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Abstract

Possible-world semantics are provided for Parikh’s
relevance-sensitive model for belief revision. Having
Grove’s system-of-spheres construction as a base, we
consider additional constraints on measuring distance
between possible worlds, and we prove that, in the pres-
ence of the AGM postulates, these constraints character-
ize precisely Parikh’s axiom (P). These additional con-
straints essentially generalize a criterion of similarity
that predates axiom (P) and was originally introduced
in the context of Reasoning about Action. A by-product
of our study is the identification of two possible read-
ings of Parikh’s axiom (P), which we call tisrong and

the weak versions of the axiom. An interesting feature
of the strong version is that, unlike classical AGM be-
lief revision, it makes associations between the revision
policies ofdifferent theories.

I ntroduction

Much of the work in the field of Belief Revision is based on
the classical work of Alchourron, Gardenfors and Makin-
son, (Alchourron, Gardernfors, & Makinson 1985), that has
given rise to a formal framework for studying this process,
commonly referred to as th&GM paradigm. Within the
AGM paradigm there are two constituents that are of partic-
ular interest for this paper. The first is the set of rationality
postulates for belief revision, known as théM postul ates
(Alchourron, Gardernfors, & Makinson 1985). The second
is a special kind of preorder on possible worlds, callegsa
tem of spheres, based on which Grove defined a constructive
model for belief revision; Grove has shown in (Grove 1988)
that the AGM postulates are sound and complete with re-
spect to his system-of-spheres semantics.

Studying the AGM paradigm, Parikh (Parikh 1999) ob-
served that is it rather liberal in its treatment of the notion of
relevance. More precisely, Parikh argues that during belief
revision a rational agent does not change her entire belief
corpus, but only the portion of it that is relevant to the new
information. This intuition oflocal change, Parikh claims,
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is not fully captured by the AGM paradigm. To remedy this
shortcoming, Parikh introduced an additional axiom, named
(P), as a supplement to the AGM postulates. Loosely speak-
ing, axiom (P) says that when new informatipis received,
only part of the initial belief sef will be affected; namely
the part that shares common propositional variables with the
minimal language op. Parikh’s approach is also known as
thelanguage splitting model.

Although axiom (P) is just a first step towards captur-
ing the role of relevance in belief revisibnParikh’s work
has received considerable attention since the publication of
(Parikh 1999) (see for example (Chopra & Parikh 1999),
(Chopra & Parikh 2000), (Chopra, Georgatos, & Parikh
2001)). Yet, despite all the research on axiom (P), no se-
mantics for it have yet been formulated. This is the gap that
the present article aims to fill. We examine new constraints
on systems-of-spheres and, building on Grove's result, we
prove that in the presence of the AGM postulates, axiom (P)
is sound and complete with respect to these new semantic
constraints.

What is particularly pleasing about our result is that the
new constraints on systems of spheres are in fact not new at
all; they essentially generalize a very natural condition that
predates axiom (P) and has been motivated independently by
Winslett in the context of Reasoning about Action (Winslett
1988). This connection between Belief Revision with Rea-
soning about Action further confirms intuitions about the re-
lationship between the two areas (see (Peppas & Wobcke
1992), (Peppas 1994), and (Peppas, Foo, & Nayak 2000)).

In the course of formulating semantics for axiom (P) we
observed that there are in fact two possible readings of this
axiom, which we call thestrong and theweak versions of
(P). We present both these versions herein and we show that
the strong version of (P) brings with it a new feature in the
picture of classical AGM revision: it makes associations be-
tween the revision policies dlifferent theories.

The outline of the paper is as follows. We first present
some background material on the AGM paradigm and the

"Work on relevance in general in Artificial Intelligence has been
ongoing for a while. A comprehensive collection of papers dealing
with relevance could be found in (AIJ 1997).
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language splitting model (first three sections). The crucial
axiom (P) is then examined in greater detail to fully flesh
out its possible readings (4th section). We proceed with the
formulation of semantics for axiom (P). For ease of expo-
sition and clarity, we start by focusing on the special case
of “opinionated” agents, that is, agents whose belief set is a
consistent complete theory (5th section). Then we consider
the general case of incomplete theories (6th section). The
last section contains some concluding remarks.

Formal Preliminaries

Throughout this paper we work with a finite set of propo-
sitional variables? = {p1,...p.n}. We defineL to be the
propositional language generated fradt(using the stan-
dard boolean connectives V, —, — and the special sym-
bols T, 1) and governed by classical propositional logic

A sentencep € L is contingent iff t/ o andl/ —p. For a
set of sentenceB of £, we denote byCn(T") the set of all
logical consequences bf i.e.,Cn(I') = {p € L: T+ p}.
We shall often writeC'n(p1, o, - . ., ©n), for sentences,
©2, .-+, ¢n, as an abbreviation @n({p1, Y2, ..., on})-

AtheoryT of L is any set of sentences 6fclosed under
F,i.e.,7=Cn(T). Inthis paper we focus only aonsistent
theories. Hence from now on, whenever the term “theory”
appears unqualified, it is understood that it refers to a con-
sistent theory. We denote the set of all consistent theories
of L by K. A theoryT of L is complete iff for all sen-
tencesp € L, ¢ € T or - € T. We denote the set of all
consistent complete theories 6fby M .. In the context of

systems of spheres, consistent complete theories essentially(K*z)

play the role of possible worlds. Following this convention,
in the rest of the article we use the terms “possible world”
(or simply “world”) and “consistent complete theory” inter-
changeably. For a set of sentendesf £, [['] denotes the
set of all consistent complete theories®that containl".
Often we use the notatiop] for a sentence € £, as an
abbreviation of{}]. For a theoryl" and a set of sentences
T" of £, we denote byl" 4 I" the closure undér of T U T,
ie.,T+T = Cn(T UT). For a sentence € £ we often
write T+ ¢ as an abbreviation &f + {¢}.

In the course of this paper, we often considablan-
guages of £. Let P’ be a subset of the set of proposi-
tional variablesP . By £ we denote the sublanguage of
L defined over”’. In the limiting case wheré’ is empty,
we takeL” to be the language generated by L and the
boolean connectives. Fora sublangudgef £ defined over
a subset”’ of P, by £’ we denote the sublanguage defined
over the propositional variables in the complemen®éi.e.,

£ =£P="), For a sentencg of £, by £, we denote the
minimal sublanguage of within which x can be expressed
(i.e.,L, contains a sentence that is logically equivaleng to
and moreover ngroper sublanguage of ,, contains such
a sentence). Finally we note that in the forthcoming dis-

%It is not hard to verify that for every, £, is unique — see
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cussion, we often project operations defined earlier for the
entire languagé, to one of its sublanguagés. When this
happens, all notation will be subscripted by the sublanguage
L'. For example, for a set of sentendésc £, the term
Cn./(T') denotes the logical closure &fin £’. Similarly,
[[']z- denotes the set of all maximally consistent supersets of
I'in £'. When no subscript is present, it is understood that
the operation is relevant to the original langudge

The AGM Paradigm

Much research in belief revision is based on the work of Al-
chourron, Gardenfors and Makinson (Alchourron, Gardern-
fors, & Makinson 1985), who have developed a research
framework for this process, known as tA&M paradigm.

In this section we shall briefly review two of the main mod-
els for belief revision within the AGM paradigm; the first is
based on a set ghtionality postulates, and the second on a
preorder on worlds known assgstem of spheres.

The AGM Postulates

In the AGM paradigm, belief revision is modeled as a func-
tion x« mapping a theory” and a sentence to the theory

T'x . In this paper we assume that the thebrgind the sen-
tencep areindividually consistent. Alchourron, Gardenfors,
and Makinson have proposed the following set of postulates
for belief revision:

(K*¥1) T % ¢is atheory ofL.
p €T *o.
(K*3) TxpCT+o.
(K*4) If ~p ¢ T thenT + o C T x .
(K*5) T x¢@=LIiff - —p.
(K*6) If Fp—ythenT xp =T x).
(K7) T (p M%) C (T % 0) + .
(K8) If pgTxpthen(T'xp)+¢v CTx(p A).

Systems of Spheres

Apart from axiomatic approaches to belief revision, a num-
ber of explicit constructions for this process have been pro-
posed. One popular construction is that proposed by Grove
(Grove 1988) based on a total preorder on possible worlds.

Definition 1 (Grove 1988) Let T be a theory of £, and St

a collection of sets of possible worldsi.e., Sr C oMc, St
is a system of spheres centered|@n iff the following con-
ditions are satisfied: 3

(Parikh 1999) for details.

3We include condition (S4) for reasons of comprehensiveness,
even though in the finite propositional case, this condition is redun-
dant.



(S1) St istotally ordered with respect to set inclusion; In order to block revision functions like; Parikh intro-

thatis, if V,U € SpthenV CUor U C V. duced in (Parikh 1999) a new axiom, named (P), as a supple-
) . i ment to the AGM postulates. The main intuition that axiom

(82) Thesmallest spherein St is[T7]; thatis, [T] € S, (P) aims to capture is that an agent's beliefs can be subdi-
andif V€ Sy then[T] C V. vided into disjoint compartments, referring to different sub-

ject matters, and that when revising, the agent modifies only

(S3) M, c Sr(andtherefore M isthelargest sphere the compartment(s) affected by the new information:

in ST)

(S4) For every ¢ € £, if thereisany spherein Sy inter- P) HT= Cn(x, %) wherey, ¢ are sentences of dis-
secting [¢] then there is also a smallest sphere in joint sublanguageg£ 1, Lo respectively, ando_ €
St intersecting [¢]. L1, thenT % ¢ = (Cng, (x)op) + ¢, whereo is a

revision operator of the sublanguage.

For a system of sphere$; and a sentence < L, the , . : . .
smallest sphere Sz intersecting|y] is denotedC'r ()4 It was shown in (Parikh 1999) that (P) is consistent with

With any system of sphereS, Grove associates a function  theé AGM postulates, (K*1) - (K*6) (known as theasic
fri Lo oM defined as follows: AGM postulates). The results presented later in this paper

entail that (P) is in fact consistent with all eight AGM pos-
tulates (K*1) - (K*8).
fr(e) =[e] N Cr(p)

Grove uses the system of sphefeand its associated func- Two Readings of Axiom (P)

tion fr, to define constructively the process of revisifig

by means of the following condition: Before proceeding with the formulation of semantics for ax-

iom (P), it is worth taking a closer look at it.

(8 Txe=Nfr(p) Consider two sentences ¢ € £, such thatl, N L, =
(), and letT" be the theoryl’ = Cn({x,}). Moreover, let

Grove proved that the class of functions generated from sys- ¢ be any sentence ifi,. According to axiom (P), anything
tems of spheres by means of (S*) is precisely the family outside£, will not be affected by the revision & by ¢.
of revision functions satisfying the eight AGM postulates This however is only one side of axiom (P). The other side
(K*1) - (K*8). One of the main aims of this paper is to  concerns the part of the thedfythatis related top, which
characterize the subclass of systems of spheres which cor-according to axiom (P) will change @n . (x)oy, whereo
respond (via (S*)) to revision functions that, in addition to  is a revision function defined over the sublangudge It is

(K*1) - (K*8), also satisfy axiom (P) (see below). this second side of axiom (P) that needs closer examination.
Axiom (P) is open to two different interpretations. Ac-
Relevance-Sensitive Belief Revision cording to the first reading, which we call tveak version
of axiom (P), the revision function that modifies the rele-
When revising a theor{" by a sentence it seems plau- vant part ofl" — call it thelocal revision function — mayary
sible to assume that only the beliefs that eglevant to ¢ from theory to theory, even when the relevant gart(y)

should be affected, while the rest of the belief corpus is un- stays the same. To give a concrete exampleqéfc be
changed. For example, an agent that is revising her beliefs propositional variables, It be the theoryi” = Cn(aAb, ¢),
about planetary motion is unlikely to revise her beliefs about and letT’ be the theoryT’ = Cn(a A b, —c). Denote byl
Malaysian politics. This simple intuition is not fully cap-  the sublanguage defined over, b} and by, the sublan-
tured in the AGM paradigm. To see this consider the trivial guage defined ovefc}. Moreover, lety be the sentence

revision function«; defined below: =-a V —b. The part ofl and7” that is relevant t@ (in the
sense of the language-splitting model) is the same for both
T + ¢ if ¢ is consistent with" theories, namely'n(a A b). Nevertheless, according to the
T = { Cn(y) otherwise weak version of axiom (P), the local revision operatoisnd

o’ that modify the twaidentical relevant parts of” andT"’
respectively, may very wediffer. For example, it could be
the case that'n., (a A b)o(—a V =b) = Cnz, (—a A D), and
Cng,(aAb)o' (maV—b) =Cng, (aA—b), from which it fol-
lows thatT x ¢ = Cn(—a, b, ¢), andT’ x ¢ = Cn(a, —b, —c).
In other words, the weak version of axiom (P) allows the lo-
cal revision function to beontext-sensitive. In the scenario
“In the limiting case wherep is inconsistent, Grove defines ~ described above, the presence @i T' leads to a local revi-
Cr(y) to be the setM . However, since in this paper we only  Sion functiono for Cn .z, (aAb) that produces'nz, (—a Ab)
consider revision byonsistent sentences, these limiting cases are  as the result of revising bya v —b; on the other hand, the
irrelevant. presence of-c in T", induces a local revision functiosf

It is not hard to verify that, satisfies all the AGM pos-
tulates, and yet it has the rather counter-intuitive effect of
throwing awayall non-tautological beliefs if” whenever
the new informationp is inconsistent withl", regardless of
whether these beliefs are relateddor not.
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for Cng, (a A b) that produce€'n ., (a A —b) for the same
input. Therefore, while (or —¢) remains unaffected during
the (global) revision by-a vV —b (since it is not relevant to
the new information), its presence influences the way that
the relevant part of the theory is modified.

To prevent such an influence we need to resort to the
strong version of axiom (P) which makes the local revision
functiono context-independent. According to the strong in-
terpretation of (P), for any two theorig€s= Cn(x, ) and
T' = Cn(x, "), such thatC, N Ly = L, N Ly =0, there
exists asingle local revision functiore such thatl” x ¢ =
(Cne, (x)op) +¢ andI” ¢ = (Cng, (x)op) +¢', forany
p e Ly.

For (R2), let us denote Ly’ the theoryCn(x). Firstly no-
tice thatT” x ¢ is equal to the closure i of Cn. (x)op
i.e.,T" x ¢ = Cn(Cng, (x)op). Indeed,T” can be written
asT’' = Cn(x, v VvV —) and therefore, by (the strong ver-
sion of) axiom (P).I" x ¢ = (Cng, (x)op) + (¢ V ) =
Cn(Cnc, (x)op). ConsequentyIx ¢ = (Cn(x) * @) + 1),
and moreover ¢, (y)«, N Ly = 0. Therefore(T x ) N L,
=(Cn(x) * ¢) N L, as desired.

(<)

Assume that satisfies (R1) and (R2). L&t be a theory
of £ such thafl’ = Cn(x, v), wherex, v € LandL, N Ly
= (. As a first step in proving (P), we shall show that for
anyy € L,, the theoryl’ x ¢ is also split betweert, and

It should be noted that although axiom (P) is opento both £,,. Assume on the contrary that this is not the case for a
the weak and the strong interpretations, the discussion and particulary € £, . Then, as shown by Lemma-A in (Parikh

some results in (Parikh 1999) suggest that the strong ver-
sion of axiom (P) is intended. Following Parikh, we shall
also adopt the strong version of axiom (P) in this paper. To
make this assumption explicit and to avoid any ambiguity,
we make use of the following two conditions which together
are shown to be equivalent to the strong version of axiom

(P):

(R1) UWT=Cn(x,v), LyNLy=0,andy € L,, then
(T+xo)NL,=TNL,.
(R2) T =Cn(x,v), LyNLy=0,andp € L,, then

(T x @) N Ly =(Cn(x) * ) N Ly.

Condition (R1) is straightforward: when revising a theory
T by a sentence, the part ofT" that isnot related to ¢ is
not affected by the revision. Condition (R2) is what imposes
the strong version of axiom (P). To see this, consider a re-
vision functionx (which defines a revision policy fall the
theories of£), and letT’ = Cn(x, ) andT’ = Cn(x, ') be
two theories such that, N L, = £, N Ly = (. Consider
now any sentence € L£,. The relevant part te of 7" and
T’ is in both cases the same. Then, according to (R2), the
way that this relevant part is modified in bdthand T’/ is
also the same; namely, as dictated by the revision function
« itself when applied t@'n () (once again, notice thatis
defined for all theories, including, 77, and Cn(x)).

The following result shows that (R1) and (R2) are indeed
equivalent with the strong version of axiom (P).

Theorem 1 Let x be a revision function satisfying the AGM
postulates (K* 1) - (K*8). Then x satisfies (P) iff x satisfies
(R1) and (R2).

Proof.

(=)

Assume that satisfies (P). Lef” be a theory ofZ such
thatT = Cn(x, ), wherex,yp € L andL, N Ly = 0.
Consider now any sentenge € £,. By (P) it follows
thatT * ¢ = (Cnc, (x)op) + v, whereo is a revision op-
erator of£,. From the above, (R1) follows immediately.
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1999), there is a world such that both N £, andr N L,

areindividually consistent withl" x o, and yetr & [T * ¢].

Let a be the conjunction of literals i, that hold atr,

and similarly, let3 be the conjunction of literals iff ,, that
hold atr. Sincea is consistent withl” x ¢, from (K*7) and

(K*8) it follows that 7" * (¢ A ) = (T * ) + «. Therefore,
r & [T*(pAa)]. Consider now any world’ in [T« (¢ Aa)].

Clearly,7’ - «, and given that’ # r, it follows thatr’ -

-3. Since all worlds inT * (¢ A «)] satisfy—g it follows

that—0 € Tx(¢A«). Then, by (R1) we derive thats € T,

which again by (R1) entails that3 € T * ¢. This however
contradicts the fact that N £, is consistent withl™ x .

Hence we have shown that, given (R1), the thébBry p is

split betweenC, and.L,, forallp € L.

Continuing with the proof of condition (P), we defin¢o
be the following operator of , : for any theoryl”” of £, and
any sentence € L, T'oy = (Cn(T") xv) N L,. Itis not
hard to verify thab is indeed an AGM revision operator, i.e.,
it satisfies the postulates (K*1) - (K*8). Consider now any
sentence € £,.. We conclude the proof of this theorem by
showing thafl" x ¢ = (Cnz, (x)op) + 1.

Indeed, from (R2) it follows thaltZ"« ) N L, = (C'n(x) *
)N Ly, and therefore by the constructionaf( T« ) N L,
= Cng, (x)op. Moreover, sinceC, N Ly = 0, we derive
that (7% ) (1 £, = ((Cg, (x)op) + ¥) N L. On the
other hand, from (R1) we have thelt x ) N £, =T N L
= COn(x,¥) N Ly = ((Cng, (x)op) +¥) N Ly (the last
equation follows from the fact thdCn .z (x)op) isin L,
which in turn is disjoint from£,). Putting together the
above observations we notice that the two theofiés, ¢
and(Cnc, (x)op) + ¢ are identical when projected abh,
aswell as when projected on to its complemeft. Given
that, as shown earlieT; * ¢ is split betweerC, andL,, we
derive the desired identity; i.& x ¢ = (Cnz, (x)op) + 1°
]

The strong version of axiom (P) brings about a new fea-
ture in the picture of classical AGM revision:; it makes asso-

SNotice the use of (R2) in proving the strong version of axiom

(P).



ciations between the revision policies different theories.
None of the AGM postulates have this property — they all
refer to asingle theory T — making any combination of
revision policies on different theories permissible (as long
of course as each polidndividually satisfies the AGM ax-
ioms). This is no longer the case when (R2) (or the strong
version of (P)) is brought into the picture. This condition in-

According to condition (PS), the less a wortddiffers
from the initial belief setl” in propositional variables, the
closer it is to the center a$. Notice that condition (PS)
places no constraints on the relative order of worlds that are
Diff-incomparable. In other words, for two worldsandr’
such that neithebiff(T,r) c Diff(T,+") nor Diff(T,r") C
Diff(T, r), their relative order inSt is not constrained by

troduces dependencies between the revisions carried out on(PS).

different (overlapping) theories.

The Special Case of Complete Theories

Let us now turn to our main objective in this article, which is
to formulate system-of-spheres semantics for axiom (P). The
semantics will be developed progressively in two steps. In
the first step, undertaken in this section, we limit ourselves
to the first side of axiom (P), i.e., condition (R1). Moreover
we consider onlycomplete theories as belief sets. Then, in

It turns out that, in the special case of consistent complete
belief sets, condition (PS) is the counterpart of (R1) in the
realm of systems of spheres. Before however presenting the
formal result, let us consider intuitively why this might be
So.

Let St be a system of spheres centered[®hthat sat-
isfies (PS). Moreover lep be any consistent sentence that
contradictsT” (i.e., ¢ € T). The set ofp-worlds occupy
a territory in Sy that is disjoint from the centdfl’]. At the
outskirts of thisp-territory there are worlds that look very

the second step (next section), we generalize our results 10 gifferent from7". However, as we move closer to the center

arbitrary theories and we also bring (R2) into the picture.

The reason for this two-phase approach is mainly to in-
crease readability and enhance the motivation of the con-
cepts that will be introduced later. Conditions (R1) and (R2)

are quite independent of one another so it makes sense to

study them separately. Moreover, the characterization of
(R1) in terms of systems of spheres is much more intuitive

when confined to complete theories; once this characteriza-

tion is well understood for the special case, its generaliza-
tion, although not trivial, is easier to follow.

Let T' be a consistent complete theory, and gt be a
system of spheres centered [@f. The intended reading
of St is that it representsomparative similarity between
possible worlds i.e., the further away a world is from the
center ofSr, the less similar it is t¢7].° None of the condi-
tions (S1) - (S4) however indicateow similarity between
worlds should be measured. In (Peppas, Foo, & Nayak
2000) a specific criterion of similarity is considered, orig-
inally introduced in the context dReasoning about Action
with Winslett's Possible Models Approach (PMA) (Winslett
1988). This criterion, calle@MA's criterion of similarity,

of St the p-worlds that we meet agree with in progres-
sively more and more propositional variables. By the time
we reach the boundary of theterritory with the center of
S, all the o-worlds there agree witli" in every proposi-
tional variable outsid& .. Hence, the intersection of these
worlds (which by (S*) is the revision d¢f by ) also agrees
entirely withT outsideL,,; thus (R1).

The above intuitive explanation of the relationship be-
tween (PS) and (R1) is formally established with following
result:

Theorem 2 Let x be a revision function satisfying (K*1) -
(K*8), T' a consistent complete theory of £, and S the sys-
tem of spheres centered on [T'], corresponding to « by means
of (S*). Then x satisfies (R1) at 7" iff S satisfies (PS).

Proof.

(=)

Assume that« satisfies (R1) af’. Moreover assume that,

contrary to the theorem$St violates (PS). LetV be the

measures “distance” between worlds based on propositional smallest sphere i, that violates (PS). That isy is

variables. In particular, let, »’ be any two possible worlds
of £. By Diff(r, ) we denote the set of propositional vari-
ables that have different truth values in the two worlds i.e.,
Diff(r,r") ={p; € P :p; € randp; & r'}U {p; € P :
p; & r andp; € r'}. A system of sphereSy is aPMA sys-
temof spheresiff it satisfies the following condition (Peppas,
Foo, & Nayak 2000) (throughout this paper, the symhols
andr’ always represent consistent complete theories):
(PS) IfDiff(T,r) c Diff(T,r") then there is a sphere
V € St that containg but notr’.

perhaps “comparative plausibility” would have been a bet-
ter term in the present context. However we shall tolerate this
slight abuse of terminology mainly to comply with (Peppas, Foo,
& Nayak 2000).

the smallest sphere ¥ that contains a world-” for
which there exists another wortd such thaDiff(T, r') C

Diff(T, "), and moreover the smallest sphere containihg
call it U, is not a subset o¥ (and thereford” C U). Let

¢ be the conjunction of all the literalsn ' than are not in
T. Notice that fronDiff(T", »") C Diff(T, "), it follows that
¢ € 1. Moreover, it is easily verified thaf is the small-
est sphere irbr that intersect$y]. Indeed, assume on the
contrary that a sphere smaller thip call it V', contains a

world z satisfyingy, i.e., ¢ € z. Then clearlyDiff(T,r")

C Diff(T, z), and since”’ # z, it follows thatDiff(T,r’) C
Diff(T, z). HenceV’ violates (PS), which contradicts our
initial assumption thal” is the smallest sphere ifip that

A literal is a propositional variable or the negation of a propo-

sition variable.
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violates (PS). Therefor® is indeed the smallest sphere in
St intersectingy]. Consequently;” € [T x ¢]. Consider
now a literall € r”, such that ¢ T and! ¢ L,. Note
that sinceDiff(T, ') c Diff(T,r"), such a literal indeed
exists. Clearly thenyl € T', and—l ¢ T x ¢. This however
contradicts (R1) sincel ¢ L, and therefore it should have
remained unaffected from the revision py

(<)

Assume thatS satisfies (PS), and lgt, 1> be sentences in
L, such thafl’ = Cn(x,¢) andL, N Ly = (). Consider now
any sentence € £, and letr’ be any world inT" * ¢] i.e.,
¢ € r’ andr’ belongs to the smallest sphate-(¢) in St
that intersect$y|. Firstly we show thaDiff(7,r") C L,.
Assume on the contrary that there is a litdrad 7'N L,
such that ¢ r’. Letr” be the consistent complete theory
that agrees with' in all literals except. Clearly then, since
p er’ andl ¢ L, we derive thatp € r”’. Moreover, by the
construction of-”, Diff(T", ") C Diff(T,r’). Consequently,
by (PS), there exists a sphdrahat containg’ and does not
containr’. ThereforeV C Cr(y). This leads to a contra-
diction sinceV contains ap-world (namely,;r”’), and at the

2, ..., pn). Parikh has shown in (Parikh 1999) that for ev-
ery theoryT there is a uniqudinest T-splitting, i.e. one
which refine8 every otherT-splitting. We shall denote the
finestT-splitting of T" by F(T').

Using the notion of a finest-splitting, we define the dif-
ference between a (possibly incomplete) thebrgf £ and
aworldr as follows:

Definition 2 Let T be a consistent theory of £ (possibly in-
complete) and r a possible world. The difference Diff(T', r)
between T" and r is the following subset of P:

DIff(T, ) = | J{P' € F(T) : for somep € £, T + ¢ and
rk e}

It is not hard to verify that in the special case of a consis-
tent complete theory, the above definition dDiff collapses
to the one given in the previous section.

Notice that if7" is incomplete, then for any world com-
patible with 7" (i.e. w € [T7), Diff(T',w) = (. Moreover,
for any worldr, Diff(T',r) € U,, ¢y Diff(w, 7); the precise

same time it is smaller than the smallest sphere intersecting relationship betweeBiff(T, ) andDiff(w, r) for w € [T],

[¢]. HenceDiff(T,r") C L. This shows that all worlds’
in [T * ¢] agree withl" on everything outsidg ,,. Therefore
TNL,=(T*p)NL, asdesired. m

It is worth noting that in (Peppas, Foo, & Nayak 2000),

there exists a characterization of condition (PS) in terms of

epistemic entrenchments (Gardenfors & Makinson 1988).

Consequently, since by Theorem 2 (R1) is equivalent to
(PS), the results in (Peppas, Foo, & Nayak 2000) can be
used to provide a characterization of (R1) in terms of epis-

temic entrenchments.

As already mentioned in the introduction, what is quite
appealing about Theorem 2 is that it characterizes (R1),
not in terms of some technical non-intuitive condition, but
rather by a natural constraint on similarity between possi-
ble worlds, that in fact predates (R1) and was motivated in-
dependently in a different context (Winslett 1988). More-
over, as we will show in the next section, the essence of this
characterization of (R1) in terms of constraints on similar-
ity, carries over into the general case of incomplete belief

sets (albeit with some modifications).

The General Case

To elevate Theorem 2 to the general case, we first need to

extend the definition obiff to cover comparisons between
a worldr and an arbitrary, possiblyncomplete, theoryT'.
The generalization dDiff that we shall use herein takes into
account the notion of &'-splitting introduced by Parikh in
his language-splitting model (Parikh 1999).

Let T be a theory ofZ and Py, P, ..., P, a partition of
the setP of all propositional variables irL. We say that
{P, P,,...,P,} is aT-splitting iff there exist sentences

o1 e LD pye £, .., e £LP suchthafl = Cn(p,
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is given by the following result:

Theorem 3 Let T be a consistent theory of £ and r a pos-
sible world. Then, Diff(T,r) = (J{P’ € F(T) : for all
w € [T], P’ N Diff(w,r) # 0}.

Proof.

(LHS) C (RHS)

Assume thap € Diff(T,r). Then for someP’ € F(T),

p € P’ and for somep € £, T + ¢ andr F —p. Let

l1,...1, be the literals inc”" that hold inr. Clearly then,
Iy A+ Al F =, and therefore - -1y V- - - vV =l,,. From

this we derive that for allv € [T, sincew F ¢, there is at
least onel < k < n such thatw F —l;. Consequently, for
allw € [T], P’ N Diff(w, r) # 0.

(LHS) D (RHS)

Assume that for som&’ € F(T), P’ n Diff(w,r) # 0

forall w € [T]. Letly,...l, be the literals inc”" that
hold inr. Then for allw € [T]thereisal < j < n
such that-l; € w. Thereforel F =l V ---V =l,. Since

(=l V-V —l,) € £, it follows that P’ C Diff(T,r) as
desired. =

Condition (R1) and Systems of Spheres

Having generalize®iff, let us re-examine condition (PS)

for a system of spheresy related to a belief séf that is not

8A partition Z refines another partitiod’, if for every element
of Z there is a superset of it i’



necessarily complete. It turns out that in this case (PS) no
longer corresponds to (R1); in particular, (PS) is too strong.

To see this, consider the following counter-example. As-
sume thatl is built from the propositional variables b,
¢, d, and letT be the theonyT' = Cn(a < b,c < d).
Clearly, {{a, b}, {c,d}} is aT-split. Next, letSy be the
following system of spheres (represented as a total preorder
on worlds)?

abed abed

cd b _ abed abed
abed - abed - abed abed < abed
abed abed abed abed bed
abed abed e e

Itis not hard to verify that the revision functierinduced
by the above system of spherfg, satisfies (R1). At the
same time howevef violates (PS). In particular consider
the worldsr = {a,b, —~c,d} andr’ = {—a,b,c,—d}}. Al-
thoughDiff(T, r) = {¢,d} c Diff(T,r’) = {a,b,c,d}, the
two worldsr andr’ are equidistant from the center 8#-.

Despite its failure to generalize, (PS) should not be disre-
garded altogether. It can still serve as a guide in formulating
the appropriate counterpart(s) of (R1) for the general case;
as we prove later in this section, the two general conditions
(Q1) and (Q2) that correspond to (R1) are both in the spirit
of (PS) (and not surprisingly, they collapse to (PS) in the
special case of complete belief sets).

To formulate the conditions (Q1) and (Q2), we first need
to introduce some further concepts related to the notion of
distance between a world and an incomplete theory.

Consider a theor§" and letr be a world not compatible
with T i.e.,r & [T]. ClearlyDiff(T, r) # (. Is there another
world ' that differs fromT" on exactly the same proposi-
tional variables, i.e Diff(T,r) = Diff(T,r’)? If T is com-
plete, the answer is obviously “no”: for any set of proposi-
tional variablesP’, there can only bene world r such that
Diff(T,r) = P’. If howeverT is incomplete (i.e., [T] con-
tains more than one world), this is no longer the case. For
example, suppose that= Cn(a < b, ¢ < d) —wherea, b,
¢, d, are the propositional variables of the language — and let
r, v’ be the possible worlds = Cn({-a, b, c,d}), andr’ =
Cn({a,—b,c,d}). Itis not hard to see that, althougrand
r’ are different,Diff(T, r) = Diff(T,r’) = {a,b}. The two
worldsr andr’, have also another thing in common: they
agree on the propositional variablegtside Diff(7, ). We
call such worldsexternal T-duals (for the definition below,
recall thatP is the set of all propositional variables in the
language’):

Definition 3 Let r,r’ be possible worlds, and let T be a
theory of £. The worlds » and r’ are external T-duals
iff DIff(T",r) = Diff(T,»") and r N (P — Diff(T,r)) =
r' N (P — Diff(T,r")).

®Notice that in order to increase readability, in this example we

are representing worlds as sequences of literals rather than theories;

moreover, the negation of a propositional varighle denotedp.

Multiple T-duals (external anthternal ones as we will
see later) add more structure to a system of spheres, and ren-
der condition (PS) too strong for the general case. The possi-
bility of placing externall’-duals indifferent spheres, opens
up new ways of ordering worlds that still induce relevance-
sensitive revision functions without however submitting en-
tirely to the demands of (PS).

Let us elaborate on this point. Consider a system of
spheresSt centered on the theoffy, and letr, ' be any two
worlds such thabiff(T,r) C Diff(T,r). Theorem 2 tells us
that in the special case of complete theories, to ensure local
change (alias, condition (R1)) the wortdshould be placed
(strictly) closer to the centdfl’] of St thanr’. In the gen-
eral case however, and with the aid of exteffiaduals, one
can perhaps afford to be a bit more liberal about the location
of r; perhaps all that is needed is that at least one external
T-dualr” of  (and not necessarilyitself) be closer tdT]
thanr’. It turns out that, in fact, this is pretty much the case,
expect that the world” “covering” for r (in relation tor’)
is not just any externd’-dual of r but a very specific one:
it is the externall-dual ofr that agrees witl’ on all liter-
als inDiff(T, ). We shall call this external-dual ofr, the
r’-cover for r at T', and we shall denote it by (r, r').

Definition 4 Let T beatheoryof £, let r, r’ betwo possible
worlds such that Diff(T",») c Diff(T,r’), and let " be an
external T-dual of . The world r” is the r’-cover for r at
T iff v N Diff(T,r) = ' N Diff(T, ). We shall denote the
r’-cover for r at T by 97 (r, 7).

A simple example will help to clarify the above definition.
Suppose that the languageis built from the propositional
variabless, b, ¢, d, e, and letT" be the theor{l”’ = Cn(a < b,

b < ¢, d < e). Letr be the worldr = Cn(a, b, c,d, e)
andr’ the worldr’ = Cn(—a, b, —c,d, —e). The finestT-
splitting is {{a, b, c}, {d, e} }. Then according Definition 2,
Diff(T,r) ={a,b,c} andDiff(T,r") = {a, b, c,d,e}. Hence
Diff(T,r) < Diff(T,r"). The worldr has many external
T-duals likeCn(—a, —b, ¢, d, e), Cn(a,b,—c,d, e), etc. Yet
out of all these externdl-duals, only one is a’-cover forr
atT, namely the world} - (r, ") = Cn(—a, b, —c, d, e).

As mentioned earlier, the notion of “covering” will be
used to weaken condition (PS). In particular, consider the
condition (Q1) below:

(Q1) If Diff(T,r) C DIiff(T,r’) then there is a sphere
V € S that containg)r(r, r’) but notr’'.

Condition (Q1) formalizes the intuition mentioned earlier
about weakening (PS) with the aid of exterfiaduals. It
is not hard to show that (PS) entails (Q1), and that (Q1)
collapses to (PS) when the initial belief sétis complete.
Moreover, (Q1) istrictly weaker than (PS). To see this, con-
sider the first example in this section; the system of spheres
St satisfies (Q1) but violates (PS).

Yet despite all its nice properties, condition (Q1) in itself
does not suffice to guarantee local change; it seems that from
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something too strong for (R1) (condition (PS)), we have now
moved to something too weak. Consider in particular the
following counter-example: the languadgeis build over
three propositional variables b, ¢, the initial belief setl’
isT =Cn(a < b), and the system of sphefg- centered on
[T] is the one represented below:

abe
e e < abe <
aéc abc
abe

In this example all the worlds outsid&] (i.e. in M, —
[T]) differ from [T'] on precisely the same propositional vari-
ables, namely oda,b}. ConsequenthSr trivially satis-
fies (Q1) since its anteceddbiff(T,r) C Diff(T,r’) never
holds forr, v’ ¢ [T]. Yet despite the compliance with (Q1),
the revision function * induced from§' 1 violates (R1) afl"
(simply consider the revision @f by a A —b).1°

To secure the correspondence with (R1), condition (Q1)
needs to be complimented with a second condition, called
(Q2). This second condition uses the notion ofiaternal
T'-dual defined below:

Definition 5 Let 7,7’ be possible worlds, and let T be a
theory of £. The worlds » and 7’ are internal T-dualsiff
Diff(T, r) = Diff(T, "), and r N Diff(T, r) = v’ NDIff(T, r').

To give a concrete example of interridglduals and high-
light their difference from external ones, suppose thas
built over the propositional letters b, ¢, d, and let the ini-
tial theoryT beT = Cn(a < b,¢c < d). The worldsr
= Cn(—a,b,c,d) andr’ = Cn(—a, b, —c, —d) differ from T
on exactly the same propositional variables, B&ff(T, r)
= Diff(T,7") = {a,b}. Yetr andr’ are not externdl’-duals
since outsid®iff(T’, r) the two worlds are not identical. On
the other hand; andr’ are identicainside Diff(T, r). This
makes them interndl-duals.

Clearly, for any theoryi” and any two worlds-, r/, if r
andr’ are both internal and extern&tduals, then they are
identical.

We can now proceed with the presentation of condition
(Q2), which together with (Q1), brings about the correspon-
dence with (R1). As usual, in the following conditidhs an
arbitrary consistent theory df (possibly incomplete)§ r is
a system of spheres centered[@h, andr, r’ are possible
worlds.

(Q2) Ifr andr’ are internall’-duals, then they belong to
the same spheres i$i;; i.e., for any spherd” <
Sr,reViffr eV,

Notice that in the special case thats complete, no world
r has internal or externdl-duals (other than itself). Conse-

101t is worth noting that in this example, there is omiye system
of spheresST whose revision function * satisfies (R1) At This
is the system containing only the sphef€sand M.
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quently, in that case, (Q1) reduces to (PS), while (Q2) de-
generates to a vacuous condition.

The promised correspondence between (R1) and the two
conditions (Q1) - (Q2) is given by the theorem below:

Theorem 4 Let * be a revision function satisfying (K*1)
- (K*8), T a consistent theory of £, and St a system of
spheres centered on [T, that corresponds to * by means of
(S¥). Then « satisfies (R1) at 7' iff S satisfies (Q1) - (Q2).

Proof.

(=)

Assume that« satisfies (R1) af". Starting with (Q1),
let r,7' be two consistent complete theories such that
Diff(T,r) c Diff(T,r"). If Diff(T,r) =, thenr is con-
sistent withT', and therefore- € [T]. Then, given that
r’ & [T], (Q1) follows trivially from (S2). Assume there-
fore thatDiff(T,r) # 0. Let £’ be the sublanguage df
defined oveDiff(T,r), and lety be the conjunction of all
literals in £’ that hold atr’ i.e., o = I3 A --- A I, where
for eachl < i < k, [; is a literal in£’, andl; € 7.

By (%), [T ¢] = fr(p) = [¢] N Cr(p), whereCr(y)

is the smallest sphere iir intersecting]. Clearly, since

¢ is consistentf7(¢) # 0. Consider now any world"”

in fr(p). From (R1) and the construction g@f it follows
that Diff(T", »"") C Diff(T,r). Moreover, again by the con-
struction ofy, Diff(T, r) C Diff(T,r"). HenceDiff(T, r) =
Diff(T,""). Moreover, since” satisfiesp, " N Diff(T, r)

= ¢/ N Diff(T,r). Finally notice that, because of (R1),
" & Cr(p). We have therefore shown that all worlds in
fr(p) are closer to the center ¢f thanr’, that they all
differ from 7" on exactly the same propositional variables as
r, and that withirDiff(T, r) they agree withr’. What is still

left to show in order to prove (Q1) is that there is at least
one world infr(¢) that agrees with on the propositional
variables outsid®iff(T’, r). Letv be the conjunction of lit-

erals in£’ that hold atr. Sincer differs from 7" only in
the propositional variables id’, it follows that— & T.
Consequently, by (R1y ¢ T % ¢. This again entails
that there is at least one worlf}-(v), that satisfies) and
therefore agrees withon all propositional variables outside
Diff(T, r) as desired. This concludes the proof of (Q1).

For (Q2), assume on the contrary that it is not tru§' af
and letV be the smallest sphere B that violates (Q2).
Then, there exist two worlds, ' that are internal’-duals
such that € V andr’ ¢ V. Fromr’ ¢ V we firstly derive
that Diff(T, ') # 0, and therefordiff(T,r) # (), which
again entails thal'] C V. Next, let£’ be the sublanguage
of £ defined oveDiff(T', ). Definey to be the conjunction
of all literals in £ that hold atr (and therefore also hold at
r’). ClearlyCr(¢) C V. Moreover, from (R1) and the con-
struction ofy it follows that any worldr” in fr(p) differs
from T on exactly the same propositional variables asg.,
Diff(T, ") = Diff(T, r). In addition, since"” satisfiesp, "
andr are in fact internal’-duals, which also makes’ and
r’ internal T-duals. Consider now the sentengelefined



as the conjunction of literals if” that hold atr’. Since
" & Cr(p) (recall thatCr(p) C V), and moreover all
worlds in fr () satisfyp, it follows that no world infr ()
satisfiesy, or equivalently, all worlds irfr () satisfy —.
Hence,— € T * p. From (R1) this entails thaty € T,
which again entails thaiff(T',»") N L # (), leading us to a
contradiction. Hence (Q2) is true.

(<)

Assume thatSt satisfies (Q1) and (Q2). L&t be such
thatT = Cn(x, v), for some sentenceg ¢ € £ such that
L, N Ly = (. Moreover, lety be any sentence ifi,,

[T] [¢] # 0, then (R1) trivially holds. Assume therefore
that[T')N[¢] = 0. Firstly we showthal’nL,, C (Txp)NL,.
Let v be any sentence ifi N £,. Assume, contrary to the
theorem, that for somein fr(y), -y € r. Letw be any
world in [T]. Construct’ as foIIow5r agrees withr in £,
and it agrees withw outsidel, i.e.,r”’ N L, =7 N L, and

"N Ly =wnL,. Clearly,Diff(T,r") C Drff(T r). Then by
(Q1), there is a spheré smaller thanC'r () that contains
I (r',r) (i.e. ther-cover forr’ atT). It is not hard to verify
thaty € dr (', r), which however contradicts the fact that
Ir(r',r) € V. C Cr(p). HenceT N L, C (T )N L, as
desired.

For the converse, lef be any sentence iff,, such that
v ¢ T. Then there is a worldv € [T] such that—y €
w. Letr be any world infr(¢). Construct the world’ as
follows: " agrees with- in £,, and it agrees witlw outside
L, (i.e,r"NLy=rNLy,andr’ NL, =wn L,). Since,
as we have shown in the first part of the prabfn £, C
(T * ) N Ly, it follows that Diff(T,r) C L,. Then by
the construction of/, it follows thatr andr are internal
T-duals. Consequently, by (Q2); € Cr(y), and since’
satisfiesp, itfollowsthatr € fr(y). Finally notice that, by
construction;~y € r’. Consequentlyy ¢ T * ¢ as desired.
Combining the above we derive tHBN £, = (T @) N L.
[ |

Condition (R2) and Systems of Spheres

We now turn to the second side of axiom (P), encoded by
condition (R2). As noted previously, a ramification of (R2)
is that it introduces dependencies between revision policies
associated witldlifferent theories. Not surprisingly, the con-
dition corresponding to (R2) in the realm of systems of

counterpart of (R2). As usuak’ is a subset of?, T and
T’ are theories ofZ, and S, S are systems of spheres
centered ofil’] and[1"] respectively:

(Q3) If{P’,(P — P} is both aT- splitting and &"'-
splitting, and moreove N £7 =T’ N £¥', then

Sr/LP =Sp./c”.

The following result shows that (Q3) is the system-of-
spheres counterpart of (R2):

Theorem 5 Let * be a revision function satisfying (K*1) -
(K*8), and {St}rek,. afamily of systems of spheres (one
for each theory T in K ), corresponding to x by means of
(S*). Then « satisfies (R2) iff { St} ek, satisfies (Q3).

Proof.

(=)

Assume that satisfies (R2), and |eF, T/ be two theories
of £. Moreover, assume that for somi® C P, the sets”’,
(P — P’) are a splitting ofP relative to bothl” andT"”’, and

TnLY =1'nc? . if PP =P or P’ = P, then (Q3) is trivially
true. Assume therefore th@t# P’ c P. Then, for some
sentenceg, ¥, andy’, T =Cn(x,¢), T =Cn(x,¢'), Ly =
£ andy,y’ € L) =L, . Consequently, by (R2), for
anyp € Ly, (Txp)NLy = (T"xp)NLy = (Cn(x)*)NLy.
Next consider the systems of spherf¢s and St cen-
tered onT'] and[T"'] respectively, and assume that, contrary
to Theorem 551/£"" +# Sr./£F". Without loss of gener-
ality, we can assume thét]“/ﬁpl contains an element that
is not in ST,/EP’. Let V' be the smallest sphere - such
thatV/£"" ¢ Sy /cF. Moreover, letV’ be the small-

est sphere iS5 such thatV/c” < v//cP". Clearly,
[T] cV C Mgand[T'] ¢ V! ¢ M,. Consider now

aworldr’ € V' such that’ n 2" ¢ V/£". Next, con-
sider a worldr € V such that N 27" ¢ ({U’ € Sp -
U c V’})/LP,. It is not hard to verify that such a world
r indeed exists, and moreovern £ ¢ (U{U € Sr:
U c v})/LY. Letly,---1, be the literals inc”" that

hold inr, and letl,-- -1/, be the literals inc”" that hold
in 7. Finally, lety be the sentence = (I1 A -+ Ally) V
(14 A--- A1L). Then the smallest sphere intersectipgin

spheres, is one that makes associations between systems oS and inSy», is V andV"’ respectively. From this we de-

spheres with different centers.

Definition 6 Let V bea set of worldsin M ., and let £’ be
a sublanguage of £. By V/L’ we denote the restriction of
Vto £'; thatis, V/L' = {rn L": r € V}. Moreover, for a
system of spheres S7, by St /L’ we denote the restriction of
Srto £'; thatis, Sp/L = {V/L' :V € Sr}.

Notice that for any sublanguad¥ of £, St/£' is also a
system of spheres. The condition (Q3) below is the semantic =

rive thatr’ /£ & fr(o)/ct andr’ /2" € fro(0)/ L7
Consequently,T'x p) N L, # (T" x ) N L,, which however
contradicts (R2).

(<)

Assume that{ St}rex, satisfies (Q3) and IeT’ be a the-
ory of £ such that for some¢,v € L, T = Cn(x,v)
andL, N Ly, = 0. LetT’ be the theoryI” = Cn(x).
CIearIy,T NL, =T"nNL,, and therefore by (Q35 /L,
=S /L. Next consider any sentenge € £,, and let
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Cr(p) andCr () be the smallest spheres fy and Sy
respectively intersectinflp]. We show thatCr(p)/L, =
Cr:(p)/Ly. Assume on the contrary thatr(y)/L, #
Cri(p)/Ly. SinceSr /L, = St/ /Ly, without loss of gen-
erality we can then assume th@ () /L, C Cr(p)/ L.
Moreover, again fromSr/L, = St/Ly, we have that
Cr(e)/Ly € St /L. LetV be the sphere it whose
restriction toC, is equal toC'r (p) i.e.,V/ Ly = Cr(p) /L.
Clearly, V' C Cr/ (). On the other hand however, since
v € L, andCr(y) contains as least oneworld, it follows
that V' also contains g-world. This of course contradicts
the fact thatC'r (¢) is the smallest sphere iy intersect-
ing [¢], and proves that'r(v)/L, = Cr/(¢)/Ly. Conse-
quently, (T« )N Ly, = (T %) N L, as desired. W

Putting together the results reported in Theorems 1, 4, and
5, we obtain immediately the following theorem that pro-
vides possible-world semantics for (the strong version of)
axiom (P):

Theorem 6 Let * be a revision function satisfying (K*1) -
(K*8) and {St}reik,. afamily of systems of spheres (one
for each theory T" in K ), corresponding to * by means of
(S*). Then « satisfies (P) iff { St }reic,. satisfies (Q1) - (Q3).

Conclusion

The main contribution of this paper is Theorem 6 that pro-
vides system-of-spheres semantics for Parikh’s axiom (P).
What is quite appealing about this result is that the semantic
conditions (Q1) - (Q3) that characterize axiom (P) are quite
natural constraints on similarity between possible worlds. In
fact, conditions (Q1) - (Q2) essentially generalize a measure
of similarity that predates axiom (P), and was motivated in-
dependently in the context of Reasoning about Action by
Winslett. This intuitive nature of the semantics is more ev-
ident in the special case of consistent complete belief sets.
An interesting by-product of our study is the identification
of the two possible readings of axiom (P), both of which are
plausible depending on the context.

It should be noted that apart from Winslett, other authors
have also made specific proposals for measuring distance
between possible worlds (see for example, (Borgida 1985),
(Dalal 1988), and (Satoh 1988}).1t would be a worthwhile
exercise to investigate whether any of these measures of dis-
tance also yield some kind of “local change effect” for their
associated revision functions.
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