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Abstract

In this paper, a new method for merging multiple inconsis-
tent knowledge bases in the framework of possibilistic logic
is presented. We divide the fusion process into two steps: one
is called the splitting step and the other is called the combi-
nation step. Given several inconsistent possibilistic knowl-
edge bases (i.e. the union of these possibilistic bases is in-
consistent), we split each of them into two subbases accord-
ing to theupper free degreeof their union, such that one
subbase contains formulas whose necessity degrees are less
than theupper free degreeand the other contains formulas
whose necessity degrees are greater than theupper free de-
gree. In the second step, we combine the former using the
maximum (or more generally,T-conorm) combination mode,
while combining the latter using the minimum (or more gen-
erally, T-norm) combination mode. The union of the possi-
bilistic bases obtained by the second step is taken as the final
result of the combination of the possibilistic bases that we
want to merge. We prove that when the possibilistic bases are
consistent with each other, the result of our new combination
method is equivalent to that of the minimum (T-norm) based
combination mode. However, when the sources are inconsis-
tent with each other, the result of our combination mode is
better than that obtained by using the maximum (T-conorm)
based mode. An alternative approach to splitting the possi-
bilistic bases is introduced in the last section. The combina-
tion mode obtained by this splitting method can be applied
to combine knowledge bases which are flat, i.e., without any
priority between their elements.

Introduction
In many cases, we confront the problem of merging in-
consistent information from different sources (Abidi and
Gonzalez 1992; Cholvy 1992; Cholvy and Hunter 1997;
Baral et al. 1992; G̈ardenfors 1988; Liberatore and Schaerf
1998; Konieczny 2000; Konieczny and Pino Pérez 1998;
2002; Dubois, Lang, and Prade 1992; Benferhat et al 1997a;
1998; 1999; 2002; William 1994; 1996). Possibilistic logic
(Dubois, Lang, and Prade 1994) provides a good frame-
work to deal with fusion problems when information is per-
vaded with uncertainty and inconsistency (Dubois, Lang,
and Prade 1992; Benferhat et al. 1997a; 1998; 2002). In
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(Benferhat, Dubois, and Prade 1997a), some syntactic com-
bination modes for merging uncertain propositional knowl-
edge bases, in the framework of possibilistic logic, are pro-
posed. These modes are the counterparts of the semantic
combination modes which are applied to possibility distri-
butions. Among them, two operators,maximum(or more
generally,T-conorm) and minimum(or more generally,T-
norm), are used to combine consistent and inconsistent
sources of information respectively. Given twopossibilis-
tic knowledge basesB1 = {(φi, αi), i = 1, ..., n} and
B2 = {(ψj , βj), j = 1, ...,m}, whereφi andψj are classi-
cal propositional formulas, andαi andβj belonging to [0,1]
are necessity degrees ofφi andψj respectively, the syntac-
tic results of mergingB1 andB2 by the maximum combina-
tion mode and the minimum combination mode areBdm =
{(φi ∨ ψj , min(αi, βj))|(φi, αi) ∈ B1, (ψj , βj) ∈ B2}
andBcm = B1 ∪ B2 respectively.Bdm is always consistent
provided thatB1 orB2 is consistent, whilstBcm is consistent
only if the union ofB1 andB2 is consistent. So the maxi-
mum combination mode is more advisable than the mini-
mum combination mode to deal with inconsistency. How-
ever, when the union ofB1 andB2 is consistent, the mini-
mum combination mode will result in a morespecificpossi-
bilistic knowledge base. That is, the possibility distribution
of the combination ofB1 andB2 by the minimum combina-
tion mode is morespecificthan that of the combination of
B1 andB2 by the maximum combination mode. Therefore,
the maximum combination mode is toocautiousto be used
to merge consistent possibilistic knowledge bases.

In this paper, we propose a split-combination method
based on the maximum (or T-conorm) and the minimum (or
T-norm) operators. Given two possibilistic knowledge bases
B1 andB2 (whereB1 ∪ B2 is inconsistent but each of them
is individually consistent), we first split each of them into
two subbases such thatB1 = C1 ∪ D1 andB2 = C2 ∪ D2

according to theupper free degreeof B1 ∪ B2. Theupper
free degreeof a possibilistic knowledge baseB is the mini-
mum numberα in [0,1] such that thestrict α-cut of B does
not contain any conflict formulas.C1 ∪ C2 is the inconsis-
tent part ofB1 ∪ B2 andD1 ∪ D2 is the consistent part of
B1∪B2. In the second step, we combineC1 andC2 using the
maximum (or more general, T-conorm) combination mode,
while combiningD1 andD2 using the minimum (or more
generally, T-norm) combination mode. Finally, the union of
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the possibilistic bases obtained by the second step is taken
as the result of the combination ofB1 andB2. We prove that
the new combination mode reduces to the minimum combi-
nation mode when no conflict exists and that it is better than
the maximum combination mode for merging inconsistent
knowledge bases.

The new combination method cannot be applied to merge
flat (or classical) knowledge bases, i.e., knowledge bases
without any priorities between their elements, because the
upper free degreeused to split the possibilistic bases is re-
lated to priority. Therefore we propose an alternative ap-
proach to split knowledge bases which do not involve prior-
ity. The revised split-combination method can then be ap-
plied to merging classical knowledge bases.

This paper is organized as follows. In Section 2, we in-
troduce our split-combination method based on the maxi-
mum and the minimum operators for merging inconsistent
knowledge bases, in the framework of possibilistic logic. We
will discuss the properties of the new method in this section.
Then in Section 3, a semantic interpretation of the method
is presented. In Section 4, the maximum and the minimum
operators are extended to the T-norm and the T-conorm op-
erators, and the corresponding properties are investigated.
An alternative approach to splitting the possibilistic knowl-
edge bases is proposed in Section 5. Finally, in Section 6,
we summarize the paper.

A Split-combination based Merging Method
Some basic definitions
In this section, we introduce some basic definitions in pos-
sibilistic logic (Dubois, Lang, and Prade 1994) and define
an upper free degreethat will be used to split possibilistic
bases. We only consider a finite propositional language de-
noted byL. The classical consequence relation is denoted
as|=. φ, ψ, γ,... represent classical formulas.

In possibilistic logic, at the semantic level, the basic no-
tion is a possibility distribution, denoted byπ, which is a
mapping from a set of interpretationsΩ to the interval [0,1].
π(ω) represents the possibility degree of the interpretationω
with the available beliefs. From apossibility distributionπ,
two measures defined on a set of propositional or first order
formulas can be determined. One is the possibility degree of
formulaφ, denoted asΠ(φ) = max{π(ω) : ω |= φ}. The
other is the necessity degree of formulaφ, and is defined as
N(φ) = 1 − Π(¬φ).

At the syntactic level, a formula, called apossibilistic for-
mula, is represented by a pair(φ, α) whereφ is a formula
andα ∈ [0, 1]. Then uncertain pieces of information can be
represented by apossibilistic knowledge basewhich is a fi-
nite set ofpossibilistic formulasof the formB = {(φi, αi) :
i = 1, ..., n}. The possibilistic formula(φi, αi) means
that the necessity degree ofφi is at least equal toαi, i.e.
N(φi) ≥ αi. In this paper, we only consider possibilis-
tic knowledge bases where every formulaφ is a classical
propositional formula. The classical base associated withB
is denoted asB∗, namelyB∗ = {φi|(φi, αi) ∈ B}. A pos-
sibilistic baseB is consistent if and only if its classical base
B∗ is consistent.

Given apossibilistic baseB, a uniquepossibility distri-
bution, denoted byπB can be obtained by the principle of
minimum specificity. For allω ∈ Ω,

πB(ω) =

{

1 if ∀(φi, αi) ∈ B, ω |= φi,
1 − max{αi|ω 6|= φi} otherwise. (1)

The inconsistency degreeof B, which defines the level of
inconsistency ofB, is defined by

Inc(B) = 1 − maxωπB(ω).

Definition 1 (Dubois, Lang, and Prade 1994)Let B be a
possibilistic base, andα ∈ [0, 1]. We call theα-cut (re-
spectively strictα-cut) ofB, denoted byB≥α (respectively
B>α), the set of classical formulas inB having a necessity
degree at least equal toα (respectively strictly greater than
α).

The inconsistency degreeof B in terms of theα-cuts can be
equivalently defined as (Dubois, Lang, and Prade 1994):

Inc(B) = max{αi|B≥αi
is inconsistent}.

Definition 2 (Dubois, Lang, and Prade 1994)Let B be a
possibilistic base. Let(φ, α) be a piece of information with
α>Inc(B). (φ, α) is said to be a consequence ofB, denoted
byB `π (φ, α), iff B≥α ` φ.

Definition 3 (Benferhat, Dubois, and Prade 1997b)A
subbaseA of B is said to be minimally inconsistent if and
only if it satisfies the following two requirements:

• (A)∗|=false, where(A)∗ is the classical base ofA, and

• ∀φ ∈ (A)∗, (A)∗−{φ} 6|= false.

Definition 4 (Benferhat, Dubois, and Prade 1997b)A
possibilistic formula(φ, α) is said to befree in B iff it
does not belong to any minimally inconsistent subbase ofB.
Free(B) denotes the set of free formulas inB.

Another concept that is based on theminimally inconsis-
tent subbaseand is related with the free formula is defined
as follows.

Definition 5 A possibilistic formula(φ, α) is said to be in
conflict in B iff it belongs to some minimally inconsistent
subbase ofB.

Clearly, a formula is a conflict formulas ofB iff it is not a
free formula ofB.

Now, we give our definition of theupper free degreeof a
possibilistic base, based on the definition ofconflict formu-
las.

Definition 6 The upper free degree of a possibilistic baseB
is defined as:

Freeupp(B) = min{αi ∈ [0, 1] : B>αi
does not

contain any conflict formulas}.(2)

Freeupp(B) = 0 whenB is consistent.B>αi
contains some

free formulas ofB, but not all of them.
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Definition 7 (upper-free-degree-based splitting) Given a
possibilistic baseB, the splitting of B with regard to
Freeupp(B) is defined as a pair< C,D > such thatB =
C ∪ D, where

C = {(φ, α) ∈ B | α≤Freeupp(B)}

and
D = {(φ, α) ∈ B | α>Freeupp(B)}.

By Definition 6,C is inconsistent ifFreeupp(B) > 0 andD
is always consistent. It is clear thatFreeupp(B)≤Inc(B),
for each possibilistic knowledge baseB.

Let us look at an example to illustrate how to split a pos-
sibilistic base.

Example 1 Given a possibilistic knowledge baseB =
{(φ, 0.4), (¬φ ∨ ψ, 0, 3), (¬φ ∨ ¬γ, 0.6), (¬ψ ∨
γ, 0.5), (¬ψ ∨ δ, 0.9), (φ ∨ δ, 0.7)}, by Definition 6, the
upper free degree ofB is 0.6.B is then split into< C,D >
such that

C = {(φ, 0.4), (¬φ ∨ ψ, 0, 3), (¬φ ∨ ¬γ, 0.6),

(¬ψ ∨ γ, 0.5)},

D = {(¬ψ ∨ δ, 0.9), (φ ∨ δ, 0.7)}.

In (Benferhat, Dubois, and Prade 1997a), some combi-
nation rules for merging possibilistic bases are proposed.
Among them, two basic combination modes, the maximum
combination mode and the minimum combination mode, are
introduced to merge inconsistent and consistent sources of
information respectively. Given two possibilistic basesB1

andB2 with possibility distributionsπB1
and πB2

respec-
tively, the semantic results of the combination ofB1 andB2

using the maximum combination mode and the minimum
combination mode are

∀w, πBdm
(w) = max{πB1

(w), πB2
(w)}, (3)

∀w, πBcm
(w) = min{πB1

(w), πB2
(w)} (4)

respectively. And the syntactic results which are the coun-
terpart of the semantic results are

Bdm = {(φi ∨ ψj , min(αi, βj))|(φi, αi) ∈ B1,

and (ψj , βj) ∈ B2}, (5)

Bcm = B1 ∪ B2. (6)

Bdm andBcm are referred to as the results of thedisjunc-
tive and conjunctivecombination respectively (Benferhat,
Dubois, and Prade 1997a).

A split-combination method
Based on Definition 7, we now introduce our method which
splits and combines two possibilistic basesB1 andB2, where
B1 ∪B2 is inconsistent but each of them is individually con-
sistent. The procedure consists of the following steps:

Upper-free-degree-based-split-combination(S-C
Combination) Algorithm

• Step 0: Let B1 = {(φ1, α1), ..., (φn, αn)} andB2 =
{(ψ1, β1), ..., (ψm, βm)} be two possibilistic bases,
computeFreeupp(B1 ∪ B2).

• Step 1:SplitB1 andB2 with regard toFreeupp(B1∪B2)
as follows. Let< C′,D′ > be a splitting ofB1 ∪ B2 with
regard toFreeupp(B1∪B2). The splitting ofB1 is a pair
< C1,D1 > such thatC1 = C′∩B1 andD1 = D′∩B1. The
splitting ofB2 is a pair< C2,D2 > such thatC2 = C′∩B2

andD2 = D′ ∩ B2.

• Step 2:CombineC1 andC2 by the maximum operator and
combineD1 andD2 by the minimum operator, as shown
by Equation (5) and Equation (6), the results are

C = {(φi ∨ ψj , min(αi, βj))|(φi, αi) ∈ C1,

(ψj , βj) ∈ C2}, (7)

D = D1 ∪ D2. (8)

• Step 3: The final result of the S-C combination method,
denoted byBS−C , is C ∪ D.

In Step 1 above, we splitB1 into C1 andD1 and splitB2

into C2 andD2 by the upper free degreeof B1 ∪ B2. By
Definition 6 and Definition 7, all the conflict formulas in
B1 ∪ B2 occur in C1 ∪ C2. So C1 ∪ C2 is inconsistent if
Freeupp(B1∪B2) > 0 andD1∪D2 is consistent. Since the
maximum operator is more advisable for combining incon-
sistent sources and the minimum operator is more advisable
combining consistent sources, we combineC1 andC2 by the
maximum operator, and combineD1 andD2 by the mini-
mum operator in Step 2. We give an example to illustrate
the algorithm.

Example 2 Given two possibilistic knowledge
bases B1 = {(φ, 0.2), (ψ, 0.4), (γ, 0.7)} and
B2 = {(φ, 0.6), (¬ψ, 0.5), (γ, 0.3)}. The upper
free degree ofB1 ∪ B2 is 0.5, soB1 and B2 are split as
< C1,D1 > and< C2,D2 > such that

C1 = {(φ, 0.2), (ψ, 0.4)}, D1 = {(γ, 0.7)}

and

C2 = {(¬ψ, 0.5), (γ, 0.3)}, D2 = {(φ, 0.6)}.

Applying the maximum combination mode toC1 andC2, and
applying the minimum combination mode toD1 andD2, we
getC = {(φ ∨ γ, 0.2), (φ ∨ ¬ψ, 0.2), (ψ ∨ γ, 0.3)} and
D = {(γ, 0.7), (φ, 0.6)}. The final combination result of
B1 andB2 is

BS−C = {(φ ∨ γ, 0.2), (φ ∨ ¬ψ, 0.2), (ψ ∨ γ, 0.3),

(γ, 0.7), (φ, 0.6)}.

Properties of the new combination method
For two possibilistic basesB1 andB2, if B1 ∪ B2 is con-
sistent, by Definition 6, we haveFreeupp(B1 ∪ B2) = 0.
When we splitB1 andB2 usingFreeupp(B1 ∪ B2), we ob-
tain C1 = ∅, D1 = B1 andC2 = ∅, D2 = B2, which re-
sults inBS−C = B1 ∪ B2. Therefore, the S-C combination
mode is equivalent to the minimum combination mode when
sources are consistent. Next we give some properties of the
new combination method whenB1 ∪ B2 is inconsistent. In
the following, we always assume that the original possibilis-
tic knowledge basesB1 andB2 are individually consistent.
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Proposition 1 Possibilistic baseC obtained by Step 2 of the
S-C algorithm is consistent if initial knowledge bases are
individually consistent.
Proof. SinceC1 is consistent, there exists a model of it. As-
sumeυ is a valuation such thatυ(φi) = true for every
formula φi ∈ (C1)

∗, then since each formula inC has the
form φi ∨ ψj , we must haveυ(φi ∨ ψj) = true, for all
φi ∨ ψj ∈ (C)∗. Therefore, the valuationυ is also a model
of C, thusC is consistent.

Proposition 2 The final possibilistic baseBS−C obtained
by Step 3 in the S-C algorithm is consistent.
Proof. SupposeBS−C is inconsistent, then we have(C ∪
D)∗|=false. By Equation (7), we have(C1)

∗ |= (C)∗.
Therefore(C1 ∪ D)∗|=false. However we have assumed
that B1 is consistent, soC1 must be consistent. Therefore
there must exist some formulas inD which are in conflict
with formulas inC. This is a contradiction, because all for-
mulas inD are free inB1 ∪ B2. This completes our proof.

Proposition 3 Given two possibilistic basesB1 andB2, let
BS−C be the possibilistic base obtained by the S-C combi-
nation mode andBdm be the possibilistic base obtained by
the maximum combination mode, then

BS−C `π (φ, α), for all (φ, α) ∈ Bdm (9)

Proof. By Equation (5), every formula inBdm has the form
(φi∨ψj , min(αi, βj)), where(φi, α) ∈ B1 and(ψj , βj) ∈
B2, so we consider four cases:

Case 1: αi, βj≤Freeupp(B1 ∪ B2), then we have
(φi ∨ ψj , min(αi, βj)) ∈ BS−C . SoBS−C `π (φi ∨
ψj , min(αi, βj)).

Case 2: αi>Freeupp(B1 ∪ B2), andβj≤Freeupp(B1 ∪
B2), thenmin(αi, βj) = βj . Sinceφi |= (φi ∨ ψj) and
αi ≥ βj , we haveBS−C `π (φi ∨ ψj , min(αi, βj)).

Case 3: αi≤Freeupp(B1 ∪ B2), andβj>Freeupp(B1 ∪
B2), this case is a dual to case 2.

Case 4: αi>Freeupp(B1 ∪ B2) andβj>Freeupp(B1 ∪
B2), we can supposeαi>βj , thenmin(αi, βj) = βj . Since
φi |= (φi∨ψj), we haveBS−C `π (φi∨ψj , min(αi, βj)).

Thus we complete the proof.

The converse of Proposition 3 is false. Let us look at an
counter-example.

Example 3 Given two possibilistic basesB1 =
{(φ, 0.5), (¬φ∨ψ, 0.6), (¬φ∨ γ, 0.8)} andB2 = {(¬φ∨
¬ψ, 0.4), (ψ, 0.3), (φ∨δ, 0.9), (¬ψ∨δ, 0.7), (δ∨γ, 0.5)},
the upper free degree ofB1 ∪ B2 is 0.6. Therefore we split
B1 andB2 as< C1,D1 > and< C2,D2 > such that

C1 = {(φ, 0.5), (¬φ ∨ ψ, 0.6)}, D1 = {(¬φ ∨ γ, 0.8)},

and

C2 = {(¬φ ∨ ¬ψ, 0.4), (ψ, 0.3), (δ ∨ γ, 0.5)},

D2 = {(φ ∨ δ, 0.9), (¬ψ ∨ δ, 0.7)}.

CombiningC1 and C2, and combiningD1 andD2 respec-
tively gives

C = {(φ ∨ ψ, 0.3), (¬φ ∨ ψ, 0.3), (φ ∨ δ ∨ γ, 0.5),

(¬φ ∨ ψ ∨ δ ∨ γ, 0.5)},

D = {(¬φ ∨ γ, 0.8), (φ ∨ δ, 0.9), (¬ψ ∨ δ, 0.7)}.

So we have

BS−C = {(φ ∨ ψ, 0.3), (¬φ ∨ ψ, 0.3), (¬φ ∨ γ, 0.8),

(¬φ ∨ ψ ∨ δ ∨ γ, 0.5), (φ ∨ δ ∨ γ, 0.5),

(φ ∨ δ, 0.9), (¬ψ ∨ δ, 0.7)}.

If we combineB1 andB2 by the maximum combination
mode, the result is

Bdm = {(¬φ ∨ ¬ψ ∨ δ ∨ γ, 0.7), (φ ∨ ¬ψ ∨ δ, 0.5),

(¬φ ∨ ψ ∨ δ ∨ γ, 0.5), (¬φ ∨ ψ ∨ γ, 0.3),

(φ ∨ ψ, 0.3), (φ ∨ δ, 0.5), (¬φ ∨ δ ∨ γ, 0.5),

(¬φ ∨ ψ, 0.3), (¬φ ∨ ¬ψ ∨ γ, 0.4),

(φ ∨ δ ∨ γ, 0.5)}

It is easy to check that all the possibilistic formulas inBdm

can be inferred fromBS−C .

Proposition 3 and Example 3 show that theF-C combination
mode is better than themaximumcombination mode.

The proposedF-C combination algorithm is computation-
ally very expensive. We are working on a method to reduce
the computational complexity by viewingB = B1 ∪ B2 as
a layered knowledge base with the inconsistency degree as
Inc(B). When computingFreeupp(B), only those formu-
lae that have the necessity degrees greater thanInc(B) need
to be considered.

Semantic Aspects of The S-C Combination
Method

In this section, we provide a semantic analysis of the S-C
combination method. LetB1 andB2 be two possibilistic
bases, based on Step 1 of the S-C algorithm, they can be
split asB1 = C1 ∪ D1 andB2 = C2 ∪ D2. SupposeπC1

,
πC2

, πD1
andπD2

are the possibility distributions ofC1, C2,
D1, D2 respectively. Then the combination ofC1 andC2 by
the maximum combination mode isC such that

∀ω, πC(ω) = max(πC1
(ω), πC2

(ω)),

and the combination ofD1 andD2 by the minimum combi-
nation mode isD such that

∀ω, πD(ω) = min(πD1
(ω), πD2

(ω)).

Lemma 1 Let BS−C be the combination result of the S-C
method, then

πBS−C
(w) = min(max(πC1

(ω), πC2
(ω)),

min(πD1
(ω), πD2

(ω))). (10)

Proof. Since BS−C = C ∪ D, if ω is a model
of BS−C , then it is a model of bothC and D,
so πBS−C

(w) = 1 = min(πC(ω), πD(ω)) =
min(max(πC1

(ω), πC2
(ω)), min(πD1

(ω), πD2
(ω))).

Otherwise, we have

πBS−C
(ω) = πC∪D(ω)

= min(1 − αi|ω 6|= φi, (φi, αi) ∈ C ∪ D)

= min(πC(ω), πD(ω))

= min(max(πC1
(ω), πC2

(ω)),

min(πD1
(ω), πD2

(ω))).
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Lemma 1 shows that the combination of two inconsistent
knowledge bases at the semantic level can be equally split
into two stages. In the first stage, the inconsistent and
consistent formulae are merged separately using themaxi-
mumand theminumumoperators respectively. In the sec-
ond stage, the merged two subsets of formulae are com-
bined again using theminimumoperator. The operations
performed in these two stages are symmetric to the opera-
tions in the syntactic combination procedure.

By the distributive law of max and min, that is,
min(a,max(b,c))=max(min(a,b),min(a,c)), Equation (10) is
equivalent to

πBS−C
(ω) = max(min(πC1

(ω), πD1
(ω), πD2

(ω)),

min(πC2
(ω), πD1

(ω), πD2
(ω)))

Proposition 4 LetB1, B2 be two possibilistic bases, and let
πBS−C

be the possibility distribution obtained by Equation
(10) andπBdm

be the possibility distribution obtained by
Equation (3), thenπBS−C

is more specific thanπBdm
, that is

πBS−C
(ω) ≤ πBdm

(ω) for all ω ∈ Ω.
Proof. SupposeπBdm

(ω)6=1, then by equation (1),

πB1
(ω) = mini=1,n{1 − αi|ω |= ¬φi, φi ∈ B1}

= min(mini=1,n{1 − αi|ω |= ¬φi, φi ∈ C1},

mini=1,n{1 − αi| |= ¬φi, φi ∈ D1})

= min(πC1
(ω), πD1

(ω)).

Similarly,πB2
(ω) = min(πC2

(ω), πD2
(ω)). Therefore,

πBdm
(ω) = max(πB1

(ω), πB2
(ω))

= max(min(πC1
(ω), πD1

(ω)),

min(πC2
(ω), πD2

(ω))).

It is clearπBS−C
(ω) ≤ πBdm

(ω), soπBS−C
is more specific

thanπBdm
.

T-Norm and T-conorm-Based S-C
Combination Method

Some basic definitions
In (Benferhat, Dubois, and Prade 1997a), some triangular
norm (T-norm for short) based combination modes are in-
troduced to provide a reinforcement effect. Namely, if ex-
pert 1 assigns possibilityπ1(ω) < 1 to an interpretation
ω, and expert 2 assigns possibilityπ2(ω) < 1 to this in-
terpretation, then in some triangular norm modes,π(ω) <
min(π1(ω), π2(ω)), whereπ is the possibility distribution
obtained by combiningπ1 andπ2 using a triangular norm
mode.

Definition 8 (Klement, Mesiar, and Paf 2000)A triangu-
lar norm (T-norm) tn is a two place real-valued function
tn : [0, 1] × [0, 1]→[0, 1] and which satisfies the following
conditions:

1. tn(0,0)=0, and tn(a,1)=tn(1,a)=a, for every a (boundary
condition);

2. tn(a,b)≤tn(c,d) whenevera≤c andb≤d (monotonicity);
3. tn(a,b)=tn(b,a) (symmetry);
4. tn(a,tn(b,c))=tn(tn(a,b),c) (associativity).

A triangular conorm (T-conorm) ct is a two place real-
valued function whose domain is the unit square [0,1]×[0,1]
and which satisfies the conditions 2-4 given in the previous
definition plus the following boundary conditions:

5. ct(1,1)=1,ct(a,0)=ct(0,a)=a.

Any T-conormct can be generated from a T-norm through
the duality transformation:

ct(a, b) = 1 − tn(1 − a, 1 − b)

and conversely.
It is easy to check that the maximum operator is a T-

conorm and the minimum operator is a T-norm. Other
frequently used T-norms are the product operator and the
Lukasiewicz T-norm(max(0, a+b−1)). The duality relation
respectively yields the following T-conorm: theprobabilis-
tic sum(a + b − ab), and thebounded sum(min(1, a + b)).

Given two possibilistic basesB1 andB2 with possibility
distributionsπB1

andπB2
respectively, the semantic results

of their combination by a T-normtn and a T-conormct are

∀ω, πtn(w) = tn(πB1
(w), πB2

(w)), (11)

∀ω, πct(w) = ct(πB1
(w), πB2

(w)). (12)

The syntactic results associated withπtn andπct are respec-
tively the following knowledge bases (Benferhat, Dubois,
and Prade 1997a):

Btn = B1 ∪ B2 ∪ {(φi ∨ ψj , ct(αi, βj))|(φi, αi) ∈ B1

and (ψj , βj) ∈ B2}, (13)

Bct = {(φi ∨ ψj , tn(αi, βj))|(φi, αi) ∈ B1

and (ψj , βj) ∈ B2}. (14)

Syntactic and semantic results of the T-S-C
combination method
In Step 2 of the S-C combination algorithm, if we replace
themaximumoperator by theT-conormand replace themin-
imumoperator by theT-norm, then we get a more general
S-C combination mode, we call itT-norm and T-conorm-
based split-combination mode(or T-S-C combination mode
for short). By Equation (13) and Equation (14), the syntactic
results of the combination ofC1 andC2 by T-conorm and the
combination ofD1 andD2 by T-norm are

C = {(φi ∨ ψj , tn(αi, βj))|(φi, αi) ∈ C1 and

(ψj , βj) ∈ C2}

and

D = D1 ∪ D2 ∪ {(φi ∨ ψj , ct(αi, βj))|

(φi, αi) ∈ D1 and (ψj , βj) ∈ D2}

respectively. Therefore, the syntactic result of combination
of B1 andB2 by the T-S-C combination mode is

BT−S−C = {(φi ∨ ψj , tn(αi, βj))|(φi, αi) ∈ C1

and (ψj , βj) ∈ C2} ∪ D1 ∪ D2 ∪

{(φi ∨ ψj , ct(αi, βj))|(φi, αi) ∈ D1

and (ψj , βj) ∈ D2} (15)
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Proposition 5 Given two possibilistic basesB1 andB2, if
BT−S−C is the possibilistic base obtained by Equation (15)
andBct is the possibilistic base obtained by Equation (14),
then every formula inBct can be inferred fromBT−S−C ,
namely

BT−S−C `π (φ, α), for all (φ, α) ∈ Bct (16)

Proof. Each formula in Bct has the form (φi ∨
ψj , tn(αi, βj)), so we consider four cases:

Case 1: αi, βj≤Freeupp(B1 ∪ B2), then(φi, αi) ∈ C1

and (ψj , βj) ∈ C2. Therefore,(φi ∨ ψj , tn(αi, βj) ∈
BT−S−C and we haveBT−S−C `π (φi ∨ ψj , tn(αi, βj)).

Case 2: αi>Freeupp(B1 ∪ B2) andβj≤Freeupp(B1 ∪
B2), thentn(αi, βj)≤min{αi, βj}< αi. Since(φi, α) ∈
D1 and φi |= φi ∨ ψj , we haveBT−S−C `π (φi ∨
ψj , tn(αi, βj)).

Case 3: αi≤Freeupp(B1 ∪ B2) andβj>Freeupp(B1 ∪
B2), this case is a dual to case 2.

Case 4: αi>Freeupp(B1 ∪ B2) andβj>Freeupp(B1 ∪
B2), then since (φi ∨ ψj , ct(αi, βj)) ∈ D and
ct(αi, βj)≥tn(αi, βj), we have BT−S−C `π (φi ∨
ψj , tn(αi, βj)).

This completes our proof.

Example 4 (Continue Example 2)B1 and B2 are split as
< C1,D1 > and< C2,D2 > such that

C1 = {(φ, 0.2), (ψ, 0.4)}, D1 = {(γ, 0.7)}

and

C2 = {(¬ψ, 0.5), (γ, 0.3)}, D2 = {(φ, 0.6)}.

In this example, we choose max(0,a + b − 1) which is the
Lukasiewicz T-norm as T-norm and min(1,a+b) which is the
bounded sum as T-conorm in the second fusion step. Then
combiningC1 andC2 by the bounded sum and combiningD1

andD2 by the Lukasiewicz T-norm we obtainC andD such
that

C = {(φ ∨ γ, 0), (φ ∨ ¬ψ, 0), (ψ ∨ γ, 0)} = ∅,

D = {(γ, 0.7), (φ 0.6), (ψ ∨ φ, 1)}.
So the syntactic result of combination ofB1 andB2 is

BT−S−C = {(γ, 0.7), (φ, 0.6), (ψ ∨ φ, 1)}.

By Equation (14),Bct obtained by combiningB1 and B2

by T-conorm operator min(1,a + b) is Bct = {(φ, 0), (φ ∨
¬ψ, 0), (φ∨γ, 0), (ψ∨φ, 0), (ψ∨γ, 0), (φ∨γ, 0.3), (¬ψ∨
γ, 0.2), (γ, 0)} = {(φ∨ γ, 0.3), (¬ψ ∨ γ, 0.2)}. It is easy
to check that all the formulas inBct can be inferred from
BT−S−C .

Given two possibilistic basesB1 andB2, after Step 1 in
the T-S-C combination algorithm,B1 andB2 are split into

B1 = C1 ∪ D1 and B2 = C2 ∪ D2.

SupposeπC1
, πC2

, πD1
, πD2

are possibility distribu-
tions of C1, C2, D1, D2 respectively. Then by Equa-
tion (12) and Equation (11), the combination ofC1 and
C2 by the T-conorm isC such that ∀ ω, πC(w) =
ct(πC1

(w), πC2
(w)) and the combination ofD1 and

D2 by the T-norm is D such that ∀ ω, πD(w) =
tn(πD1

(w), πD2
(w)). Since BT−S−C = C ∪ D, we

have ∀ ω, πBT−S−C
(w) = min{πC(w), πD(w)} =

min{ct(πC1
(w), πC2

(w)), tn(πD1
(w), πD2

(w))}.

An Alternative Way to Split Possibilistic Bases
An alternative splitting approach
In the S-C algorithm, given two possibilistic basesB1 and
B2, we split each of them using theupper free degreeof their
union, such thatB1 = C1 ∪D1 andB2 = C2 ∪D2. Then we
combineC1 andC2 by themaximumoperator (or more gener-
ally a T-conormoperator) to deal with inconsistency. Since
C1 ∪ C2 consists of possibilistic formulas inB1 ∪ B2 with
necessity degrees less thanFreeupp(B1 ∪ B2), there may
exist somefree formulasin C1 or C2. So, when we combine
C1 andC2 by themaximumoperator, thesefree formulasare
combined with other formulas as disjunctive forms. How-
ever, we knowfree formulaswill not cause inconsistency, so
it is safe to keep them unchanged. Therefore, we propose
the following approach to split the knowledge bases.

Definition 9 (free-formulas-based splitting) Given a possi-
bilistic baseB, the splitting ofB with regard toFree(B) is a
pair < CCon,DFree > such thatB = CCon ∪DFree, where

DFree = {(φ, α)|(φ, α)∈Free(B)},

CCon = B \ DFree = {(φ, α)|(φ, α)6∈Free(B)}.

That is,DFree contains all the free formulas, andCCon con-
tains all the conflict formulas inB.

Lemma 2 LetB be a possibilistic knowledge base. LetB be
split by upper-free-degree approach and free-formulas ap-
proach respectively, with the splitting results asB = C ∪ D
andB = CCon ∪ DFree. ThenD ⊆ DFree, andCCon ⊆ C.
Proof. Let (φ, α) ∈ D, by Definition 5 and Definition 6, all
the formulas inD are free inB, so(φ, α) is a free formula
in B. Therefore(φ, α) ∈ D andD ⊆ D. On the other hand,
CCon = (B \ D) ⊆ (B \ D) = C.

Now we revise the split-combination algorithm by replac-
ing theupper free degree-based splitting approach with the
free-formulas-based splitting approach.

Free-formulas-based-split-combination(F-S-C Com-
bination) Algorithm

• Step 0: Let B1 = {(φ1, α1), ..., (φn, αn)} andB2 =
{(ψ1, β1), ..., (ψm, βm)} be two possibilistic bases,
computeFree(B1 ∪ B2).

• Step 1:Split B1 andB2 with regard toFree(B1 ∪ B2) as
follows. Let < C′,D′ > be a splitting ofB1 ∪ B2 with
regard toFree(B1 ∪ B2). The splitting ofB1 is a pair
< C1,D1 > such thatC1 = C′∩B1 andD1 = D′∩B1. The
splitting ofB2 is a pair< C2,D2 > such thatC2 = C′∩B2

andD2 = D′ ∩ B2.

• Step 2: CombineCCon1
andCCon2

by the maximum op-
erator, and combineDFree1

andDFree2
by the minimum

operator. The results areCCon andDFree respectively.
By Equation (4) and Equation (5) we have

CCon = {(φi ∨ ψj , min(αi, βj)|(φi, αi) ∈ CCon1
,

(ψj , βj) ∈ CCon2
}, (17)

DFree = DFree1
∪ DFree2

. (18)

• Step 3The final result of the F-S-C combination method,
denoted byBF−S−C , is CCon ∪ DFree.
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Lemma 3 The possibilistic baseBF−S−C obtained by Step
3 in the F-S-C combination algorithm is consistent.
Proof. The proof of lemma 3 is similar to that of Proposition
2.

Proposition 6 Given two possibilistic basesB1 andB2, if
BF−S−C is the possibilistic base obtained by the F-S-C
combination mode andBS−C is the possibilistic base ob-
tained by the S-C combination mode, then

BF−S−C `π (φ, α), for all (φ, α) ∈ BS−C . (19)

Proof. Let (γ, δ) ∈ BS−C , sinceBS−C = C ∪ D, where
C is obtained by Equation (7) andD is obtained by Equa-
tion (8), we have(γ, δ) ∈ C ∪ D. On the one hand, sup-
pose(γ, δ) ∈ D, then(γ, δ) ∈ D1 ∪ D2. By Lemma 2,
D1 ⊆ DFree1

andD2 ⊆ DFree2
. So(γ, δ) ∈ DFree1

∪
DFree2

= DFree. SinceBF−S−C = CCon ∪ DFree, we
have (γ, δ) ∈ BF−S−C , so BF−S−C `π (γ, δ). On
the other hand, suppose(γ, δ) ∈ C, then (γ, δ) has the
form (φi ∨ ψj , min(αi, βj)), where(φi, αi) ∈ C1 and
(ψj , βj) ∈ C2. By Lemma 2,CCon1

⊆ C1 andCCon2
⊆ C2.

We consider following two cases:
Case 1: (φi, αi) ∈ CCon1

and(ψj , δj) ∈ CCon2
. In this

case, we have(γ, δ) = (φi ∨ψj , min(αi, βj)) ∈ CCon. So
(γ, δ) ∈ BF−S−C andBF−S−C `π (γ, δ).

Case 2: (φi, αi) 6∈ CCon1
or (ψj , βj) 6∈ CCon2

. As-
sume(ψj , βj) 6∈ CCon2

(for (φi, αi) 6∈ CCon1
, the proof is

similar). In this case,(ψj , βj) ∈ DFree, so (ψj , βj) ∈
BF−S−C . Sinceψj |= γ, and βj≥min(αi, βj) = δ, we
haveBF−S−C `π (γ, δ).

This completes our proof.

Example 5 (Continue Example 3)Free(B1∪B2) = {(¬φ∨
γ, 0.8), (φ∨δ, 0.9), (¬ψ∨δ, 0.7), (δ∨γ, 0.5)}. SoB1 and
B2 are split as< CCon1

,DFree1
> and< CCon2

,DFree2
>,

where
CCon1

= {(φ, 0.5), (¬φ ∨ ψ, 0.6)},

DFree1
= {(¬φ ∨ γ, 0.8)}.

and
CCon2

= {(ψ, 0.3), (¬φ ∨ ¬ψ, 0.4)},

DFree2
= {(φ ∨ δ, 0.9), (¬ψ ∨ δ, 0.7), (δ ∨ γ, 0.5)}.

By Equation (17) and Equation(18) we have

CCon = {(φ ∨ ψ, 0.3), (¬φ ∨ ψ, 0.3)},

DFree = {(¬φ ∨ γ, 0.8), (φ ∨ δ, 0.9), (¬ψ ∨ δ, 0.7),

(δ ∨ γ, 0.5)}.

Therefore

BF−S−C = {(φ ∨ ψ, 0.3), (¬φ ∨ ψ, 0.3),

(¬φ ∨ γ, 0.8), (φ ∨ γ, 0.9),

(¬ψ ∨ δ, 0.7), (δ ∨ γ, 0.5)},

which is equivalent to{(¬φ ∨ γ, 0.8), (ψ, 0.3), (φ ∨
δ, 0.9), (¬ψ ∨ δ, 0.7)}. It is easy to check thatBF−S−C `π

(φ, α) for any(φ, α) ∈ BS−C .

Application of F-S-C combination method to merge
flat knowledge bases
It has been pointed out in (Dubois, Lang, and Prade 1994)
that when the necessity degrees of all the possibilistic for-
mulas are taken as 1, possibilistic logic will regress to clas-
sical logic. So classical logic is a special case of possibilis-
tic logic in which all the formulas have the same level of
priority. That is, given a set of formulasF = {φ1, ..., φn}
in classical logic, we can relate it with a set of possibilistic
formulasF = {(φ1, 1), ...(φn, 1)}. Therefore, our F-S-C
combination method can be applied to merge flat (or classi-
cal) knowledge bases.

In (Benferhat, Dubois, and Prade 1997b), a consequence
relation calledfree consequence relationis defined to cope
with inconsistency in flat knowledge bases.

Definition 10 A formulaφ is said to be a free consequence
of a flat knowledge baseB, denotedB |=Free φ, if and only
if φ is logically entailed fromFree(B), namely,

B |=Free φ, iff Free(B) |= φ

Given two flat knowledge basesB1 andB2, a method was
introduced in (Benferhat, Dubois, and Prade 1997b) which
concatenatedB1 ∪ B2, i.e., the result of merging isB1∪B2.
WhenB1∪B2 was inconsistent, some inconsistency tolerant
consequence relations, for example, the free consequence
relation, could be used to deal with it.

Proposition 7 Given two flat knowledge basesB1 andB2,
every free consequence ofB1 ∪ B2 can be inferred from
BF−S−C .
Proof. When applying the F-S-C combination algorithm to
mergeB1 andB2 by taking all the necessity degrees of the
formulas inB1 andB2 as 1, we obtain

BF−S−C = D1 ∪ D2 ∪ {φ ∨ ψ|φ ∈ B1, ψ ∈ B2,

φ, ψ 6∈Free(B1 ∪ B2)}.

SinceD1 ∪ D2 = Free(B1 ∪ B2), we have

BF−S−C = Free(B1 ∪ B2) ∪ {φ ∨ ψ|φ ∈ B1, ψ ∈ B2,

φ, ψ 6∈Free(B1 ∪ B2)}.

SoFree(B1 ∪B2) ⊆ BF−S−C . If γ is afree consequence
ofB1∪B1, thenFree(B1∪B2) ` γ. Therefore,BF−S−C `
γ.

The proof of proposition 7 shows thatBF−S−C keeps all the
free formula unchanged, and combine all the subbases con-
taining conflict formulas. By contrast, if we combineB1 and
B2 by concatenation and deal with the inconsistency using
the free consequence relation, then only free formulas are
used and the conflict formulas are ignored. Consequently,
the converse of proposition 7 is false.

Example 6 Given two flat basesB1 = {φ, ¬φ∨¬ψ},B2 =
{ψ, ¬φ ∨ δ, ψ ∨ δ}, the free base ofB1 ∪ B2 is Free(B1 ∪
B2) = {¬φ ∨ δ, ψ ∨ δ}. SplittingB1 andB2 with regard
to Free(B1 ∪ B2), we haveB1 = CCon1

∪ DFree1
such

that CCon1
= {φ, ¬φ ∨ ¬ψ} and DFree1

= ∅, andB2 =
CCon2

∪ DFree2
such thatCCon2

= {ψ} and DFree2
=

{¬φ ∨ δ, ψ ∨ δ}. Then we combineCCon1
and CCon2

by
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the maximum combination mode and combineDFree1
and

DFree2
by the minimum combination mode, the results are

CCon = {φ ∨ ψ} and DFree = {¬φ ∨ δ, ¬ψ ∨ δ}.

So the possibilistic base of combination ofB1 andB2 by the
F-S-C combination mode isBF−S−C = {φ∨ψ, ¬φ∨δ, ψ∨
δ}.

In (Baral et al. 1992), some methods to combine knowl-
edge bases consisting of first order theories are introduced.
Givenn classical knowledge bases, one method is to take the
union of them and select all the maximal consistent subbases
1 from the union to resolve the inconsistency, i.e., a formula
is a maximal-consistent-subbase based consequence (MCS-
consequence for short) of the union iff it can be inferred
from every maximal consistent subbases of the union. The
following example shows that our method is not comparable
with the MCS-consequence based method.

Example 7 Given two classical knowledge basesB1 =
{φ,¬φ∨¬ψ, γ} andB2 = {ψ, ,¬φ∨¬γ}. Since{φ,¬φ∨
ψ,ψ} and {φ,¬φ ∨ ¬γ, γ} are two minimal inconsistent
subbases ofB1∪B2, Free(B1 ∪ B2) = ∅. By the F-S-C
algorithm,BF−S−C = {φ ∨ ψ,¬φ ∨ ¬ψ ∨ ¬γ, ψ ∨ γ}. By
contrast,B1 ∪ B2 contains five maximal consistent knowl-
edge basesB1 = {φ, ψ, γ}, B2 = {φ, ψ,¬φ ∨ ¬γ},
B3 = {φ, γ,¬φ ∨ ¬ψ}, B4 = {φ,¬φ ∨ ¬ψ,¬φ ∨ ¬γ},
B5 = {ψ, γ,¬φ ∨ ¬ψ,¬φ ∨ ¬γ}. It is easy to check that
ψ∨γ can not be inferred fromB4, therefore, it is not a MCS-
consequence ofB1∪B2. However,ψ ∨ γ ∈ BF−S−C , so it
can be inferred fromBF−S−C . Conversely,φ∨ γ can be in-
ferred from eachBi, so it is a MCS-consequence ofB1∪B2.
However,φ ∨ γ can not be inferred fromBF−S−C .

Conclusions
In this paper we first proposed a new method for merging
inconsistent possibilistic bases. Fusion of possibilistic bases
is completed by two steps. In the first step, each of the pos-
sibilistic bases is split into two subbases with regard to the
upper free degree of their union, such that one subbase con-
tains formulas whose necessity degrees are less than theup-
per free degreeand the other contains formulas whose neces-
sity degrees are greater than theupper free degree. Then in
the second step, we combine those subbases containing for-
mulas with necessity degree less than theupper free degree
using the maximum (or more generally,T-conorm) combina-
tion mode, while combining the subbases containing formu-
las with necessity degree greater than theupper free degree
using the minimum (or more generally,T-norm) combina-
tion mode. The union of the possibilistic bases obtained by
the second step is taken as the result of the combination of
the possibilistic bases we want to merge. We proved that
the combination mode obtained by the new method is better
than the maximum combination mode. We then proposed
another splitting method, called aFree-formulas-basedsplit-
ting. The combination algorithm, called a F-S-C combina-

1A maximal consistent subbasesX of a knowledge baseB is
a consistent subbase such that none of the consistent subbase ofB
containsX.

tion algorithm, obtained by theFree-formulas-basedsplit-
ting can be applied to merge knowledge bases which are flat.
We proved that the F-S-C method is better than thefree con-
sequencebased merging method in (Benferhat, Dubois, and
Prade 1997b).

Acknowledgments
We would like to thank the referees for their valuable com-
ments.

References
Abidi, M.A., and Gonzalez, R.C. eds. 1992.Data Fusion
in Robotics and Machine Intelligence.Academic Press.
Baral, C.; Kraus, S.; Minker, J.; and Subrahmanian, V.S.
1992. Combining knowledge bases consisting in first order
theories.Computational Intelligence8(1):45-71.
Benferhat, S.; Dubois, D.; and Prade, H. 1997a. From se-
mantic to syntactic approaches to information combination
in possibilistic logic. In Bouchon-Meunier, B. eds.,Ag-
gregation and Fusion of Imperfect Information, 141-151.
Physica. Verlag.
Benferhat, S.; Dubois, D.; and Prade, H. 1997b. Some syn-
tactic approaches to the handling of inconsistent knowl-
edge bases: A comparative study. Part 1: The flat case.
Studia Logica58(1):17-45.
Benferhat, S.; Dubois, D.; Lang, J.; Prade, H.; Saffiotti, A.;
and Smets, P. 1998. A general approach for inconsistency
handling and merging information in prioritized knowledge
bases. InProceedings of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning
(KR98), 466-477. Morgan Kaufmann.
Benferhat, S.; Dubois, D.; Prade, H.; and Williams, M.A.
1999. A Practical Approach to Fusing Prioritized Knowl-
edge Bases. InProceeding of 9th Portuguese Conference
on Artificial Intelligence(EPIA99), 223-236. Springer-
Verlag.
Benferhat, S.; Dubois, D.; and Prade, H. 2002. Possibilistic
merging and distance-based fusion of propositional infor-
mation.Annals of Mathematics and Artificial Intelligence
34:217-252.
Cholvy, L. 1992. A logical approach to multi-sources rea-
soning. InProceedings of International Conference Logic
at Work on Knowledge Representation and Reasoning Un-
der Uncertainty, Logic at Work, 183-196. Springer-Verlag.
Cholvy, L., and Hunter, A. 1997. Information Fusion in
Logic: A Brief Overview. In Qualitative and Quantita-
tive Practical Reasoning, (ECSQARU’97/FAPR’97), Vol-
ume 1244 ofLNCS, 86-95.
Dubois, D.; Lang, J.; and Prade, H. 1992. Dealing with
Multi-Source Information in Possibilistic Logic. InPro-
ceedings of 10th European Conference on Artificial Intelli-
gence(ECAI 92), 38-42.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In Handbook of logic in Aritificial Intelligence and
Logic Programming, Volume 3. Oxford University Press,
439-513.

KR 2004    355



Klement, E.P.; Mesiar, R.; and Paf, E., 2000.Triangular
Norms. Kluwer Acacemic Publishers.
Gärdenfors P. 1988.Knowledge in Flux-Modeling the Dy-
namic of Epistemic States.Mass.: MIT Press.
Konieczny, S., and Pino Pérez, R. 1998. On the logic of
merging. InProceedings of the Sixth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’98), 488-498. Morgan Kaufmann.
Konieczny, S. 2000. On the difference between merging
knowledge bases and combining them. InProceedings
of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’00), 12-17.
Morgan Kaufmann.
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