
Updating of a Possibilistic Knowledge Base
by Crisp or Fuzzy Transition Rules

Boris Mailhé * Henri Prade **
*ENS Cachan, ** IRIT

 antenne de Bretagne, 118 route de Narbonne,
 Rennes, France 31062 Toulouse cedex, France

 bmailhe@bretagne.ens-cachan.fr prade@irit.fr

Abstract
In this paper, partial knowledge about the possible
transitions which can take place in a dynamical
environment is represented by a set of pairs of
propositional formulae, with the following intended
meaning: If the first one is true then the second will
be true at the next step. More generally, a certainty
level representing the lower bound of a necessity
measure can be associated with the second formula
for modelling uncertain transitions. A possibilistic
transition graph relating possible states can be
deduced from these pairs and used for updating an
uncertain knowledge base encoded in possibilistic
logic and semantically associated to a possibility
distribution. The updating of the base can be directly
performed at the syntactic level from the transition
pairs and the possibilistic logic formulas, in
agreement with the semantics of the base and of the
transitions. As there are many sets of pairs that
represent the same transition graph, it is convenient
to find a representative in this class that gives the
easiest syntactic computations. Besides, a second
type of weighted pairs of formulas is introduced for
refining the representation of the available
information about transitions. While the first type of
pairs encodes the transitions that are not non-
impossible (using necessity measures), the second
type of pairs provides the transitions whose
possibility is guaranteed. This constitutes a bipolar
description of the possible transitions.

Key words. updating, transition, possibistic logic, bipolar
knowledge, possibility theory.

Copyright © 2004, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Introduction
A possibilistic propositional logic base is a
convenient representation format for expressing a
concise description of an uncertain state of
knowledge, by means of classical logic formulas,
which are put in different layers according to their
level of certainty (viewed as a lower bound of a
necessity measure). Such a basis is semantically
associated with a possibility distribution that rank-
orders the interpretations according to their level of
plausibility (Dubois, Lang, and Prade 1994).

Using this representation framework, different
information processing operations can be defined and
performed equivalently, either at the syntactic level,
or at the semantic level. Examples of such operations
are the revision of a knowledge base when receiving
an input information (possibly uncertain) (Dubois and
Prade 1997), or the fusion of knowledge bases
provided by different sources (Benferhat et al.
2002b), or a logical counterpart of Kalman filtering,
i.e. an update operation in a dynamical environment
followed by a revision (Benferhat, Dubois, and Prade
2000). It also includes the calculation of optimal
decisions when a possibilistic logic base represents
the available uncertain knowledge and the agent’s
preferences are also represented as another
possibilistic logic base modelling prioritized goals
(Dubois et al. 1999).

When the evolution is perfectly known, as in
(Benferhat, Dubois, and Prade 2000), the transition
function can be defined on all the possible states of
the system. In this paper, we consider the case where
the available information is imprecise, which leads to
a non-functional relation on the states. The states are
here the models of a logical language, so the
transition function is partially specified at the
syntactic level by means of conditional pairs of
propositions. Obviously, computations should be

338 KR 2004

performed as far as possible at the syntactic level in
order to work with a more compact representation,
but still in agreement with the semantic level.

After a short background on possibility theory, crisp,
or fuzzy, transition functions are defined at the
syntactic level, and a relation between the states is
associated with this syntactic specification. The
relation will then allow us to update a knowledge
base at the semantic level, and then a way is provided
to get the same result directly from the formulae.
Then we look for the smallest possible syntactic form
for expressing the transition function without loss of
information and making the computation simpler.
Finally, we do the same work with a finer description
of the incomplete knowledge about the transition
function, which distinguishes between states that can
be reached for sure, from states for which nothing
forbids to think that they are reachable. This is
encoded by means of a bipolar knowledge base that is
made of both a possibilistic knowledge base
expressed in terms of necessity, and of another
knowledge base stated in terms of guaranteed
possibility, in order to describe the system.

Background
In possibility theory (Zadeh 1978), the basic
representation tool is the notion of a possibility
distribution. A possibility distribution p is a mapping
from a set of interpretations W to a numerical scale
such as the real interval [0,1], or to a, maybe discrete,
linearly ordered symbolic scale. In the paper, for
notational simplicity, we use [0,1] as a scale, but only
in an ordinal way, which would be compatible with a
re-encoding of the possibility degrees on a linearly
ordered symbolic scale. Such a possibility
distribution rank-orders interpretations according to
their plausibility level. In particular, p(w) = 0 means
that the interpretation is impossible; p i s said
normalized if $w such as p(w) = 1; there may exist
several distinct interpretations with a possibility
degree equal to 1; they correspond to the most
plausible interpretations. Total ignorance is
represented by the possibility distribution pI equal to
1 everywhere: "w Œ W, pI(w) = 1.

Given a possibility distribution p and a formula F,
three measures are defined over the set of models of
F, denoted by [F] Õ W (Dubois and Prade 1988).

P(F) = maxwŒ[F] p(w),
is called the possibility of F. It measures how
unsurprising the formula F is for the agent. P(F) = 0
means that F is bound to be false.

N(F) = 1 - P(ÿF) = 1 - maxwœ[F] p(w),

is called the necessity of F. Thus the necessity if F
corresponds to the impossibility of ‘not F’. It
expresses how expected the formula F is. N(F) = 1
means that F is bound to be true. Note that the
function 1 - (.) is just a reversing map of the scale.

 D(F) = minwŒ[F] p(w),
is called the guaranteed possibility of F. It expresses
how much any model of the formula F is possible.
Note that D is decreasing w. r. t. set inclusion, while
P and N are increasing (in the wide sense).

In this paper, we are interested in updating uncertain
information represented by a possibilistic knowledge
base

S = {(Fi, ai), i = 1,n }
where Fi is a propositional formula., and its certainty
level a i is such that N(Fi) ≥ ai, where N is a necessity
measure (or equivalently P(ÿFi) ≤ 1 - a i) . In
possibilistic logic, the models of a knowledge base
form a fuzzy set whose distribution is p.
This possibility distribution pS is the greatest solution
of the set of constraints N(Fi) ≥ ai, i = 1,n (where N is
the necessity measure associated with the possibility
distribution). It has been shown that (Dubois, Lang,
Prade 1994):

"w Œ W, pS(w) = 1 – max i=1,n / w œ[Fi] ai

= mini=1,n max(m[Fi](w), 1 - ai).
where m[Fi] is the characteristic function of the set
[Fi]. Thus, pS(w) is all the smaller as w falsifies a
formula in S with a high certainty level. The
distribution pS is normalized if and only if the
classical propositional base {Fi, i = 1,n } is logically
consistent.

A necessity measure can also be associated to the
transition rules, associating a level of confidence to
each rule if the agent has an uncertain knowledge of
the evolution.

Representation of a transition function by
a set of transition rules

We consider a set of propositional variables A ;
W ≡ P(A) is the universe of possible states, and L the
set of formulae on A.

Case of a crisp transition function

Definition. An imprecise representation f of a
transition function (from W to W) , on A is a set of
pairs (H; C) called rules, where H and C are formulae
on A.

Intuitively, it is to be understood as: “if H is true at a
time t, then C has to be true at the time t + 1”. The

KR 2004 339

idea of describing pieces of evolution under the form
of pairs, possibly associated with complementary
terms related to uncertainty or nonmonotonicity, can
be found in many authors, e.g. (Cordier and Siegel
1992, 1995). This representation is imprecise because
even if the present state is completely known (H is
represented by a singleton in W), there may remain a
choice in C between several future possible states.

Given an imprecise representation f of a transition
function, one can define a corresponding relation
G on W. Then,G(w) gives all the possible states at the
next time assuming that the initial state is w, based on
the available information encoded by f. As the
knowledge of a set of possible states A Õ W is
interpreted as an imprecise piece of knowledge, each
state of A can be the real state, so each successor of
each state of A is a possible state at the next time. G
is extended to sets of states using upper images,
posing

G(A) = »wŒA G(w).
Moreover, to remain consistent with our
interpretation of the rules, we want to have

" (H; C) Œ f, G([H]) Õ [C].
This imposes that
 "w Œ W, " (H; C) Œ f , w Œ [H] fi G(w) Õ [C].
So the most general possible form for G is given by

G(w) = «(H;C) Œ f/ wŒ[H] [C],
abbreviated into G(w) = «wŒ[H] [C].
One can then compute the inverse relation

G-1(w) = «(H;C) Œ f/ wŒ[C]c [H]c.
where the exponent denotes set complementation.
One can see that G and G-1 have similar forms,
switching H and C and complementing them. Thus
we can pose

f-1= {(¬C; ¬H) | (H;C) Œ f},
which corresponds to the contrapositive of the rule.

Example
Let us imagine a simple coffee machine which can be
working (W) or be broken, have got enough money
from the user (M), have a goblet under the tap (G), or
be delivering coffee (C). Then we can roughly
describe some of its possible transitions by
f = {(WŸMŸG; CŸÿM); (WŸMŸÿG; WŸMŸG);

(ÿG; ÿC); (ÿM; ÿC)}.
For instance, the first rule means that if the machine
is working, has money in it, and a goblet ready, then
in the next state coffee is delivered and money is
spent.

Case of a fuzzy transition function

Now we consider f as a set of triples of the form (H;
C; a), where a is the certainty level of the rule, i.e.

“if H is true at time t, C will have a necessity degree
of at least a at time t+1”.Namely, f = {(H i;
Ci; ai), i=1,n}. By extending the previous approach,
we can now build a fuzzy relation G from this
imprecise and uncertain description of a transition
function:
mG(w, w ’) = 1 – max(H, C, a)Œ f / w Œ[H];w’œ[C] a,

with the convention that ‘max’ taken over an empty
set yields 0. Note that the above expression is
formally similar to the one defining providing
pS(w) from S.

Then, we use the notion of fuzzy upper image
(Dubois and Prade 1992) to extend the relation:

mG(A)(w’) = maxwŒA mG(w, w’).
This is the extension principle of fuzzy set theory
(see, e.g. (Benferhat, Dubois, Prade 2000)). We can
check that if a state w’ does not satisfy C, where (H;
C; a) Œ f, then mG([H])(w’) £ 1 - a , which is what is
expected.

Fuzzy transition functions can be used to represent
the uncertain effects of actions taken by an agent.

Example (continued)
For the coffee machine, we could imagine simple
actions such as putting money in the machine {(ÿM;
M; 1)}, taking the goblet {(G; ÿG; 1)}, or hitting the
machine when it does not work correctly {(W; ÿW;
0.8); (ÿ W; W; 0.1)}. The uncertainty helps
representing the fact that the agent is not sure of the
effects of the action he can take.

Application to updating
Now we consider a necessity-based (N-based for
short) possibilistic knowledge base S = {(Fi, a i), i =
1,n} on W and its induced possibility distribution
pS (or p for short), where (Fi, a i) is understood as
NS(Fi) ≥ ai and NS is associated with pS. We want to
build the N-based possibilistic base S ’ and its
associated possibility distribution p’ such that if a
state is made possible by S, its successors by G are
possible in S ’. This is obtained by computing the
upper image of p by G, but it can also be done at the
syntactic level, drawing S’ directly from S.

Crisp transition graph

Semantically, we define p’ by
p’(w’) = maxwŒG-1(w’) p(w),

as in (Benferhat, Dubois, and Prade 2000), following
the extension principle that computes P(G-1(w’)). It
expresses the fact that if a state w is possible at time t,
its successors w’ by G are at least as possible at time t
+ 1. We can then deduce S’ from this distribution.

340 KR 2004

Lemma 1.
Let (H0; C0) be a rule of f. Let a = NS(H0). Then
NS’(C0) ≥ a.

Proof.
NS(H0) = a so "w Œ [H0]c , p(w) £ 1 - a

since NS(H0) = 1 - maxwœ[H0] p(w).
Let w’Œ W, such that w’ œ [C0].
Then G-1(w’) Õ [H0]c

since G-1(w) = I wŒ[C]c [H]c.
So p’(w’)£ 1 - a because of the first inequality.
Thus NS’(C0) ≥ a
since NS’(C0) = 1 - max wœ[C0] p’(w’).

Q.E.D.

This lemma gives a syntactic way to directly build S’.
It shows that the syntactic computation given by

S’ = {(C; a) | ($ H, (H; C) Œ f) Ÿ a = NS(H)}
is consistent, i.e. each formula of S’ is in the belief
set associated with the distribution p’ (made of the
formulas F such that $ a > 0,Np’(F) ≥ a where Np’ is
defined from p’).

However this computation is not complete as we can
lose information in the process. For example, if we
have f = {(A, B); (C, D)} and S = {(A ⁄ C, 1)}, then
the syntactic computation gives an empty knowledge
base (which corresponds to a constant distribution
equal to 1 everywhere), whereas the upper image
computation validates the formula (B ⁄ D; 1) in S ’,
which is what we would like to achieve at the
syntactic level.

If we take the closure of f, denoted f* and given by
f* = {(A; B)| G([A]) Õ [B]}

for each formula A, then f and f* give the same
graph. Moreover, as f* contains all the rules a system
must obey if it obeys the rules of f, it gives the same
syntactic and semantic computations.

Fuzzy transition graph

Now, we compute the fuzzy upper image (Dubois and
Prade 1992) of p by G to get p’, because all the
successors of possible states are possible at the next
step:

p’(w’) = maxwŒW min{p(w), mG(w, w’)}.
Lemma 2. Let (H0; C0; b) be a rule of f*. Let a =
NS(H0). Then NS’(C0) ≥ min{a, b}.

Proof.
NS(H0) = a so "wœ[H0], p(w) £ 1 - a since

NS(H0) = 1 - max wœ[H0] p(w).
Let w’Œ W, such that w’ œ [C0].
Then "w Œ [H0], mG(w; w’) £ 1 - b

since mG(w, w’) = 1 – max wŒ [H]; w’œ[C] b.
So p’(w’) = maxwŒW min{p(w), mG(w, w’)}
£ max{1 - a, 1 - b} = 1 - min{a, b}
because if w Œ [H0], mG(w, w’)£ 1 - b
and if w œ [H0], p(w) £ 1 - a.
Thus NS’(C0) ≥ min{a, b}.

Q.E.D.

The proof is very similar to the one of lemma 1, and
it allows to define the same syntactic transformation,
namely:

S’ = {(C, a) | $ H s.t. (H; C; b) Œ f*)
Ÿ a = min{b, NS(C)}}.

The problem of information loss is the same as for
the crisp transition function and we can solve it the
same way, using the closure of f denoted f*, given by
the following formula:
 f* =
{(A; B; a) | a = 1 - maxwŒ[A]; w’œ [B] mG(w, w’)}.

Reduction of f*
The results above give a theoretically correct
framework, but the computation of the closure f* of f
is not reasonable in practice: for n propositional
variables, you can have up to 2^(2n+1) rules in f.
Moreover, the use of f* introduces too many
information in S’ which has to be simplified after
that. So we have to eliminate the information that is
not useful from f*, without losing anything
important. For this purpose, we have to first introduce
an informativeness relation between rules.

Definition. Let (H1; C1) and (H2; C2) be two
transition rules.
(H1; C1) is more informative than (H2; C2) iff
[H2] Õ [H1] and [C1] Õ [C2].

It means that a more informative rule only needs a
weaker hypothesis to get a more precise conclusion,
so it is more useful than the other, as this lemma
shows:

Lemma 3. We assume that an imprecise
representation f of a transition function f contains the
rules (H1; C1) and (H2; C2) with (H1; C1) more
informative than (H2; C2). Then f \ (H2; C2) and f
give the same syntactic updating computation.

Proof.
Let w Œ W, such that w Œ [H2]. Then w Œ [H1]. So
G(w) = «wŒ[H] [C] = [C1] « [C2] « [C’], where C’

KR 2004 341

is given by the other hypotheses. As [C1] Õ [C2],
[C1] « [C2] = [C1]. So G(w) = [C1] « [C’]. This is
directly the image of w by the relation of f \ (H2; C2).
Moreover, the suppression of (H2; C2) has no
influence on the states that do not satisfy H2. So f and
f \ (H2; C2) induce the same relation.

Q.E.D.

So we only have to keep the more informative rules
of f*. To do this, we can proceed in two steps:
• For each hypothesis, only keep the more precise
conclusion. As f*= {(H; C)| G([H]) Õ [C]}, we obtain
f1 = {(H; C) | G([H]) = [C]}, where G is the relation
associated with f. At this point, one can observe that
all interesting conclusions look like

[C] = G([H]) = »wŒ[H]«(Hi;Ci) Œ f/ wŒ[Hi] [Ci],
which shows that all useful C can be obtained from a
combination of the Ci that are conclusions of the
rules of f.
• For each conclusion of f1, only keep the less
precise hypothesis to obtain
f2 = {(⁄(H; C) Œ f1 H ; C) | $ H, (H; C) Œ f1}. f2
only contains the most informative rules since their
condition part is as general as possible for a given
conclusion, but f2 is not easy to compute, especially
at the syntactic level.

That is why we try to use a function close to f2 but
syntactically computable. We pose f3 = {(⁄ I (Ÿ J
Hi); ⁄I (ŸJ Ci)) | for all the (Hi; Ci) in f}, where I
and J are any arbitrary and independent sets of
indices of rules in f . First, all the rules of f3 are in f*
because if (H1; C1) and (H2; C2) are rules of f*, (H1
Ÿ H2; C1 Ÿ C2) and (H1 ⁄ H2; C1 ⁄ C2) are also
rules of f*. Secondly, all the conclusions of f2 can be
deduced in f3, thanks to the remark made in the first
point above.

Lemma 4. Let (H’; C’) be a rule of f2. Then
(⁄wŒ[H’] (ŸwŒ[Hi] Hi); ⁄wŒ[H’] (ŸwŒ[Hi] Ci)) is
an equivalent rule, i.e.
[H’] = [⁄wŒ[H’] (ŸwŒ[Hi] Hi)] and
[C’] = [⁄wŒ[H’] (ŸwŒ[Hi] Ci)].

Proof.
Since C’ is a conclusion of f2, there are sets I and JI
such that C’ = ⁄ I ŸJI Ci. The lemma is trivially
verified if H’ = ⁄I ŸJI Hi. Let us assume it is not the
case. Then, since H’ is the least precise hypothesis,
[H’] … [⁄I ŸJI Hi]. So there is a state w which does
not belong to [⁄I ŸJI Hi] but belongs to [H’]. For
this state, G(w) Õ [⁄I ŸJI Ci], so [⁄I ŸJI Ci] = [(⁄I

ŸJI Ci) ⁄ (ŸwŒ[Hi] Hi)]. The same idea applied to
all the states of H’ \ [⁄ I ŸJI Hi] gives that [C’] =
[⁄wŒ[H’] (ŸwŒ[Hi] Ci)]. Moreover we trivially have
that [H’] Õ [⁄wŒ[H’] (ŸwŒ[Hi] Hi)]. If they were
not equal, there would be two states w and w’
satisfying the same hypotheses, thus having the same
image by G, with w Œ [H’] and w’ œ [H’]. Then [H’]
» {w’} would be enough to get the conclusion C’ in
f*, which cannot be since H’ is the least precise
hypothesis that enables the conclusion C’ to be true at
the next time.
So [H’] = [⁄wŒ[H’] (ŸwŒ[Hi] Hi)].

Q.E.D.

So we only need f3 to keep all the information. f3 =
{(⁄I (ŸJI Hi); ⁄I (ŸJI Ci))| all the (Hi; Ci) are in f}.
f3 can also be simplified because if in a knowledge
base S we know (A; a) and (B; b), we can deduce (A
Ÿ B; min{a, b}). So if we develop the rules of f3 to
put them in the form (ŸI’ (⁄J’I’ Hi); ŸI’ (⁄J’I’ Ci)),
in fact we only need to know the elementary
disjunctions. Moreover, once ⁄ J’ I’ Hi is proved,
there is no need to try to use less precise hypotheses,
since they will only bring less precise conclusions.
This leads to the following algorithm:

Algorithm.
Parameters: a set of transition rules f and a
knowledge base S.
Variables: three sets of transition rules g, h and k, an
integer i, a float a and a Boolean b.
Result: a knowledge base S’

S’ := empty base;
g := f;
h := empty set;
for i := 0 to (card (f) -1) do

for each rule (H1, C1) of g do
a := NS(H1);
if a > 0 then do

S’ := S’ » {(C1, a)};
h := h » {(H1, C1)};

done;
 done;
 k := empty set;
 for each rule (H, C) of f do

for each rule (H1, C1) of g do
if (H1,C1) is less informative than (H, C) then

do
continue;

done;
b := true;

for each rule (H2, C2) of h do
if (H ⁄ H1, C ⁄ C1) is less informative

than (H2, C2) then do
b := false;

342 KR 2004

break;
done;

done;
if b then do

k := k » {(H ⁄ H1, C ⁄ C1)};
done;

done;
 done;
 g:= k;
done;
for each rule (H1, C1) of g do

a := NS(H1);
if a > 0 then do

S’ := S’ » {(C1, a)};
done;

done;

At the beginning of each iteration g lists the
disjunctions of i distinct rules of f that could bring
new information if the hypothesis was provable from
S . h lists the rules that have enabled us to add
information to S’, so there is no point in working
with less precise rules. The test to see if a rule is more
informative than another is approximated by a
syntactic test (which may leave some redundancy in
f3 and in S’): since all the rules we consider have the
form (⁄I Hi; ⁄ I Ci), we will only test for two rules
(⁄I Hi; ⁄I Ci) and (⁄J Hj; ⁄J Cj) if I Õ J, which is
weaker (from time to time we can keep a useless
rule), but much easier and cheaper to do. The worst
case is when no disjunction of condition part of rule
in f can be proved from S. Then we have to test 2card
(f) rules. But each time we prove a disjunction of k
rules of f, it enables us not to test up to (2card (f) – k
- 1) less precise rules.

Example (continued)
Let us consider our coffee machine and its transition
rules given by f = {(WŸMŸG; CŸÿM); (WŸMŸÿG;
WŸMŸG); (ÿG; ÿC); (ÿM; ÿC)}. Now we assume
that what we initially know is S = {(W; 0.7); (M; 1)}.
With this knowledge base we can prove no
hypothesis of f, so at the end of the first iteration, f2
and S’ are empty. Then we try with the disjunctions
of 2 rules and this time we can prove ((WŸMŸG) ⁄
(WŸMŸÿ G); 0.7). So at the end of the second
iteration we have
f2 = {((WŸMŸG) ⁄ (WŸMŸÿG); (CŸÿM) ⁄
(WŸMŸG))} and
S’ = {((CŸÿM) ⁄ (WŸMŸG), 0.7)}.
Now we try the disjunctions of 3 distinct rules, but
not those which would be less precise than the one
we already used. This lets only 2 combinations
instead of 4. It gives nothing. As S’ is not empty at
this time, the disjunction of the four rules cannot be
useful since it is less precise than all the rules that
were already found. So we can deduce

S’ = {((CŸÿM) ⁄ (WŸMŸG); 0.7)}, and with the
same method, repeating the application of the
transition rules, S’’ = {((ÿC) ⁄ (CŸÿM); 0.7)}. One
transition function is enough to describe the evolution
of a Markovian stationary system. If the system is not
stationary, we need as many functions as there are
steps in the evolution.

The function can also be used in a diagnosis problem.
If we know that at the time t we have St = {(ÿC, 1)},
then we deduce St-1 = {(ÿW ⁄ÿM⁄ÿG,1)}. The
disjunction indeed embodies the different causes that
can lead to the same effects.

A less straightforward, but abstract, example
illustrating the use of the algorithm is provided in the
Appendix.

Bipolar representation of a knowledge
base

In some situations, it is useful to distinguish between
positive and negative information (Dubois, Hajek,
and Prade 2000). For example, an agent may have
some goals he would like to reach, some situations he
would like to avoid, and between these two extremes,
there are situations with respect to which he is
indifferent. An N-based possibilistic knowledge base
represents negative information, since it specifies an
upper bound by inducing the set of interpretations
that are more or less acceptable since they are not
(completely impossible). Indeed N(Fi) ≥ a i is
equivalent to P(ÿFi) ≤ 1 - a i and having a N-based
possibilistic logic base S = {(Fi, ai), i = 1,n} amounts
to state that the interpretations that are models of the
ÿFi ’s are somewhat impossible, or at least have a
bounded possibility.

One can use a second knowledge base
 L ={(Gj, bj), j=1,m}

where formulae are associated with lower bounds of
guaranteed possibility degrees D in order to represent
positive information (Benferhat et al. 2002a), i.e.,

"j = 1,m, D(Gj) ≥ bj.
These set of inequalities induces a lower bound on
the possibility degree of each interpretation which is
given by

pL(w) = maxj=1,m min(m[Gj](w), b j).
Thus, each interpretation w will have an upper bound
pS(w), and a lower bound pL(w) that assesses to
what extent w is guaranteed to be possible, while
pS(w) expresses to what extent w is not known as
impossible. Of course it does only make sense when
the consistency condition holds

"w Œ W, pS(w) ≥ pL(w).

KR 2004 343

Then we need a second transition function to work
draw the D-base at each step. An easy way to ensure
the consistence condition is to take the same
hypotheses for the two functions and to check that for
each hypothesis, the conclusion for the N-base is
entailed by the conclusion of the D-base.

A crisp transition rule is now interpreted as: “if H is a
true at time t, then C is guaranteed to be possible at
time t+1”. Note that neither H nor C have to be true
at any time, they only have to be possible, which will
be expressed with a D measure. Another relation F
can be deduced from rules interpreted like this. Now
F(w) gives all the states which are guaranteed to be
possible successors of w . The knowledge of a set of
possible states A is still an imprecise piece of
knowledge (corresponding to the constraint N(A) =
1), but now we deal with the D–part of the transition
function, i.e., a state has to be a successor of all the
states of A to be surely accepted. So we can extend F
using lower images (Dubois and Prade 1992), posing

F(A) = «wŒA F(w).

With this interpretation the transition rules have the
property

"(H; C) Œ f, F([H]) ⊇ [C]
so "w, "H, w Œ [H] fi F(w) ⊇ [C].

This time the most general possible form is given by
F(w) = »wŒ[H] [C].

It is easy to see that with this interpretation,
F-1(w) = »wŒ[C] [H]. So this time we can pose f-1

= {(C; H) | (H; C) Œ f}. Now the closure of f is given
by
f*

 = {(A; B)| F([A]) ⊇ [B]}, and then we have: if
(H1; C1) and (H2; C2) belong to f*, then (H1 Ÿ H2;
C1 ⁄ C2) and (H1 ⁄ H2; C1 Ÿ C2) also belong to f*.

A fuzzy transition function will lead to a relation F
based on lower images and a will be regarded as a
guaranteed possibility degree for C. The image of the
states is given by

mF(w, w’) = maxwŒ[H]; w’Œ[C] a

and its extension to fuzzy sets of W by
mF(A)(w’) = minwŒA mF(w, w’).

This time we can see that if a state w’ satisfies C,
then mF([H])(w’) ≥ a, which gives D(C) ≥ a if H was
true at the precedent time. One can also compute the
closure of f:

f* = {(A; B; a) | a = minwŒ[A]; w’Œ[B] mF(w, w’)}

We can use the relation F to draw a future D-
knowledge base from the present N-possibilistic
knowledge base. To do this we compute the lower
image p’ of p by F , which is given by

p’(w’) = minwœF-1(w’) (1 - p(w)).

Then we have the lemma:
Lemma 5. Let (H0; C0) be a rule of f*. If
NS(H0) = b, then D’(C0) ≥ b.

Proof.
NS(H0) = b so "wœ [H0], p(w) £ 1 - b since
NS(H0) = 1 - max wœ[H0] p(w).
Let w’Œ W, such that w’ Œ [C0].
Then F-1(w’) ⊇ [H0] since F-1(w) = »wŒ[C] [H].
So "w œ F-1(w’), p(w) £ 1 - b because of the first
inequality. 1 - p(w) ≥ b.
 p’(w’) ≥ b because
p’(w’) = minwœF-1(w’) (1 - p(w))
Thus D S’(C0) ≥ b since D S’(C0) =
minw’Œ[C0] p’(w’).

Q.E.D.

As for the other interpretation, we now have a
syntactic way to compute SD’, which is given by

SD’ = {(C; b) | ($H, (H; C) Œ f*) Ÿ b = NS(H)}.

These results can be extended when using a fuzzy
transition function f* to work on a D-knowledge base.
The semantic computation of p’ is deduced from a
fuzzy lower image (Dubois and Prade 1992), using
Dienes implication:

p’(w’) = minwŒW max{1 - p(w), mF(w; w’)}.
We finally get a counterpart of lemma 2:

Lemma 6. Let (H0; C0; a0) be a rule of f*. Let b =
NS(H0). Then DS’(C0) ≥ min{a, b}.

Proof.
NS(H0) = b so "w œ [H0], p(w) £ 1 - b since
NS(H0) = 1 - maxwœ[H0] p(w).
Let w’Œ W, such that w’ Œ [C0].
Then "w Œ [H0], mF(w; w’) ≥ a0 since
 mF(w; w’) = max(H; C) / wŒ[H]; w’Œ[C] a.
So p’(w’) = minwŒW max{1 - p(w), mF(w; w’)}

≥ min{a0, b}
because if w œ [H0], 1 - p(w) ≥ a0
and if w Œ [H0], then mF(w; w’) ≥ b

Thus DS’(C0) ≥ min{a0; b}.
Q.E.D.

So we are again allowed to compute S’ without
working on W and just posing the formula
S’ =
{(C; b) | ($ H,(H; C; a) Œ f*) Ÿ b = min{a, DS(H)}}.

344 KR 2004

Related works
Providing high level and compact descriptions of
dynamical systems is an important research trends
nowadays in artificial intelligence, e.g. (Boutilier,
Dean, and Hanks 1999). Indeed, agents often have to
react or refer to evolving environments. The paper
can be related to this concern. Different problems are
related to this issue such as the updating of databases,
the description of future or previous states of the
system or environment. Katsuno and Mendelzon
(Katsuno and Mendelzon 1992) have proposed
postulates that the updating of a knowledge base by a
new piece of information should obey. The
underlying semantics of these postulates can be
understood in terms of preferred transitions in given
states (Dubois, Dupin de Saint-Cyr, and Prade 1995).
Here we have assumed that this transition function is
partially known.

The proposed approach can be compared to the
genereralized update procedure introduced by
Boutilier (Boutilier 1995), and further developed in
(Lang, Marquis, Williams 2001) in a more compact
way by taking account logical independence
relations. However several differences are worth
pointing out. (Boutilier 1995) works at the semantical
level only, uses a conditioning operator in the
representational framework of Spohn “kappa”
functions (a framework which can be related to
possibility theory (Dubois and Prade 1991)), and
privileges the most plausible transitions. In this paper,
we work in a purely qualitative framework, both at
the semantic and at the syntactic level, and we take
into account all the more or less certain information
pertaining to the transitions. Moreover, a refined
bipolar possibilistic logic description of transitions is
provided.

Concluding remarks
This paper has shown how partial knowledge about
transition functions pervaded with uncertainty can be
represented in a possibilistic logic style, and how the
prediction and postdiction problems can be handled
with such uncertain transition information from a
possibilistic knowledge base describing the available
information about the current state of the world. It
has been shown how computation can be made
directly at the syntactic level, in agreement with the
possibilistic semantics, using a compact
representation. Moreover these problems have also
been discussed in the case of a richer, bipolar
representation.

This work can be developed in various directions
including extension to first order calculus,
relationships with logic of actions on the one hand,
and possibilistic automata on the other hand.

References
Benferhat, S.; Dubois, D.; and Prade, H. 2000. Kalman-
like filtering and updating in a possibilistic setting. In
Proceedings of the 14th European Conf. on Artificial
Intelligence (ECAI ‘2000), (W. Horn, ed.), Berlin, 8-12.

Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002a.
Bipolar representation and fusion of preferences in the
possibilistic logic framework. In Proceedings of the 8th
International Conference, Principles of Knowledge
Representation and Reasoning (KR 02), Toulouse, France,
421-432. Morgan Kaufmann Publishers.

Benferhat, S.; Dubois, D.; Prade, H.; and Williams M.-A.
2002b. A practical approach to revising prioritized
knowledge bases. Studia Logica 70:105-130

Boutilier, C. 1995. Generalized update#: Belief change in
dynamic settings. In Proceedings of the 14th Inter. Joint
Conf. on Artificial Intelligence (IJCAI'95), 1550-1556.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning#: structural assumptions and
computational leverage. J. of Artificial Intelligence
Research 11:1-94.

Cordier, M.-O., and Siegel, P. 1992. A temporal revision
model for reasoning about world change. In Proceedings of
the 3rd Int. Conf. Principles of Knowledge Representation
and Reasoning (KR'92), 732-739. Morgan Kaufmann.

Cordier, M.-O., and Siegel, P. 1995. Prioritized transitions
for updates. In Proceedings of the 3rd European
Conference on Symbolic and Quantitative Approaches to
Reasoning and Uncertainty (ECSQARU), (C. Froidevaux,
J. Kohlas, eds.), 142-151. LNCS 946, Springer Verlag.

Dubois, D.; Dupin de Saint-Cyr, F.; and Prade, H. 1995.
Update postulates without inertia. In Proceedings of the
Europ. Conf. of Symbolic and Quantitative Approaches to
Reasoning and Uncertainty (ECSQARU ’95), (C.
Froidevaux, J. Kohlas, eds.), 162-170.

Dubois, D.; Hajek, P.; and Prade, H. 2000. Knowledge-
driven versus data-driven logics. J. of Logic, Language,
and Information 9:65-89.

Dubois, D.; Le Berre, D.; Prade, H.; and Sabbadin, R.
1999. Using possibilistic logic for modeling qualitative
decision: ATMS-based algorithms. F u n d a m e n t a
Informaticae 37:1-30.

Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. Handbook of Logic in Artificial Intelligence and
Logic Programming, Vol. 3, (Gabbay, D.M., Hogger, C.J.,
Robinson, J.A et Nute, D., eds.), 439-513. Oxford
University Press.

Dubois, D., and Prade, H. 1988. Possibility Theory.
Plenum Press.

KR 2004 345

Dubois, D., and Prade, H. 1991. Epistemic entrenchment
and possibilistic logic. Artificial Intelligence J. 50:223-
239.

Dubois, D., and Prade, H. 1992. Upper and lower images
of a fuzzy set induced by a fuzzy relation: application to
fuzzy inference and diagnosis. Information Sciences 64:
203-232.

Dubois, D., and Prade, H. 1997. A synthetic view of belief
revision with uncertain inputs in the framework of
possibility theory. Int. J. of Approximate Reasoning
17:295-324.

Katsuno H., and Mendelzon, A.O. 1992. On the difference
between updating a knowledge base and revising it. In
Proceedings of the 2nd Inter. Conf. on Principles of
Knowledge Representation and Reasoning (KR’91), (J.
Allen, R. Fikes, E. Sandewall, eds.)1991, 387-394.
Revised version in Belief Revision, (P. Gärdenfors, ed.),
1992, 301-311. Cambridge Univ. Press.

Lang, J.; Marquis, P.; and Williams M.-A. 2001. Updating
epistemic states. Proceedings of the 14th Australian Joint
Conf. on Artif. Intelligence, AI 2001/ Advances in Artificial
Intelligence (M. Stumptner, D. Corbett, M. Brooks, eds.),
297-308. LNAI 2256, Springer Verlag.

Zadeh, L.A. 1978. Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems, 1: 3-28.

Appendix - Example

Notation :
for two rules r1 = (H1, C1) and r2 = (H2, C2),
we will note r1 ⁄ r2 the rule (H1 ⁄ H2, C1 ⁄
C2). We see that r1 ⁄ r2 = r2 ⁄ r1.

Let us choose
f = {r1 = (B, C ⁄ E), r2 = (E, F), r3 = (B ⁄ C, C ⁄ D),
r4 = (C, D), r5 = (F, G), r6 = (G, B)}

and

S = {(B ⁄ C, 0.7), (E ⁄ F ⁄ G, 1), (B ⁄ E ⁄ G, 0.8)}.

We compute the updated base S’ which is initially
empty. First we try to see if any of the rules of f1 =
{(B, C ⁄ E), (E, F), (B ⁄ C, C ⁄ D), (C, D), (F, G),
(G, A ⁄ B)} can be applied. Only the rule r3 can be
applied so at the end of this step we have S’ = {(C D,
0.7)} (this is the application of the rule to update the
base) and f2 = {r3}.

Then we compute the disjunctions of 2 rules we will
have to deal with at the next step. The rule (r1 ⁄ r1) is
rejected by the first test because we want disjunctions
of distinct rules. The rule (r1 ⁄ r2) is accepted. The
rule (r1 ⁄ r3) is rejected by the second test because r3
is in f2 so it can no longer be used to build other

rules. The rule (r1 ⁄ r4) is accepted although it is
semantically less informative than the rule r3. This is
a consequence of the approximated test of
information. The process goes on and we finally find:
f1 = {r1 ⁄ r2 = (B ⁄ E, C ⁄ E ⁄ F),

r1 ⁄ r4 = (B ⁄ C, C ⁄ D ⁄ E),
r1 ⁄ r5 = (B ⁄ F, C ⁄ E ⁄ G),
r1 ⁄ r6 = (B ⁄ G, B ⁄ C ⁄ E),
r2 ⁄ r4 = (E ⁄ C, D ⁄ F),
r2 ⁄ r5 = (E ⁄ F, F ⁄ G),
r2 ⁄ r6 = (E ⁄ G, B ⁄ F),
r4 ⁄ r5 = (C ⁄ F, D ⁄ G),
r4 ⁄ r6 = (C ⁄ G, B ⁄ D),
r5 ⁄ r6 = (F ⁄ G, B ⁄ G)}.

Thanks to the use of r3 at the first step, there are only
10 rules in f1 instead of 15. At that time we can of
course prove the condition of the rule (r1 ⁄ r4) (since
we have already proved a formula which entails this
one, but the algorithm does not know it), and there is
no other rule to apply. So at the end of this step we
have S’ = {(C ⁄ D, 0.7), (C ⁄ D ⁄ E, 0.7)} and f2 =
{r3, r1 ⁄ r4}. We see that S’ has redundant formulae
due to the acceptance of a useless rule in f1. Then we
compute the disjunctions of 3 distinct rules that could
still bring information, removing those which contain
r3 or (r1 ⁄ r4).

f1 = {r1 ⁄ r2 ⁄ r5 = (B ⁄ E ⁄ F, C ⁄ E ⁄ F ⁄ G),
r1 ⁄ r2 ⁄ r6 = (B ⁄ E ⁄ G, B ⁄ C ⁄ E),
r1 ⁄ r5 ⁄ r6 = (B ⁄ F ⁄ G, B ⁄ C ⁄ E ⁄ G),
r2 ⁄ r4 ⁄ r5 = (E ⁄ C ⁄ F, D ⁄ F ⁄ G),
r2 ⁄ r4 ⁄ r6 = (E ⁄ F ⁄ G, B ⁄ F ⁄ G),
r4 ⁄ r5 ⁄ r6 = (C ⁄ F ⁄ G, B ⁄ D ⁄ G)}

Now we only have 6 possibly useful rules whereas
the total number of rules we could have at this step is
20: the more formulae we deduce, the less work we
will have to work in the future. At this step there are
2 different rules that can be used so after that we get

S’ = {(C ⁄ D, 0.7), (C ⁄ D ⁄ E, 0.7), (B ⁄ F ⁄ G, 1),
(B ⁄ C ⁄ E, O.8)} and f2 = {r3, r1 ⁄ r4, r2 ⁄ r5 ⁄ r6,
r1 ⁄ r2 ⁄ r6}.

When we try to compute the rules to try at the next
step, we find that f1 is empty, which means that the
process is finished (once f1 is empty, it will remain
empty until the end so the system cannot evolve
anymore).

On the whole process, we have tried to apply 22
rules, and the 4 rules we managed to apply enabled us
to skip the 42 other tests. So this algorithm can have a
cost which is much cheaper than its worst case
complexity.

346 KR 2004

