, the following statements
hold:

1. IS , wKi
|= L ← G if and only if IS , wKi

|= rigid-
ground+(L← G).

2. IS is a rigid KB Σ+-interpretation of Ki.

Proof. 1. By Definition 21 and the definition of rigid-
ground+(L ← G), this can be shown in the similar way
to the proof of Lemma 2.

2. First of all, we have to show that the derivability � in
the Horn-clause calculus can be applied to the rigid property
derivability �S . Namely, if Ki � A1, . . . , Ki � An derives
Ki � B in an inference rule, thenKi �S A1, . . . ,Ki �S An

derives Ki �S B. Suppose Ki �S A1, . . . , Ki �S An. For

each Al, there exists an expanded knowledge base Kml

i of
Ki such that Kml

i � Al (by Definition 19). Thus, if mk ≥
mj for 1 ≤ j ≤ n, then Kmk

i � A1, . . . , Kmk

i � An.
Hence, Kmk

i � B. Therefore, Ki �S B.
By the above claim and the same way of the proof of

Lemma 2, we can show that IS is a Σ+-interpretation and
satisfiesKi. Furthermore, we have to prove that IS is a rigid
Σ-interpretation, i.e., (1) Iwi

(τ) = Iwj
(τ), (2) Iwi

(c) =
Iwj

(c) and (3) Iwi
(f) = Iwj

(f). (1) let t ∈ Iwi
(τ).

By the definition of RT Ki
0,τ , Ki �S pτ (t). So, by Defini-

tion 19, Km
i � pτ (t) where Km

i is an expanded knowledge
base of Ki. This derives pτ (t) ∈ Th(Km

i ). By Defini-
tion 18, pτ (t) ∈ Km+1

j . Then, Km+1
j � pτ (t). There-

fore, t ∈ Iwj
(τ)(= RT Kj

0,τ ). (2) let c : → τ ∈ Ω.
Then, Iwi

(c) = c : τ = Iwj
(c) (by Definition 21). (3) let

f : τ1×· · ·×τn → τ ∈ Ω. Because Iwi
(τ) = Iwj

(τ) for any
τ ∈ T , we have IwKi

(f)(t1, . . . , tn) = f(t1, . . . , tn) : τ =
IwKj

(f)(t1, . . . , tn) where tk ∈ IwKi
(τk) for 1 ≤ k ≤ n

(by Definition 21).

Theorem 4 (Completeness of Rigid Property Derivation)
Let S = {K1, . . . , Kn} be a finite set of knowledge bases
and L be a ground sorted or ill-sorted atom. If Ki |=+

S L,
then Ki �S L.

Proof. Suppose that we have Ki |=+
S L. By Lemma 4,

IS , wK1
|= K1, . . . , IS , wKn

|= Kn. Hence, by assumption,
IS , wKi

|= L. Therefore, Ki �S L (by Definition 22).

Conclusion
We have extended an order-sorted logic and its Horn-clause
calculus by capturing the notion of the ontological property
classification. In particular, our logic contains three kinds of
expressions of properties (types, non-rigid sorts and unary
predicates) and adheres to the rigidity of the different proper-
ties within instantiation and subsumption of properties (ex-
cluding τ ≤ σ). Using these facilities, we have developed a
reasoning algorithm for many separated knowledge bases.
This knowledge base reasoning is provided by the sorted
Horn-clause calculus with extracting rigid property informa-
tion from other knowledge bases. The suitability of this rea-
soning is guaranteed by the fact that instantiation of rigid
properties and subsumption between sorts (as subsort rela-
tions) eternally hold as common knowledge, i.e., the truth is
independent of the situation of each knowledge base.

Our future work concerns an ontological consideration
of the relationships part of (Winston, Chaffin, & Hermann
1987; Simons 1987) and member of which can be embed-
ded in various extensions of sorted logical systems (Kaneiwa
2004b; Kaneiwa & Tojo 2001). Although these have been
often used to build ontologies, the meanings are ambigu-
ously defined for some ontologies. For example, there may
be two definitions for the concepts professor and laboratory
such that (i) professors are parts of laboratories and (ii) Prof.
Smith is a member of the laboratory (but not an instance
of the laboratory). Combining these relationships with this
work can be expected to clearly formalize enriched termino-
logical hierarchies for ontology development.
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