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Abstract

Using morpho-logics we show how to find explana-
tions of observations, how to perform revision, con-
traction, fusion, in an unified way. In the framework
of abduction, we show how to deal with observa-
tions inconsistent with the background theory and
introduce methods to treat multiple observations.
Based on these ideas we introduce a dynamics for
transforming the background theory in function of
observations.

Keywords: Explanations, revision, fusion, dis-
tance, morpho-logic.

Introduction

The tools of mathematical morphology (Serra 1982;
1988) can be applied to some areas of Artificial In-
telligence where logical representations of knowl-
edge are used. This is possible due to the duality
between syntax and semantics of logical formulas.
Actually we can identify a formula with the set of
its models. Moreover, it is quite natural to consider
distances in the space of models (for instance the
Hamming distance). Having a distance is all we
need to define in a straightforward way the basic
operators of mathematical morphology: erosion and
dilation (in fact it is enough to have a graph on the
set of models).

In (Bloch & Lang 2000; 2002) morpho-logics
were introduced: mathematical morphology for
logical formulas. It is shown there how to use these
operators to deal with revision and fusion. The idea
to perform revision is to dilate enough the old belief
set to meet the new information. To perform fusion,
the idea is to dilate each source of information un-
til the intersection of all of them is nonempty. This
common part is the result of merging these sources
of information.

Copyright c© 2004, American Association for Artificial
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In (Bloch, Pino-Ṕerez, & Uzćategui 2001) it is
shown how to construct explanatory relations us-
ing the erosion operator. The main idea is to find
themost central partof a theory by successive ero-
sions. Two explanatory relations were constructed
and their behavior with respect to the postulates of
rationality introduced in (Pino-Ṕerez & Uzćategui
1999) analyzed.

In this work we present an unified view of these
processes. This unified view allows to consider
observations which are inconsistent with the back-
ground theory in a very natural way. In order to
treat this case there are three basic situations con-
sidered here: the observation is unreliable and the
background theory is reliable; the observation is re-
liable and the background theory is unreliable; the
observation and the background theory are unreli-
able.

In particular the second case leads to consider
changes in the background theory. This dynamics
introduces a kind of learning process when succes-
sive observations are received or performed.

Another advantage of the treatment presented
here is the introduction of explanatory relations for
multiple observations. This is performed by com-
bining fusion and abduction.

Our aim when presenting these methods which
are all built upon the erosion or dilation opera-
tor of morpho-logics is to give a powerful, natural
and uniform tool to treat many important aspects
of knowledge dynamics based on logical represen-
tations. The general idea, unifying abduction, re-
vision and fusion, is to “expand” or “shrink” a for-
mula or the background theory until (or while) some
properties like consistency are verified. Mathemat-
ical morphology operators provide formal tools for
implementing these ideas.

We claim that these methods are paradigmatic, so
studying their structural properties will give insights
about the properties that general operators have to
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satisfy. We have given some structural properties of
some of our operators. Nevertheless, we have not
given a complete characterization of our operators.

Preliminaries
Let us recall here the basic principles of morpho-
logics. LetPS be a finite set of propositional sym-
bols. The language is generated byPS and the
usual connectives. Well-formed formulas will be
denoted by Greek lettersϕ, ψ... Worlds will be
denoted byω, ω′... and the set of all worlds by
Ω. Mod(ϕ) = {ω ∈ Ω | ω |= ϕ} is the set of
all worlds whereϕ is satisfied. Dilation and ero-
sion (the two fundamental operations of mathemat-
ical morphology (Serra 1982)) of a formulaϕ by a
structuring elementB have been defined in (Bloch
& Lang 2000) as follows:

Mod(DB(ϕ)) = {ω ∈ Ω | B(ω) ∩Mod(ϕ) 6= ∅},
(1)

Mod(EB(ϕ)) = {ω ∈ Ω | B(ω) |= ϕ}, (2)

whereB(ω) is a set of worlds andB(ω) |= ϕmeans
∀ω′ ∈ B(ω), ω′ |= ϕ. It is usually called the struc-
turing element and it contains the worlds that are in
relation withω. An important example is given by
B(ω) = {ω′ : d(ω, ω′) ≤ 1)} whered is a dis-
tance function onΩ. This will be the only type of
structuring element used in this paper.

The condition in Equation 1 expresses that the set
of worlds in relation toω should be consistent with
ϕ, i.e.: ∃ω′ ∈ B(ω), ω′ |= ϕ. The condition in
Equation 2 is stronger and expresses thatϕ should
be satisfied in all worlds which stand in relation to
ω .

Properties

The properties of these basic operations and of other
derived operations are detailed in (Bloch & Lang
2000). The fundamental properties of erosion and
dilation, that will be used intensively in the follow-
ing, can be summarized as:

• Independence of the syntax (follows directly
from the definition through the models).

• Monotonicity: erosion and dilation are increasing
with respect toϕ, i.e.

ϕ ` ψ ⇒ EB(ϕ) ` EB(ψ), (3)

for any structuring elementB, and a similar
equation for dilation. Erosion is decreasing with
respect to the structuring element, i.e. suppose
that ∀ω ∈ Ω, B(ω) ⊆ B′(ω) (for instance this
happens when the distancesd andd′ used to de-
fineB andB′ satisfyd ≤ d′), then

EB′(ϕ) ` EB(ϕ). (4)

Dilation is increasing with respect to the structur-
ing element.

• If B is derived from a reflexive relation, i.e. such
that∀ω ∈ Ω, ω ∈ B(ω), then erosion and dila-
tion satisfy the following properties:

ϕ ` DB(ϕ), (5)

EB(ϕ) ` ϕ. (6)

(This is called anti-extensivity and extensivity in
set theoretical mathematical morphology). This
condition obviously holds whenB is defined
by a distance, as it will be case in this paper.
We will also consider symmetrical relations, i.e.
∀(ω, ω′) ∈ Ω2, ω ∈ B(ω′) ⇔ ω′ ∈ B(ω).

• Iteration: erosion and dilation satisfy an itera-
tion property, which is expressed for symmetrical
structuring elements as:

EB [EB′(ϕ)] = EDB(B′)(ϕ), (7)

DB [DB′(ϕ)] = DDB(B′)(ϕ). (8)

For instance ifB = B′, and if we denote byEn

the erosion of sizen, i.e. byB dilated(n − 1)
times by itself (this is typically the case for dis-
tance based operations where the structuring ele-
ment is a ball of distance, as will be seen in the
next subsection), we have:

En+n′
(ϕ) = En′

[En(ϕ)] = En[En′
(ϕ)], (9)

wheren, n′ denote the size of the erosion (i.e. the
“radius” of the structuring element).

• Commutativity of erosion with conjunction and
of dilation with disjunction:

EB(∧m
i=1ϕi) = ∧m

i=1EB(ϕi), (10)

DB(∨m
i=1ϕi) = ∨m

i=1DB(ϕi). (11)

• Erosion of a disjunction: erosion and disjunction
do not commute, but we have a partial relation:

EB(ϕ) ∨ EB(ψ) ` EB(ϕ ∨ ψ). (12)

Similarly, dilation and conjunction do not com-
mute, and only a partial relation holds.

• Dilation and erosion are dual operators with re-
spect to the negation:

DB(ϕ) = ¬EB(¬ϕ). (13)

Illustrative example

In all what follows, we will consider as an illustra-
tive example the case where the structuring element
is defined as a ball of the Hamming distance be-
tween worldsdH , wheredH(ω, ω′) is the number
of propositional symbols that are instantiated dif-
ferently in both worlds. Then dilation and erosion
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Figure 1: Graph representation of possible worlds with 3 symbols and an example ofϕ and two successive
dilations. An arc between two nodes means that the corresponding nodes are at a distance to each other equal
to 1.

of sizen are defined from Equations 1 and 2 by us-
ing the distance balls of radiusn as structuring ele-
ments:
Mod(Dn(ϕ)) =
{ω ∈ Ω | ∃ω′ ∈ Ω, ω′ |= ϕ and dH(ω, ω′) ≤ n},

(14)
Mod(En(ϕ)) =
{ω ∈ Ω | ∀ω′ ∈ Ω, dH(ω, ω′) ≤ n⇒ ω′ |= ϕ}.

(15)
We make use of a graph representation of worlds,

where each node represents a world and a link
represents an elementary connection between two
worlds, i.e. being at distance 1 from each other.
A ball of radius 1 centered atω is constituted by
ω and the extremities of the arcs originating inω.
This allows for an easy visualization of the effects
of transformations.

Let us consider an example with three proposi-
tional symbolsa, b, c. The possible worlds are rep-
resented in Figure 1.

Let us considerϕ = ¬a ∧ b ∧ c. Then we have:

D1(ϕ) = (¬a ∧ b) ∨ (¬a ∧ c) ∨ (b ∧ c),
D2(ϕ) = ¬a ∨ b ∨ c = ¬(a ∧ ¬b ∧ ¬c).

These results are illustrated in Figure 1. Note that in
this kind of figures the formula defined by a border
is the disjunction of the formulas in the interior of
the border.

Erosion can be computed very easily from any
conjunctive normal form. Indeed, ifϕ is a disjunc-
tion of literals, i.e.,ϕ = l1 ∨ l2 ∨ ... ∨ ln, then we
have:

E1(ϕ) = ∧n
j=1(∨i6=j li). (16)

This property, along with the commutativity of ero-
sion with conjunction, allows to compute easily the
erosion of any formula expressed as a CNF (see also
(Lafage & Lang 2000)). By duality, dilation of any
formula expressed as a disjunctive normal form is
easy to compute.

Explanatory relations

In the logic-based approach to abduction, the back-
ground theory is given by a consistent set of for-
mulasΣ. The notion of apossible explanationis
defined by saying that a formulaγ (consistent with
Σ) is an explanation ofα if Σ ∪ {γ} ` α. An ex-
planatory relation is a binary relation� where the
intended meaning ofα � γ is “γ is apreferred ex-
planationof α”. We prefer to writeα � γ instead
of γ � α because in explanatory reasoning, the in-
put is an observation and the output is a preferred
explanation of that observation.

In (Pino-Ṕerez & Uzćategui 1999; 2003), a set of
postulates that should be satisfied by preferred ex-
planatory relations is proposed and discussed. The
notationγ `Σ α will be used as an abbreviation of
Σ ∪ {γ} ` α. For the sake of completeness we list
some of them in Table 1.

Some justifications and predecessors of these
rules were given in (Pino-Ṕerez & Uzćategui 1999;
2000) (see also (Flach 1996; 2000a; 2000b)). An
explanatory relation is calledRational if it satis-
fiesLLEΣ, E-CM, E-C-Cut, E-R-Cut andRS. All
rational explanatory relations are of the following
form (Pino-Ṕerez & Uzćategui 1999): given a to-
tal pre-order� over Ω, we define the explanatory
relation�� associated to� by

α�� γ
def⇔ mod(Σ∪ {γ}) ⊆ min(mod(α),�)

(17)
wheremin(mod(α),�) is the�-minimal models of
α.

Recall that an explicit assumption made in the
definition of an explanatory relation is that an ex-
planation together with the background theory has
to logically imply the observation. In this paper we
will allow a more permissive notion of explanation,
which could be stated shortly as saying that an ex-
planation has tomorphologically imply the observa-
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LLEΣ Left syntax independance If̀Σ α↔ α′ andα� γ, thenα� γ′

RLEΣ Right syntax independance If̀Σ γ ↔ γ′ andα� γ, thenα� γ′

E-CM Cautious Monotony Ifα� γ andγ `Σ β, then(α ∧ β) � γ
E-C-Cut Cautious Cut If (α ∧ β) � γ and for allδ [α� δ ⇒ δ `Σ β ], thenα� γ
E-R-Cut Rational Cut If (α ∧ β) � γ and there isδ such thatδ `Σ β andα� δ, thenα� γ
LOR Disjunction on the left Ifα� γ andβ � γ, then(α ∨ β) � γ
E-DR Disjunctive rationality Ifα� γ andβ � δ, then(α ∨ β) � γ or (α ∨ β) � δ
ROR Disjunction on the right Ifα� γ andα� δ, thenα� (γ ∨ δ)
RS Right Strengthening Ifα� γ, γ′ `Σ γ andγ′ 6`Σ ⊥, thenα� γ′

Table 1: Postulated that should be satisfied by preferred explanatory relations (Pino-Pérez & Uzćategui 2003).
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Figure 2: An example of last consistent erosion.

tion, that is, the set of models of the explanation has
to be “morphologically closed” to the set of models
of the observation. This will be made more precise
in what follows.

Viewing abduction and revision as the
same process

We will show in this section a unified treatment
of abduction and revision. In particular, we will
put in the same framework some of the results
from (Bloch & Lang 2000; Bloch, Pino-Ṕerez, &
Uzcátegui 2001).

In the following we fix a distance (for instance
the Hamming distance) upon which we define a
structuring element in order to define the operators
of erosion and dilation.

An idea for finding explanations to an observa-
tion α in the setting of the background theoryΣ
consists in erodingΣ as much as possible but still
under the constraint that it remains consistent with
α (see (Bloch, Pino-Ṕerez, & Uzćategui 2001)):

E`c(Σ, α) = En(Σ) for
n = max{k : Ek(Σ) ∧ α 6` ⊥}, (18)

where the subscript̀c stands for last consistent ero-
sion.

Then, from this operator, the following explana-
tory relation was defined in (Bloch, Pino-Pérez, &
Uzcátegui 2001) and shown to be a Rational ex-

planatory relation:

α�`c γ
def⇔ γ ` E`c(Σ, α) ∧ α, (19)

Let us come back to the illustrative example, and
take (see Figure 2):Σ = a ∨ b ∨ c, andα = (a ∧
¬b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c). We have:
E1(Σ) = (a∨b)∧(a∨c)∧(b∨c),E2(Σ) = a∧b∧c,
and finallyE3(Σ) ` ⊥. Therefore:

E1(Σ) ∧ α = (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c)
andE2(Σ) ∧ α ` ⊥. Therefore the value ofn
in Equation 18 is equal to 1. For Definition 19,
we haveα �`c (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c), α �`c

(a ∧ ¬b ∧ c) andα�`c (a ∧ b ∧ ¬c).
There is an alternative way of looking at�`c

which will be particularly useful in what follows.
The iteration of the erosion operator provides a
method of linearly pre-ordering the models ofΣ.
Consider the following relation among models:

ω ≤E ω′
def⇔ ∀k (ω′ ∈ Ek(Σ) → ω ∈ Ek(Σ)).

(20)
It is clear that≤E is a total pre-order and it is not
difficult to verify that the following holds:

α�`cγ ⇐⇒ mod({γ}) = min(mod(Σ∪{α}),≤E).
(21)

Notice that from the equivalence 21 and by the re-
sults in (Pino-Ṕerez & Uzćategui 1999), it is clear
that �`c is, as we already said, a rational explana-
tory relation.
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Now we will recall the presentation of revision
made in (Bloch & Lang 2000) based on the dilation
operator. The idea is to dilateΣ (which is not neces-
sarily consistent withα) until it becomes consistent
with α. More precisely, we define∗ as:

Σ ∗ α = Dn(Σ) ∧ α (22)

wheren = min{k : Dk(Σ) ∧ α 6` ⊥} (it should be
noted thatn depends onα).

As before, the iteration of the dilation operator
provides a method of linearly pre-ordering the mod-
els. Consider the following relation among models:

ω ≤D ω′
def⇔ ∀k (ω′ ∈ Dk(Σ) → ω ∈ Dk(Σ)).

(23)
Indeed, it is clear that≤D is a total pre-order; we

will call it the total preorder associated toΣ using
successive dilations. It is not difficult to verify that
the following holds:

mod(Σ∗ α) = min(mod(Σ∪ {α}),≤D). (24)

By the well known representation theorem for
revision operators (see for instance (Katsuno &
Mendelzon 1991)), it follows from Equation 24
that∗ is an AGM revision operator (Bloch & Lang
2000).

We observe a great resemblance between the def-
initions of pre-orders defined by Equations 20 and
23. Actually we can define a sequence associated
to Σ in the following way: letm be such that
Em(Σ) 6` ⊥ andEm+1(Σ) ` ⊥ and letn be such
thatDn(Σ) = > (the theory containing the tau-
tologies). Then we define the fundamental sequence
(Ti) associated toΣ (relative to operatorsE andD)
from i = 0 to i = n+m as follows

Ti =
{
Em−i(Σ) if i ≤ m
Di−m(Σ) if i > m

Now we can define the fundamental total pre-
order by the following

ω �f ω
′ def⇔ ∀k (ω′ ∈ T k → ω ∈ T k). (25)

This pre-order will be calledthe fundamental pre-
order associated toΣ. This preorder is the main
tool for what follows. It is then natural to associate
to each observationα the collection

M(α) = min(mod(α),�f ).

Note that the criterion used to defineM(α) is based
on the morphology operatorsD andE. The in-
terpretation we give toM(α) is that it contains
those worlds that are (morphologically) more rele-
vant given the observationα. Therefore for the task

of revisingΣ or explainingαwe only look atM(α).
This will be made precise in the result that follows.
We will denote byC(α) the formula whose models
are exactlyM(α).

Theorem 1 LetΣ, α andγ consistent formulas.

1. If α is consistent withΣ, thenα �`c γ iff γ `
C(α).

2. If α is inconsistent withΣ, thenΣ ∗ α = C(α).

The previous result suggests the following defi-
nitions

α�f γ
def⇔ γ ` C(α) (26)

and
Σ ∗f α = C(α) (27)

whereα andγ are consistent formulas.
Some comments about these definitions should

be made. First of all, even when an observation is
inconsistent with the background theoryΣ there is
a formulaγ such thatα �f γ. That is to say, we
can “explain” more observations with�f than with
�`c . The interpretation we give to this fact is that
for explaining an observation it is allowed (if neces-
sary) to “change” the background theory (this will
be made more precise in the section about dynam-
ics). Thus in the explanatory process described by
�f the observation is absolutely reliable. Notice
also that�f is not an explanatory relation as de-
fined above, since some explanations might not be
consistent withΣ.

The operator∗f is not an AGM operator (forΣ),
since when the observationα to be incorporated is
consistent withΣ we have onlyΣ ∗f α ` Σ ∧ α.
The reason for this is that∗f is based on explana-
tions, so even whenΣ ` α some explanation forα
has to be found. Note that the previous remark says
that ∗f does not satisfy the postulate K*4, which
has been criticized by some authors in particular in
(Ryan 1994). Unlike Ryan’s operators, which are
based on ordered theory presentations, K*4 is the
only AGM postulate which is not satisfied by∗f .

Multiple observations

Suppose now that instead of an observationα
we haven observationsα1, . . . αn simultaneously.
Note that two or more observations can be repeated
in this sequence. Thus, it is quite natural to rep-
resent this by a multisetΦ = {α1, . . . αn}. The
problem we address in this section can be stated as
follows: how to explainΦ in the setting of the back-
ground theoryΣ?

We propose a solution to this problem based
on fusion where the principle of reliability of the

KR 2004    333



new observationholds. The mechanism is roughly
speaking the following:

1. Perform the fusion ofΦ. Let ∆(Φ) be this result.

2. Use an explanation relation� to findγ such that
∆(Φ) � γ.

Now, we describe in detail the mechanism previ-
ously sketched. To fusionΦ we will use the method
called majority merging (Konieczny & Pino-Pérez
1998; 2002)1. For this end, we first associate to
each member ofΦ a distance function onΩ which,
as usual, is given by the rank of each world with
respect to a total pre-order. Notice that Equation
23 defines a total pre-order for a given formulaαi

(putting Σ = αi in Equation 23). These relations
will be denoted by�αi

, for i = 1, · · · , n. Let
rαi(ω) be the level of the worldω in the preorder
�αi , i.e. the firstk such thatω ∈ mod(Dk(αi)).
For instance, ifω ∈ mod(αi), thenrαi(ω) = 0 and
if ω ∈ mod(D1(αi)) \mod(αi), thenrαi(ω) = 1.

Next we define a total pre-order�Φ in the
following way: ω �Φ ω′ iff Σαi∈Φrαi

(ω) ≤
Σαi∈Φrαi

(ω′). Then the majority merging ofΦ is
given by:

mod(∆(Φ)) = min(Ω,�Φ).

Now use the relation�f , given by Equation 26,
to define the explanations of∆(Φ). Thus we finally
get the following definition for the explanations of
the multisetΦ:

Φ �m γ
def⇔ ∆(Φ) �f γ (28)

The first thing to notice is that ifΦ contains only
one observationα, thenΦ�mγ iff α�f γ. The def-
inition of �m has something else interesting. The
notion of explanation used is not the classical one.
There is not a formal logical connection betweenΦ
and its explanations. A feature of a merging process
is that its output should satisfy the majority. Thus
there areΦ such that∆(Φ) does not share any mod-
els with any of the members ofΦ. So we can not say
that an explanation of a group of observations will
explain at least one of them. However,∆(Φ) can be
regarded as a consensual observation and thus�m

provides its explanations.
On the other hand, since we are dealing with

multisets (on the left hand side) the relation�m is
far from being an explanatory relation as defined
above. However, it is interesting that we have the
following fact.

Proposition 1 The relation�m satisfiesRLE, RS
andROR.

1Therein some other methods, for instance the Max
method or the Gmax method, can be found.

The postulates involving the left part of the rela-
tion remain to be defined and studied. One of the
main difficulties is how to explainΦ t {α} know-
ing the explanations ofα andΦ (heret denote the
union of multisets where the multiplicity is taken
into account). To say it in an equivalent form, which
is the postulate corresponding toLOR in the setting
of multiple observations? Let us consider the fol-
lowing two candidates:

• Φ1 � γ andΦ2 � γ ⇒ Φ1 t Φ2 � γ

• Φ1 � γ andΦ2 � γ ⇒ {∆(Φ1) ∨∆(Φ2)}� γ

The second one, that is more constrained, would
seem more adequate to our framework. It is very
likely that these two postulates are not easy to be
satisfied.

Dynamic observations and
approximation process

Let us consider the explanation process as described
above, but now we are going to update the back-
ground theory according to observationΦ.

The background theoryΣ induces a preorder by
successive dilations as in Equation 23 which will be
denoted by�Σ. Thus we can see the information of
the background theory like a more complex struc-
ture. Actually it is a pair(Σ,�Σ). At the time that
a complex observationΦ arrives, we find its expla-
nations as in the previous Section and we transform
the pair of base(Σ,�Σ) in a new pair(Σ′,�′Σ′)
taking into accountΦ. So we have to describe the
following process:

(Σ,�Σ) Φ7−→ (Σ′,�′Σ′) (29)

To simplify the notation we will write� and�′ in-
stead of, respectively�Σ and�′Σ′ .

Let�′ be�lex(�Φ,�) andΣ′ be the theory whose
models aremin(Ω,�′), where�lex(�Φ,�) is the
lexicographical preorder associated to the preorders
�Φ and�. More precisely for any total preorders
�1 and�2, the lexicographical preorder is defined
as:

ω �lex(�1,�2) ω
′ def⇔ (ω ≺1 ω

′) or
(ω ≈1 ω

′ and ω �2 ω
′).

An interpretation of�′ is as follows. We give
higher priority to the members ofΦ and also to their
preferences, but we try to accommodate as much
as possible the initial preferences given by(Σ,�).
The new background theoryΣ′ is the result of a
compromise between the original pair(Σ,�) and
the new incoming information.

This process can be iterated after receiving more
observations. It would be then desirable that if the
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same multiset of observationsΦ is received, then
our state should not change. This is the content of
the following result:

Proposition 2 If (Σ,�) Φ7−→ (Σ′,�′) then(Σ′,�′)
is a stable state forΦ, i.e.

(Σ′,�′) Φ7−→ (Σ′,�′)
.

Let us observe that in the transition of Equation
29, the pre-order�′ is a refinement of�Φ. Thus, it
is easy to prove the following proposition:

Proposition 3 LetΣ be any theory. Define(Σ0,�0

) = (Σ,�Σ). Then, there areΦ1, . . .Φk such that

(Σi−1,�i−1)
Φi7−→ (Σi,�i) for i = 1, . . . , k and�

is a linearorderandΣk is complete.

This can be interpreted as a learning process in
which there are some sequences leading to a com-
plete knowledge. In particular the theories pro-
duced starting fromΣk will be also complete.

The whole process was modeled as an explana-
tory process. In fact, we can define dynamic expla-
nations of multiple observations in the light of a pair
(Σ,�) as follows2. Let�′ be such that

(Σ,�) Φ7−→ (Σ′,�′)
Using the same idea behind the definition of the ex-
planatory relation given in Equation 17, we define
the relation��′ associated to�′ as:

α��′ γ
def⇔ mod(γ) ⊆ min(mod(α),�′) (30)

and then we define

Φ �d γ
def⇔ ∆(Φ) ��′ γ

Thus Proposition 2 says that whenΦ is again ob-
served, then the explanations ofΦ with respect to
(Σ,�) and(Σ′,�′) are the same.

Suppose(Σ,�) is the initial state andΦ is ob-
served. Our next result says that ifΦ is coherent
with the initial state, then the initial explanatory re-
lation does not need to be modified. This is the case,
for instance, when the set of formulasΦ is consis-
tent withΣ.

Proposition 4 If mod(Σ′) ⊆ mod(Σ), thenΦ �d

γ ⇔ ∆(Φ) �� γ.

2This process is analogous to revision of com-
plex epistemic states by complex epistemic states (see
(Konieczny & Pino-Ṕerez 2000; Benferhatet al. 2000))
in two aspects: the complex representation and the use of
strong priority of observations which is traduced by the
definition of�′ using the lexicographical preorder result-
ing from two preorders.

Now if an inconsistent observation is repeatedly
observed, then the tendency will be to iteratively up-
date the background theory so that it becomes closer
and closer toΦ. This can be interpreted as an ap-
proximation process. We start with(Σ,�). At first
iteration,α is observed. If it happens to be incon-
sistent withΣ, then we will explainα and it will
become consistent withΣ′. Of course, the situation
is much more complex if instead of a single obser-
vation we receive several of them.

Unreliability
A natural question is how to explain an observation
which is inconsistent with the background theory.
We have already made some comments about this
and we will explore further this issue in this sec-
tion. Inconsistency of the observation with the the-
ory may come from the fact that the observation is
unreliable. Instead of dilating the theory to achieve
consistency, we can then keep the theory and extend
the observation until it becomes consistent withΣ.
This extension can be again performed by a dilation
(but ofα this time), and can be interpreted as a way
to introduce explicitly imprecision in the observa-
tion. Indeed, under a probabilistic (or possibilistic)
interpretation, it is usual that reliability and preci-
sion are antagonist: a very precise observation has
a low reliability. Conversely, an observation with
high probability is usually imprecise (since it should
include many possible cases).

This idea amounts to reverse the revision operator
based on dilation introduced above, and considerα∗
Σ, with the same∗:

α ∗ Σ = Σ ∧Dn(α) (31)

for n = min{k, Σ ∧ Dk(α) 6`Σ ⊥}. Now we can
define a notion of an explanation as follows:

α�u γ
def⇔ γ `Σ α ∗ Σ (32)

Note that this does not define an explanation in
the strict sense, sinceγ 6` α if α is inconsistent with
Σ.

Proposition 5 The relation�u defined by Equa-
tion 32 satisfies the postulatesRLEΣ, LLEΣ, RS,
ROR, LOR and E-DR. The postulatesE-CM,
E-C-Cut andE-R-Cut are not satisfied.

Explanation as a fusion process
When the observation is not consistent with the the-
ory, instead of changing the theory, we will try to
find some compromise between the theory and the
observation. This can be considered as a fusion or
a negotiation process. The simplest idea to achieve
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this is to select the formulas which are “midway”
between the theory and the observation. This can
be formalized using morphological dilations as fol-
lows:

γ �fus α
def⇔ γ ` Dn(Σ) ∧Dn(α) (33)

wheren is the smallest size of dilation such that
the dilations ofΣ andα are consistent (as was sug-
gested in (Bloch & Lang 2002)):

n = min{k : Dk(Σ) ∧Dk(α) 6` ⊥}. (34)

Again this does not define an explanation in the
usual sense sinceγ 6` α. It can be interpreted as a
recommendation, a decision, according to the inter-
pretation in terms of fusion.

Proposition 6 The relation�fus satisfiesRLEΣ,
LLEΣ, LOR, ROR, E-DR andRS.

In Equation 33,Σ andα are dilated by the same
structuring element, and play therefore a similar
role in the fusion. However, we can consider that
we have more confidence in the theory than in the
observation (or the reverse) and dilate lessΣ than
α. Dilation allows to perform such an asymmetrical
fusion in a quite straightforward way.

For instance we can dilateα “m times faster”
thanΣ (m being a positive integer). Then, let

n = min{k : Dk(Σ) ∧Dmk(α) 6` ⊥}. (35)

We can define a preferred explanation as:

γ �wfus α
def⇔ γ ` Dn(Σ) ∧Dmn(α). (36)

Conclusion
We have shown how to use the two basic operators
of morpho-logics, erosion and dilation, to perform
many processes of dynamical knowledge, in partic-
ular, revision and fusion. The tasks concerning the
search of explanations have been incorporated in the
same dynamic setting due to the resemblance in the
way to produce explanations and the way to produce
a revised theory. Thus, with the help of fundamen-
tal sequence we can express abduction and revision
in the same way. This is done by Equations 26 and
27.

This uniform method suggests a generalization
of explanatory relations. Thus we can treat obser-
vations which are either consistent or inconsistent
with the background theory. This can be done, in at
least three ways: first, considering the observation
as very reliable. This is the case of�f . Second,
considering the observation unreliable. This is the
case of�u. The third way consists in considering

the background and the observation equally unre-
liable or weightedly unreliable, this is the case of
�fus and�wfus respectively.

We have introduced a new method to treat multi-
ple (and simultaneous) observations; this is the rela-
tion�m defined in Equation 28. This method has as
a parameter the merging operator∆ used to perform
the pretreatment of the multiple observationsΦ. We
have shown a few structural properties. However,
the postulates concerning the manipulations ofΦ
(the left rules) remain to be discovered.

Finally we have introduced complexbackground
knowledgeand dynamic explanatory relations at the
same time that we defined an update of the back-
ground knowledge. These are the relations�d and

the transitions
Φ7−→ between complex (background)

knowledge. We noted that the iterations of this pro-
cess eventually give a kind of complete information.
Again here, the structural properties characterizing
this kind of process remain to be discovered.
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