
How to Interweave Knowledge about Object Structure and Concepts

Carola Eschenbach

Department for Informatics (AB WSV), University of Hamburg
Vogt-Kölln-Str. 30, D-22527 Hamburg

eschenbach@informatik.uni-hamburg.de

Abstract
This article presents a general framework for integrating
reasoning about object structure and concept taxonomies.
The structural relations in the domain of objects discussed
are mereological relations (part, overlap, etc.). Relations
defining the concept taxonomies are taken from the standard
relations of subsumption hierarchies. A small set of (homo-
geneous) predicators is introduced to relate the two areas.
Predicators can be used to distinguish different modes of
predication, corresponding to different types of associated
inference patterns. Reasoning about different modes of
predication depends both on the theory of objects and the
theory of concepts. The theories of objects, concepts, and
predicators are formulated in an axiomatic manner. Compo-
sition tables can be formally derived from the theories. Con-
sequently, constraint propagation approaches can be easily
extended to handle reasoning in the interface of conceptual
knowledge and object structure.

Introduction

Initiated by Allen’s series of articles on the representation
and processing of temporal knowledge (Allen 1983, 1984;
Allen and Kautz 1985), networks of constraints and con-
straint propagation based on composition tables have be-
come an important methodological framework for knowl-
edge representation in the areas of qualitative reasoning.
Allen applied this method to reasoning about (temporal)
relations between periods of time.

The majority of contributions that focus on the applica-
tion of constraint-based reasoning and composition tables
for specific systems of relations consider the domains of
time or space (Nebel and Bürckert 1995; Gotts, Gooday
and Cohn 1996; Renz and Nebel 1998, 1999; Egenhofer
and Rodríguez 1999). The systems of relations evaluated
regarding their computational properties are relations
between temporal entities (moments or periods of time) or
between spatial entities (points or regions of space).

In addition to the ontological framework of time periods,
Allen (1984), following McDermott (1982), introduced
reified state types, which he calls ‘property’, and reified
event types, which he calls just ‘event’, as the basis for

representing what was the case or what happened.1 State
types and event types are treated as entities of an ontologi-
cal status similar to concepts in semantic networks. State
types can hold over a period of time and event types can
occur at moments or in periods of time. Binary relations
between time periods and state types or event types repre-
sent such relations. Given that t stands for a period of time
and Θ stands for a state type, HOLDS(t, Θ) expresses that
the state type Θ  holds during t. A relation like HOLDS,
which relates time periods and state types, will be called
‘predicator’ in the following.2

Galton (1990) elaborated Allen’s approach introducing a
variety of predicators for state types that differ regarding
the interaction between predication and temporal relations.
Galton introduced the two predicators called ‘HOLDS-ON’
and ‘HOLDS-IN’ to be able to distinguish whether the state
type applies to every (moment or period of) time or to
some (moment or period of) time within the period. For
example, if a car parks in front of my house from noon to
mid-night it occupies the same spatial region throughout
that period of time. In contrast, if the car (continuously)
moves through the street between noon and 5 minutes past
noon, it occupies different places within that period and
does not stay at any place during any sub-period. Corre-
spondingly, ‘the car is in front of my house’ is a state type
that can be true throughout a period or sometime within a
period. These different ways of relating state types to time
periods correspond to specific valid inference patterns. If a
state type applies throughout a super-period, then the same

                                      
1 Allen’s properties are one kind of state type, called ‘state of position’
by Galton (1990). The concept of ‘raining’, which is primarily ascribed to
time periods and can only indirectly be related to points in time, can also
be considered a state type, called ‘state of motion’ by Galton (1990).
Allen calls this kind of state type ‘process’ and groups processes and
event types under the term ‘occurrence’.
2 The view on the relation between time and state types presented here is
the view specified in the formalisms of Allen (1984) and Galton (1990).
Other approaches argue that state types and event types are basically
related to a specific type of entities (sometimes called ‘eventuality’ (Bach
1986) or ‘situation’ (Mourelatos 1978)) that have spatial and temporal
locations. However, if these entities can be related by the relation part-of
and homogeneous predication is suitable, then the general approach
outlined here can be applied straightforwardly to predicators connecting
situations and situation types.
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holds for its sub-periods, and if a state type applies some-
time within a sub-period, then it applies sometime within
its super-periods. Correspondingly, in Galton’s approach,
both [F1] and [F2] are valid, where ‘⊆’ stands for the part-of
relation among time periods.

[F1] ∀t t' Θ [t' ⊆ t ∧ HOLDS-ON(t, Θ) ⇒ HOLDS-ON(t', Θ)]
[F2] ∀t t' Θ [t' ⊆ t ∧ HOLDS-IN(t', Θ) ⇒ HOLDS-IN(t, Θ)]

The idea of predicators connecting thematic concepts and
objects in different ways is vital for every domain where
objects and their parts can fall under the same concepts and
objects need not be uniform regarding the applicability of a
concept to its parts.1 In the geographic domain we find that
regions of space can be uniform or mixed regarding ground
coverage or soil quality. Material objects such as cups or
cars can be uniform or mixed regarding color or substance.

Eschenbach (1999) presents an explicit transfer of the
idea of different types of predication from the temporal to
the spatial domain. It is shown that in addition to the part-
of relation further structural relations can be used as the
basis for distinguishing types of predication. The predica-
tors discussed in the following are called ‘homogeneous
predicators’ in Eschenbach (1999). Further ‘heterogene-
ous’ predicators are introduced there as well. However, the
inferences based on heterogeneous predicators are power-
less as compared to inferences based on the homogeneous
predicators.

The representation of concepts and taxonomies tradi-
tionally focuses on individuating (sortal) concepts (such as
‘man’, ‘father’, ‘uncle’) that indicate or presuppose a clear
separation of the entities to which it applies. For those
cases, one type of predication seems sufficient. In the con-
text of description logics, the unique type of predication is
mostly represented by a (heterogeneous) predicator called
‘instance-of’. However, several concepts employed by
humans (such as ‘covered by grass’, ‘red’ or ‘metallic’) do
not individuate the objects they apply to. Correspondingly
the specification of extensive common-sense ontologies
will require the treatment of non-individuating concepts
and part-of relations within different domains of objects. In
this context, it will be mandatory to distinguish ways of
relating thematic concepts to objects and their parts. I will
show in the following that taxonomic knowledge of non-
individuating concepts, object domains structured by a
part-of relation, and different predicators associated with
characteristic inference patterns can be smoothly embed-
ded into a common formal framework.

                                      
1 The notion of ‘thematic concepts’ cannot be defined in this article. But
notice that concepts that can be defined on the basis of the structural
relations within the domain are not counted among the thematic concepts.
For example, it would not make much sense to include the concepts of
‘having no proper part’ or ‘having exactly two atomic parts’ in the set of
thematic concepts.

A system based on the specification presented below
could, for example, perform the following (common-sense)
inference task that combines conceptual and structural
knowledge in the domain of geographic regions. (On the
right you see the symbolic version introduced below. ‘d’
stands for the concept of dry land, ‘w’ for the concept of
water-covered land. ‘j’ stands for the concept owned by
John. ‘A’, ‘B’, and ‘C’ are names of geographic regions.)

Given that
Dry land and water-covered land are

coverage types that (taken together) are
exhaustive.

exh(d, w)

Region A is incompletely covered by water. MIXED(A, w)
Region B does not have dry land. NW-IN(B, d)
Region A is part of region C. P(A, C)
Region C is completely owned by John. EW-IN(C, j)

The following statements can be concluded:
Region A is completely owned by John. EW-IN(A, j)
Region C is incompletely covered by water. MIXED(C, w)
Region A has (some) dry land. SW-IN(A, d)
Region B is completely covered by water. EW-IN(B, w)
Region A is not a part of region B. ¬P(A, B)
Region C is not a part of region B. ¬P(C, B)
Region C has (at least some) dry land. SW-IN(C, d)
Being owned by John is neither subordinate

to nor exclusive with being covered by
water.

¬sub(j, w)
¬excl(j, w)

Being owned by John is not subordinate to
being dry land.

¬sub(j, d)

The axiomatic characterization is given using predicate
logic with two sorts of variables. In addition, I will present
sets of mutually exclusive and commonly exhaustive rela-
tions and the resulting composition tables as required by
constraint based reasoning methods. Constraint-based
approaches are well established for reasoning about tempo-
ral or spatial relations and can easily be adapted to other
systems of relations. The presentation of a constraint
approach for the concept relations can be regarded as a
simple by-product of the axiomatic specification. For the
predicators (and their inverse relations) the constraint-
based specification shows how existing mechanisms can be
used for reasoning about the interface between concept
relations and domain structure.

Relations for Two Sorts of Entities

The basic formalism for the specification is predicate logic
with two sorts of variables. Lower case italic Latin char-
acters (x, y, z) are variables interpreted in the basic domain,
which is structured by the part relation. Greek letters
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(Φ, Ψ, Θ) are variables interpreted as (non-individuating)
thematic concepts for this domain. If the basic domain is
the domain of time periods, the concepts in question are
state types. If the basic domain is the range of geographic
regions, the concepts in questions are (non-individuating)
thematic spatial concepts such as soil quality. The concepts
for the domain of chunks of matter include concepts for
substance type or color.

According to the two sorts of terms, there are four kinds
of binary relations differing in the restrictions on the sorts
of their arguments:

(1) structural relations between objects of the domain
(for example part-of or temporal relations between
time periods)

(2) relations between thematic concepts (taxonomical
relations, especially the subsumption hierarchy)

(3) predicators relating objects and thematic concepts
and

(4) converse predicators (relating thematic concepts
and objects). [Since these relations are nothing but
the converse of the relations of the third kind, they
will be mostly neglected in the following presenta-
tion.]

The constraint graphs of corresponding constraint prob-
lems are similarly structured by having two sorts of nodes
and four kinds of edges, as displayed in Figure 1.

T1

T4

T3

T2

domain node

concept node

structural relation (1)

concept relation (2)

predicator (3)

converse predicator (4)

Figure 1. Graph of a constraint problem with two sorts of
nodes and three types of edges.

Furthermore, in the display of the constraint network there
are four kinds of triangles representing four kinds of rela-
tional composition. Triangles formed by three domain

nodes (T1) represent reasoning on structural relations as
treated by approaches to temporal or spatial relations. Tri-
angles formed by two domain nodes and one concept node
(T4) represent reasoning on the interaction of predicators
and structural relations. Propagation of constraints in these
triangles is justified based on axioms such as [F1] or [F2].

Triangles formed by three concept nodes (T2) represent
the interaction of relations between thematic concepts. The
concept relations that will be used in the following form a
small range of relations that have been studied in more
detail in the context of semantic networks and description
logics. The constraint-based description of the conceptual
relations presented below is not meant to replace other
formalizations of conceptual systems. Rather, it is intro-
duced to show which aspects of taxonomic knowledge can
be exploited by constraint-based reasoning involving
predicators. Correspondingly, we can assume that proc-
essing the system of thematic concepts can be done prior to
processing triangles involving domain nodes and that the
taxonomy is static while the other edges are processed. (Cf.
Haarslev, Lutz and Möller (1998) for a different approach
to integrating spatial constraint systems into description
logics.)

Triangles constituted by two concept nodes and one
domain node (T3) stand for the interaction of predicators
and the underlying taxonomy. Given that the taxonomy is
static, these triangles can be used to transfer information
between two predicator edges.

Composition tables for heterogeneous networks can be
partitioned according to the different kinds of triangles
within the constraint network.

(1) (2) (4) (3)
(1) structural relation (1) T1 (3) T4
(2) concept relation (2) T2 (4) T3
(3) predicator (3) T3 (1) T4
(4) converse predicator (1) T4 (2) T3

Table 1. Structure of a composition table for a network of
domain nodes and concept nodes. For example, the compo-
sition of a predicator (3) and a concept relation (2) yield a
predicator according to triangle type T3.

The common reasoning procedure for composition tables
demands the specification of a set of mutually exclusive
and commonly exhaustive binary relations. Such sets will
be defined for the different types of relations based on a
small set of primitive binary relations specified by axioms.
For the sake of brevity, I will call the mutually exclusive
and commonly exhaustive binary relations ‘atomic’ rela-
tions. They are atomic in the sense that they are sub-rela-
tion of every relation that they do not exclude and that is
discussed in this article. They need not be atomic relations
of a matching relation algebra.
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Structural Relations: Mereology

As the basis of demonstrating the general mechanisms, I
will take the simple system of mereological relations using
the same formalization as in Eschenbach (2001) (cf.
Simons 1987; Gotts, Gooday, and Cohn 1996; Varzi 1996;
Renz and Nebel 1999). The primitive relations are P
(standing for (improper) part) and O (overlap). P is reflex-
ive [A3] and a sub-relation of O [A1], O is symmetric [A2].

Defined relations are P–1, the converse of P, and the five
atomic relations equivalence EQ, proper part PP, its con-
verse PP–1, discreteness DR and proper overlap PO.

[Def1] P–1(x, y) ⇔def P(y, x)
[Def2] EQ(x, y) ⇔def P(x, y) ∧ P–1(x, y)
[Def3] PP(x, y) ⇔def P(x, y) ∧ ¬P–1(x, y)
[Def4] PP–1(x, y) ⇔def P–1(x, y) ∧ ¬P(x, y)
[Def5] DR(x, y) ⇔def ¬O(x, y)
[Def6] PO(x, y) ⇔def O(x, y) ∧ ¬P(x, y) ∧ ¬P–1(x, y)

[A1] ∀x y [P(x, y) ⇒ O(x, y)]
[A2] ∀x y [O(x, y) ⇒ O(y, x)]
[A3] ∀x [P(x, x)]

merrel

O

DR PO

P P-1

PP EQ PP-1

Figure 2. The system of primitive and defined mereologi-
cal relations.

Two rules of composition based on the primitive relations
define the composition table for the mereological relations.
They provide the basis for the inferences on constraint
triangles of type T1 in Figure 1 (cf. Eschenbach 2001).

[A4] ∀x y z [P(x, y) ∧ P(y, z) ⇒ P(x, z)]
[A5] ∀x y z [O(x, y) ∧ P(y, z) ⇒ O(x, z)]

Table 2 presents the composition table for mereological
relations derived from the above specification. Multiple
labels in a single cell are connected by disjunction. Corre-
spondingly, the cell in the second row and third column is
to be read as the theorem [T1].1 I use ‘~Rel’ to denote the
complement of relation ‘Rel’ (whereas ‘¬’ symbolizes
negation of propositions). This notion allows condensing
the presentation of the structure of the system of relations

                                      
1 The T in the label of the formula signals that the formula can be proven
based on the definitions and axioms (labeled with A) presented in this
article. An F signals that the formula is neither an axiom nor provable.

and of some composition tables. The symbol ‘merrel’ marks
cells that do not provide more information than that the
two objects are mereologically related.

[T1] ∀x y z [PO(x, y) ∧ PP(y, z) ⇒ (PO(x, z) ∨ PP(x, z))].

∨ DR PO PP EQ PP–1

DR merrel ~P–1 ~P–1 DR DR
PO ~P merrel PO PP PO ~P
PP–1 ~P PO PP–1 O PP–1 PP–1

EQ DR PO PP EQ PP–1

PP DR ~P–1 PP PP merrel
Table 2. Composition table for mereological relations.

The set of relations containing EQ, PP, PP–1, DR and PO is
sometimes called RCC-5, but notice that axiomatic specifi-
cations given by different authors can differ. The differ-
ences between such proposals are rooted in assumptions on
the domain structure and correspondingly concern the
existence of sums and parts. For example, the axiomatic
system [A1–5] and the Definitions [Def1–6] do not justify the
inference that overlapping objects share a part. However,
the principles employed here are valid, for example, in
Varzi’s (1996) system M and they are sufficient to prove
the commonly assumed composition table of RCC-5. The
ontological neutrality of the formalization presented in this
article permits its use in various areas independent of their
diverging structures (cf. Eschenbach 2001).

Predicators

Primitive Relations
The primitive predicators under consideration in this paper
are EW-IN, which is meant to express that the concept is
true with respect to every fragment of the object (every-
where in), and NW-IN, which is meant to express that the
concept is not true with respect to any fragment of the
object (nowhere in). Axiom [A6] expresses that EW-IN and
NW-IN exclude each other. Defined predicators that are
useful are SW-IN (the concept is true with respect to some
fragment; somewhere in), MIXED (there are fragments of
both kinds regarding the concept), and HOM (the object is
homogeneously regarding the concept). The atomic predi-
cators are EW-IN, NW-IN and MIXED.

[A6] ∀x Φ [EW-IN(x, Φ) ⇒ ¬NW-IN(x, Φ)]

[Def7] SW-IN(x, Φ) ⇔def ¬NW-IN(x, Φ)
[Def8] MIXED(x, Φ) ⇔def ¬NW-IN(x, Φ) ∧ ¬EW-IN(x, Φ)
[Def9] HOM(x, Φ) ⇔def ¬MIXED(x, Φ)
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Using EW-IN one can express that an object is completely
blue, a region is completely covered by water, or that the
car was in front of my house permanently during a period.
MIXED is meant to express that an object is partly blue and
has some other color as well, that the region is partly but
not completely covered by grass, or that the car was some-
time but not permanently in front of my house. The natural
inferences related to these explanations have to be
expressed by axioms on the composition of predicators and
mereological relations.

 

predicator

SW-IN HOM ~EW-IN

EW-IN MIXED NW-IN
Figure 3. The system of predicators.

Interaction of Predicators and Mereological
Relations
In some cases, it can be interesting to express truth at
fragments of objects that are not parts in the sense of the
formalized relation P. For example using SW-IN we can
express that a state holds at a single moment within a
period without including moments in the domain of time
periods (cf. Galton's (1990) discussion of states of motion
and states of position). For this reason, the formalism does
not justify certain inferences that might seem plausible at a
first glance. For example, given that Φ is true somewhere
in x, we are not justified to infer that x has a part for which
Φ  is true everywhere. However, every part should be a
fragment that is considered. As a consequence, everything
that has a mixed part regarding Φ  is mixed regarding
Φ  [A7]. Correspondingly, overlapping an object that com-
pletely is Φ is sufficient for being somewhat Φ [A8].

[A7] ∀Φ x y [P–1(x, y) ∧ MIXED(y, Φ) ⇒ MIXED(x, Φ)]
[A8] ∀Φ x y [O(x, y) ∧ EW-IN(y, Φ) ⇒ SW-IN(x, Φ)]

Since [A7] and [A8] interrelate objects and concepts, they
define the inferences for constraint triangles of type T4 in
Figure 1. Correspondingly, these principles determine three
composition tables as parts of Table 1. Table 3 specifies
the result of combining a mereological relation and a
predicator yielding another predicator. The symbol
‘predicator’ marks cells that do not provide more informa-
tion than that the two objects are related by a predicator.
Table 4 specifies how predicators and there converse
restrict the mereological relations between the objects. The
third derivable table relates converse predicators and
mereological relations yielding converse predicators. It is

not presented here since it can be derived via a simple
transformation from Table 3.

EW-IN MIXED NW-IN
DR predicator predicator predicator
PO SW-IN predicator ~EW-IN
PP–1 SW-IN MIXED ~EW-IN
= EW-IN MIXED NW-IN
PP EW-IN predicator NW-IN

Table 3. Composition table for mereological relations and
predicators.

EW-IN–1 MIXED–1 NW-IN–1

EW-IN merrel ~P–1 DR
MIXED ~P merrel ~P
NW-IN DR ~P–1 merrel

Table 4. Composition table for predicators yielding mere-
ological relations.

Concept Relations

The semantic relations between thematic concepts form the
major background knowledge that is needed to draw infer-
ences. If, for example, trees cover a region, then plants
cover it as well, but it is not wasteland. If an object is
partly made from aluminum, then it is (at least) partly
made from metal and not completely wooden. These infer-
ences are due to the assumption that being covered by trees
is a special case of being covered by plants, and that
wasteland excludes plant coverage. Correspondingly, it is
assumed that aluminum is a kind of metal and that metal
and wood are distinct kinds of material.

To specify how these kinds of inferences work for the
predicators introduced above, I first have to introduce a set
of fundamental taxonomic relations and define the set of
atomic relations used in the presentation of the composi-
tion tables. Based on three primitive relations I will define
15 atomic concept relations. 8 of these relations identify
universal or inconsistent concepts.

The specification of the concept relations does not make
any assumption regarding the ontological nature of con-
cepts other than captured in the interaction of a specializa-
tion hierarchy and concept opposition. It is neutral regard-
ing the question whether identity of concepts is a matter of
extension or intension.

Primitive Relations
The central relations between concepts are, on the one
hand, the two directions of the ordering relations in the
subsumption hierarchy, and, on the other hand, the sym-
metric relations of exclusion and exhaustion, which are
two aspects of concept negation. The following informal
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explanation of these relations should be interpreted relative
to the more common area of heterogeneous predication of
the type ‘instance-of’. Since in the current approach a
predicator mediates the application of a concept to an
entity, these informal descriptions will be substantiated in
the specification of the interaction of concepts and predi-
cators in the next section.

A concept Φ is sub-ordinate to another concept Ψ (sym-
bolized as ‘sub(Φ , Ψ)’) if Φ cannot apply without Ψ also
applying. A concept Φ  is super-ordinate to a concept Ψ
(symbolized as ‘sup(Φ , Ψ)’) if Φ applies whenever Ψ ap-
plies. Two concepts Φ , Ψ exclude each other (symbolized
as ‘excl(Φ , Ψ)’) if they cannot apply to the same object.
Finally, two concepts Φ, Ψ commonly exhaust the domain
of objects (symbolized as ‘exh(Φ , Ψ)’) if to any object at
least one of them applies.

These relations are sufficient for characterizing (Boo-
lean) concept constructors, such as ‘conjunction’ (intersec-
tion, ∩) [F3–4], ‘negation’ (complement, –) [F5], and ‘dis-
junction’ (union, ∪ ) [F6–7], and terminological axioms,
such as concept inclusion and concept equality.1

[F3] ∀Φ Ψ Θ [sub(Φ, Ψ ∩ Θ) ⇔ sub(Φ, Ψ) ∧ sub(Φ, Θ)]
[F4] ∀Φ Ψ Θ [exh(Φ, Ψ ∩ Θ) ⇔ exh(Φ, Ψ) ∧ exh(Φ, Θ)]
[F5] ∀Φ [excl(–Φ, Φ) ∧ exh(–Φ, Φ)]
[F6] ∀Φ Ψ Θ [sup(Φ, Ψ ∪ Θ) ⇔ sup(Φ, Ψ) ∧ sup(Φ, Θ)]
[F7] ∀Φ Ψ Θ [excl(Φ, Ψ ∪ Θ) ⇔ excl(Φ,Ψ) ∧ excl(Φ,Θ)]

The relation sup can be defined to be the converse of sub
[Def10], while sub, excl and exh are taken here as primitive
relations. The four relations sub, sup, excl, and exh will be
called ‘basic concept relations’ in the following.

[Def10] sup(Φ, Ψ) ⇔def sub(Ψ, Φ)

According to the intended interpretation of the concept
relation, sub is reflexive [A9] and transitive [A12], and excl
and exh are symmetric [A10], [A11]. Furthermore, if Φ  is
sub-ordinate to a concept that excludes Θ, then Φ excludes
Θ  [A13]. Similarly, if Φ is super-ordinate to a concept that
together with Θ is exhaustive, then Φ and Θ are exhaustive
[A14]. Finally, if Φ and Ψ are exhaustive, then Φ is super-
ordinate to any concept that excludes Ψ [A15].

[A9] ∀Φ [sub(Φ, Φ)]
[A10] ∀Φ Ψ [excl(Φ, Ψ) ⇔ excl(Ψ, Φ)]
[A11] ∀Φ Ψ [exh(Φ, Ψ) ⇔ exh(Ψ, Φ)]

                                      
1 These relations may not be sufficient to capture all relevant meaning
relations among the concepts. For example the complex structure of state
types might need further refinement corresponding to the quantificational
structure of natural language sentences. Nevertheless, capturing the lattice
structure is a mandatory aspect of representing meaning relations between
concepts (cf. for example Allen 1984: 130f.).

[A12] ∀Φ Ψ Θ [sub(Φ, Ψ) ∧ sub(Ψ, Θ) ⇒ sub(Φ, Θ)]
[A13] ∀Φ Ψ Θ [sub(Φ, Ψ) ∧ excl(Ψ, Θ) ⇒ excl(Φ, Θ)]
[A14] ∀Φ Ψ Θ [sup(Φ, Ψ) ∧ exh(Ψ, Θ) ⇒ exh(Φ, Θ)]
[A15] ∀Φ Ψ Θ [exh(Φ, Ψ) ∧ excl(Ψ, Θ) ⇒ sup(Φ, Θ)]

Relations Concerning Universal and Inconsistent
Concepts
There are different options for characterizing universal and
inconsistent concepts based on the primitive relations in-
troduced above. For example, a concept (Φ) is universal if
it is exhaustive by itself [T3]. More generally, a concept (Φ)
is universal if it is super-ordinate to a concept (Ψ) such that
Φ and Ψ are exhaustive [Def11]. As the current focus is on
the specification of concept relations, I will use the second,
relational form of characterizing universal and inconsistent
concepts. The relation symbol ‘U1’ will be used to express
that the first concept it combines with is universal [T4].
That the truth of U1(Φ, Ψ) is independent of the second
argument (Ψ) is enforced by axiom [A16]. U2 is its converse
relation [Def12] expressing that the second concept is uni-
versal [T5]. A third option of characterizing universal con-
cepts is that a concept is universal if it is super-ordinate to
any concept and forms an exhaustive pair with any concept
[T6]. In the given framework, this is ensured by [A16].

[Def11] U1(Φ, Ψ) ⇔def sup(Φ, Ψ) ∧ exh(Φ, Ψ)
[A16] ∀Φ Ψ Θ [U1(Φ, Ψ) ⇒ U1(Φ, Θ)]
[Def12] U2(Φ, Ψ) ⇔def U1(Ψ, Φ)
[T2] ∀Φ Ψ [U2(Φ, Ψ) ⇔ sub(Φ, Ψ) ∧ exh(Φ, Ψ)]

[Def13] U(Φ) ⇔def U1(Φ, Φ)
[T3] ∀Φ [U(Φ) ⇔ exh(Φ, Φ)]
[T4] ∀Φ Ψ [U(Φ) ⇔ U1(Φ, Ψ)]
[T5] ∀Φ Ψ [U(Ψ) ⇔ U2(Φ, Ψ)]
[T6] ∀Φ [U(Φ) ⇔ ∀Ψ [sup(Φ, Ψ) ∧ exh(Φ, Ψ)]]

In contrast to universal concepts, inconsistent concepts are
less commonly acknowledged. Nevertheless, I will outline
the system of concept relations involving inconsistent
concepts in a manner parallel to relations involving univer-
sal concepts. This parallels the approach in description
logics, where an inconsistent (bottom) concept is intro-
duced for formal reasons (cf. Baader et al. eds. 2003).
However, notice that this does not imply or presuppose the
existence of inconsistent concepts since the specification of
concept relations is ontologically neutral in the sense ex-
plained in Eschenbach (2001). The specification of these
relations is meant to provide a basis for uncovering incon-
sistencies in concept definitions. However, it can be aug-
mented by the assumption that no concept is inconsistent if
used in a context where this can be guaranteed.

A concept (Φ) that excludes itself cannot be realized on
any object and therefore is inconsistent [T8]. More gener-
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ally, if a concept (Φ) is sub-ordinate to a concept (Ψ) it
excludes, then it must be inconsistent [Def14]. This charac-
terization provides the basis for the relational characteriza-
tion of inconsistent concepts. The relation symbol ‘I1’ will
be used to express that the first concept in its argument list
is inconsistent [T9] and I2 for the converse relation [Def15]
expressing that the second concept is inconsistent [T10]. To
ensure this, I add the axiom [A17]. This also guarantees that
the third characterization of inconsistent concepts holds: if
a concept is inconsistent, then it is sub-ordinate to and
excludes every concept [T11].

[Def14] I1(Φ, Ψ) ⇔def sub(Φ, Ψ) ∧ excl(Φ, Ψ)
[A17] ∀Φ Ψ Θ [I1(Φ, Ψ) ⇒ I1(Φ, Θ)]
[Def15] I2(Φ, Ψ) ⇔def I1(Ψ, Φ)
[T7] ∀Φ Ψ [I2(Φ, Ψ) ⇔ sup(Φ, Ψ) ∧ excl(Φ, Ψ)]

[Def16] I(Φ) ⇔def I1(Φ, Φ)
[T8] ∀Φ [I(Φ) ⇔ excl(Φ, Φ)]
[T9] ∀Φ Ψ [I(Φ) ⇔ I1(Φ, Ψ)]
[T10] ∀Φ Ψ [I(Ψ) ⇔ I2(Φ, Ψ)]
[T11] ∀Φ [I(Φ) ⇔ ∀Ψ [sub(Φ, Ψ) ∧ excl(Φ, Ψ)]]

If a concept is neither universal nor inconsistent, I will
label it with C (contingent).

[Def17] C1(Φ, Ψ) ⇔def ¬I1(Φ, Ψ) ∧ ¬U1(Φ, Ψ)
[Def18] C2(Φ, Ψ) ⇔def C1(Ψ, Φ)

One could add the condition that no concept is inconsistent
(or universal) in order to restrict the number of atomic
relations between concepts. This is equivalent to assuming
that the relations excl and sub exclude each other [T12].
However, this would restrict the option of concept forma-
tion. Local problems of inconsistent concept specifications
would result in the global problem of an inconsistent
knowledge base. Therefore, the following description
allows the introduction of inconsistent (and universal con-
cepts) leaving it to the formalism and the inference mecha-
nism to disclose them.

[T12] ∀Φ [¬I(Φ)] ⇔ ∀Φ Ψ [excl(Φ, Ψ) ⇒ ¬sub(Φ, Ψ)]]

On the other hand, given the above framework, if a concept
is both universal and inconsistent, then every concept is
[T14]. In this case, local problems inescapably infect the
whole knowledge base. Correspondingly, the assumption
that no concept is both universal and inconsistent [A18]
reduces the number of concept relations (by one) without
introducing avoidable complications. This assumption is
equivalent to assuming that no pair of concepts is related
by all the basic concept relations [T15].

[T13] ∀Φ Ψ [U1(Φ, Ψ) ∧ I1(Φ, Ψ) ⇔ U2(Φ, Ψ) ∧ I2(Φ,Ψ)]

[T14] ∃Φ [U(Φ) ∧ I(Φ)] ⇔ ∀Φ [U(Φ) ∧ I(Φ)]
[A18] ∀Φ Ψ [U1(Φ, Ψ) ⇒ ¬I1(Φ, Ψ)]
[T15] ∀Φ Ψ [¬(sub(Φ, Ψ) ∧ sup(Φ, Ψ) ∧ excl(Φ, Ψ) ∧

exh(Φ, Ψ))]

The four basic concept relations can be combined such that
they define 15 atomic concept relations. Eight of these
relations identify one of the concepts as inconsistent or
universal. According to example [Def19], eight atomic rela-
tions (U1U2, U1I2, U1C2, I1U2, I1I2, I1C2, C1U2, C1I2) can be
defined that involve at least one inconsistent or universal
concept (Figure 4). The remaining 7 atomic relations,
which are sub-relations of C1C2, involve contingent con-
cepts and are discussed in the next subsection.

[Def19] U1I2(Φ, Ψ) ⇔def U1(Φ, Ψ) ∧ I2(Φ, Ψ)
[Def20] C1C2(Φ, Ψ) ⇔def C1(Φ, Ψ) ∧ C2(Φ, Ψ)

Two inconsistent concepts are related by I1I2, which is an
equivalence relation that supports inferences based on
substitution as demonstrated in [T16], where REL can be
replaced by any concept relation defined in this article. The
same is true for U1U2. This can motivate to take them as
special cases of identity, allowing for at most one incon-
sistent and on universal concept. The formalism presented
here does neither prohibit nor enforce this additional
assumption.

[T16] ∀Φ Ψ Θ [I1I2(Φ,Ψ) ⇒ (REL(Φ,Θ) ⇔ REL(Ψ,Θ))]
[T17] ∀Φ Ψ Θ [U1U2(Φ,Ψ) ⇒ (REL(Φ,Θ) ⇔ REL(Ψ,Θ))]

exhexcl sub sup
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sup
U1

exh
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I2

exh
~excl
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U1U2

exh
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C1U2

C1C2

C1C2

 conrel

Figure 4. The system of concept relations for inconsistent
or universal concepts

Table 5 summarizes the composition of atomic concept
relations involving universal and inconsistent concepts. It
is derived from the definitions and axiom [A18]. An empty
cell signals that the two relations specified by the row and
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the column cannot be consistently composed. The last line
and the last column represent the composition with any of
the relations defined in the next section. Correspondingly,
Table 6 below can be understood as an elaboration of the
rightmost, bottommost cell in Table 5.

∨ U1U2 U1I2 U1C2 I1U2 I1I2 I1C2 C1U2 C1I2 C1C2

U1U2 U1U2 U1I2 U1C2

I1U2 I1U2 I1I2 I1C2

C1U2 C1U2 C1I2 C1C2

U1I2 U1U2 U1I2 U1C2

I1I2 I1U2 I1I2 I1C2

C1I2 C1U2 C1I2 C1C2

U1C2 U1U2 U1I2 U1C2

I1C2 I1U2 I1I2 I1C2

C1C2 C1U2 C1I2 C1C2

Table 5. Composition table for concept relations, part 1.

Relations between Contingent Concepts
The remaining seven concept relations that can be defined
as combinations of the basic concept relations and their
negations are named in the list of definitions below. same
expresses that two concept definitions are equivalent.
negate relates a concept and its negation. free expresses that
two concepts are not related by any of the relations sub,
sup, excl and exh. The remaining four relations are the
proper versions of the four basic concept relations.

C1C2
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~sup
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exh
~sup
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Figure 5. The system of concept relations for consistent
and non-universal concepts.

[Def21] same(Φ, Ψ) ⇔def sub(Φ, Ψ) ∧ sup(Φ, Ψ) ∧
¬excl(Φ, Ψ) ∧ ¬exh(Φ, Ψ)

[Def22] negate(Φ, Ψ) ⇔def ¬sub(Φ, Ψ) ∧ ¬sup(Φ, Ψ) ∧
excl(Φ, Ψ) ∧ exh(Φ, Ψ)

[Def23] free(Φ, Ψ) ⇔def ¬sub(Φ, Ψ) ∧ ¬sup(Φ, Ψ) ∧
¬excl(Φ, Ψ) ∧ ¬exh(Φ, Ψ)

[Def24] p-sub(Φ, Ψ) ⇔def sub(Φ, Ψ) ∧ ¬sup(Φ, Ψ) ∧
¬excl(Φ, Ψ) ∧ ¬exh(Φ, Ψ)

[Def25] p-sup(Φ, Ψ) ⇔def ¬sub(Φ, Ψ) ∧ sup(Φ, Ψ) ∧
¬excl(Φ, Ψ) ∧ ¬exh(Φ, Ψ)

[Def26] p-excl(Φ, Ψ) ⇔def ¬sub(Φ, Ψ) ∧ ¬sup(Φ, Ψ) ∧
excl(Φ, Ψ) ∧ ¬exh(Φ, Ψ)

[Def27] p-exh(Φ, Ψ) ⇔def ¬sub(Φ, Ψ) ∧ ¬sup(Φ, Ψ) ∧
¬excl(Φ, Ψ) ∧ exh(Φ, Ψ)

The composition table (Table 6) can be derived from the
axioms [A12]–[A15] and the definitions of the concept rela-
tions.

∨ p-sub same p-sup free p-exh negate p-excl

p-sup

same
p-sup
p-sub
free

p-exh

p-sup p-sup
p-sup
free

p-exh
p-exh p-exh

p-sup
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p-excl
p-exh
negate

same p-sub same p-sup free p-exh negate p-excl

p-sub p-sub p-sub

same
p-sup
p-sub
free

p-excl

p-sub
free

p-excl

p-sub
free

p-excl
p-exh
negate

p-excl p-excl

free
p-sub
free

p-exh
free

p-sup
free

p-excl
C1C2

p-sub
free

p-exh
free

p-sup
free

p-excl

p-exh p-exh p-exh

p-sup
free

p-excl
p-exh
negate

p-sup
free

p-exh

p-sup
p-sub
free

p-exh
same

p-sup p-sup

negate p-exh negate p-excl free p-sub same p-sup

p-excl

p-sub
free

p-excl
p-exh
negate

p-excl p-excl
p-sub
free

p-excl
p-sub p-sub

same
p-sup
p-sub
free

p-excl

Table 6. Composition table for concept relations, part 2.

Interaction of Concept Relations and Predicators
The specification of the interaction between predicators
and concept relations define the inferences for constraint
triangles of type T3 in Figure 1. It is guided by the in-
tended interpretations. If Φ is true for every fragment of x
and sub-ordinate to Ψ, then Ψ is true for every fragment of
x as well [A19]. For example, if a bowl is completely made
from aluminum, then it is completely metallic. If Φ is not
true for any fragment of x and super-ordinate to Ψ, then Ψ
is not true for any fragment of x either [A20]. Thus, if a cup
does not have a metallic fragment, then it does not have a
fragment of aluminum as well. If Φ  is not true for any
fragment of x, and if Φ  and Ψ are exhaustive, then Ψ is
true for every fragment of x [A21]. Correspondingly, if
region B (from the introductory example) does not have
dry land, then it is completely covered by water. If Φ is
true for every fragment of x and excludes Ψ, then Ψ is not
true for any fragment of x [A22]. Thus, a bowl that is com-
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pletely made from aluminum does not have wooden frag-
ments. Furthermore, inconsistent concepts are not true for
any fragment [A23], and universal concepts are true for
every fragment [A24].

[A19] ∀x Φ Ψ [EW-IN(x, Φ) ∧ sub(Φ, Ψ) ⇒ EW-IN(x, Ψ)]
[A20] ∀x Φ Ψ [NW-IN(x, Φ) ∧ sup(Φ, Ψ) ⇒ NW-IN(x, Ψ)]
[A21] ∀x Φ Ψ [NW-IN(x, Φ) ∧ exh(Φ, Ψ) ⇒ EW-IN(x, Ψ)]
[A22] ∀x Φ Ψ [EW-IN(x, Φ) ∧ excl(Φ, Ψ) ⇒ NW-IN(x, Ψ)]
[A23] ∀x Φ Ψ [I2(Φ, Ψ) ⇒ NW-IN(x, Ψ)]
[A24] ∀x Φ Ψ [U2(Φ, Ψ) ⇒ EW-IN(x, Ψ)]

The composition table for relations involving universal and
inconsistent concepts (Table 7) can be derived from [A23]
and [A24]. Axioms [A19]–[A22] are substantial for deriving
the composition table for the other atomic concept relations
(Table 8). The symbol ‘pred’ marks cells that do not pro-
vide more information than that the two objects are related
by a predicator.

∨ U1U2 U1I2 U1C2 I1U2 I1I2 I1C2 C1U2 C1I2

EW-IN EW-IN NW-IN pred EW-IN NW-IN

MIXED EW-IN NW-IN

NW-IN EW-IN NW-IN pred EW-IN NW-IN

Table 7. Composition table for predicators and concept
relations, part 1.

same p-sup p-sub free p-excl p-exh negate

EW-IN EW-IN pred EW-IN pred NW-IN pred NW-IN

MIXED MIXED ~EW-IN SW-IN pred ~EW-IN SW-IN MIXED

NW-IN NW-IN NW-IN pred pred pred EW-IN EW-IN

Table 8. Composition table for predicators and concept
relations, part 2.

The axioms [A19]–[A24] furthermore lead to the table of
restrictions on concept relations based on predications
(Table 9).

∨ EW-IN MIXED NW-IN

EW-IN–1
U1U2 U1C2

C1U2 same p-sup
p-sub free p-exh

U1C2 p-sup free
p-exh

U1I2 U1C2 C1I2
p-sup free p-excl

p-exh negate

MIXED–1 C1U2 p-sub free
p-exh

C1C2 C1I2 p-sup free
p-excl

NW-IN–1
I1U2 I1C2 C1U2
p-sub free p-excl

p-exh negate

I1C2 p-sub free
p-excl

I2I2 I1C2 C1I2
same p-sup p-sub

free p-excl

Table 9. Disjunctive composition table for predicators
yielding concept relations.

Table 10 gives the conjunctive version of this table, since
in this case, the conjunctive form presents the inference
patterns more clearly. In conjunctive composition tables
multiple labels in a single cell are connected by conjunc-

tion. Correspondingly, the cell in the first row and second
column is to be read as the theorem [T18].

[T18] ∀x Φ Ψ [EW-IN–1(Φ, x) ∧ MIXED(x, Ψ) ⇒
(¬excl(Φ,Ψ) ∧ ¬sub(Φ,Ψ))].

∧ EW-IN MIXED NW-IN
EW-IN–1 ~excl ~excl ~sub ~sub
MIXED–1  ~excl ~sup C1C2 ~sub ~exh
NW-IN–1 ~sup ~exh ~sup ~exh

Table 10. Conjunctive composition table for predicators
yielding concept relations.

You may have noticed that every cell of Table 9 includes
the relation free. This corresponds to the fact that from pure
observation of the applicability of concepts to objects and
their fragments we cannot deduce dependencies between
concepts. Observations can lead only to the elimination of
potential dependencies.

Where Inferences End

The predicators can be seen as an interface between
knowledge and inferences at the level of structural rela-
tions on the one hand and at the level of thematic concepts
on the other hand. Thus, we should look whether this can
lead to inference chains that jump back and forth between
the two levels based on a small set of information units.
However, the composition tables provide enough informa-
tion to find that this cannot be the case.

First, the composition of predicators and their converse
relations leading to mereological relations (Table 4) shows
that this type of inferences can in no case exclude the
option that the two entities are disjoint. For example, from
knowing that objects share a color or that regions share an
owner we cannot conclude that they overlap. Furthermore,
if we cannot exclude that two objects are disjoint, we can-
not draw inferences regarding concept assignment between
them (cf. Table 3). For example, if we know that two
objects are disjoint and that one of them is completely
green, we cannot infer anything about the color of the other
object. Consequently, inferences on concept assignment
can be triggered on the mereological level when we can
conclude that two objects overlap. However, in the current
framework this information cannot be derived from con-
cept assignment.

Second, the composition of converse predicators and
predicators leading to concept relations in Table 9 shows
that we cannot exclude the relation free on the basis of
predicator information. Two concepts are related by free if
they are completely independent from each other. For
example, the concepts ‘red’ and ‘owned by me’ are related
by free, since I own both red things and non-red things and
there are both red things and non-red things that are not
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owned by me. In addition, two concepts related by free do
not lead to interesting inferences in connection to the
predicators, as obvious in Table 8. As a consequence,
inferences on concept assignment can be triggered on the
conceptual level only if two concepts are not related by
free. And, similar to the case before, this information can-
not be derived from concept assignment.

These observations are not bound to the general idea of
connecting knowledge about object structure and knowl-
edge about concepts by predicators but relative to the
choice of predicators presented here. To overcome the first
restriction, we could add two primitive predicators to
express the facts that outside a region the predicate applies
everywhere or does not apply at all. The second predicator
would be useful, for example, for expressing that John
does not own any region other than region C. In this case,
any region owned by John must be part of region C.

Conclusion

The predicators introduced above present a simple set that
fits to the structural relations presented on the level of
objects. More sophisticated systems of structural relations
in the domains of time or space can stimulate the use of
more elaborated sets of predicators (cf. Eschenbach 1999).
The basic mechanisms of predicator-based inferences and
the basic concept relations they interact with are the same.
Furthermore, the specification of the interaction of predi-
cators with structural relations and concept relations can
easily be embedded in constraint-based reasoning systems.

Constraint-propagation based on composition tables is
known as an efficient approach to solve certain reasoning
task for systems of binary relations. The discussion of
specific relation systems has focused on temporal and
spatial relations. However, as demonstrated above, the
constraint approach can be used for reasoning about rela-
tions between different sorts of objects in the same manner.

The specification of the constraint networks for objects
and concepts includes a constraint-based approach to con-
ceptual reasoning. However, the application of the
approach to predicators does not require that the same
reasoning technique be used for deriving consistency in
other parts of the network. The specification rather tells
which relations between concepts can be exploited for
reasoning about (homogeneous) predicators and how.
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