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Abstract

In this paper, a new method for merging multiple inconsis-
tent knowledge bases in the framework of possibilistic logic
is presented. We divide the fusion process into two steps: one
is called the splitting step and the other is called the combi-
nation step. Given several inconsistent possibilistic knowl-
edge bases (i.e. the union of these possibilistic bases is in-
consistent), we split each of them into two subbases accord-
ing to the upper free degre®f their union, such that one
subbase contains formulas whose necessity degrees are less
than theupper free degreand the other contains formulas
whose necessity degrees are greater thampiper free de-
gree In the second step, we combine the former using the
maximum (or more generallif-conorm combination mode,
while combining the latter using the minimum (or more gen-
erally, T-norn) combination mode. The union of the possi-
bilistic bases obtained by the second step is taken as the final
result of the combination of the possibilistic bases that we
want to merge. We prove that when the possibilistic bases are
consistent with each other, the result of our new combination
method is equivalent to that of the minimufigorm based
combination mode. However, when the sources are inconsis-
tent with each other, the result of our combination mode is
better than that obtained by using the maximdrtgnorm)
based mode. An alternative approach to splitting the possi-
bilistic bases is introduced in the last section. The combina-
tion mode obtained by this splitting method can be applied
to combine knowledge bases which are flat, i.e., without any
priority between their elements.

Introduction

In many cases, we confront the problem of merging in-
consistent information from different sources (Abidi and
Gonzalez 1992; Cholvy 1992; Cholvy and Hunter 1997;
Baral et al. 1992; @rdenfors 1988; Liberatore and Schaerf
1998; Konieczny 2000; Konieczny and PinérBz 1998;
2002; Dubois, Lang, and Prade 1992; Benferhat et al 1997a;
1998; 1999; 2002; William 1994; 1996). Possibilistic logic
(Dubois, Lang, and Prade 1994) provides a good frame-
work to deal with fusion problems when information is per-
vaded with uncertainty and inconsistency (Dubois, Lang,
and Prade 1992; Benferhat et al. 1997a; 1998; 2002). In

Copyright © 2004, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

348 KR 2004

DH.Glass@ulster.ac.uk

(Benferhat, Dubois, and Prade 1997a), some syntactic com-
bination modes for merging uncertain propositional knowl-
edge bases, in the framework of possibilistic logic, are pro
posed. These modes are the counterparts of the semantic
combination modes which are applied to possibility distri-
butions. Among them, two operatommaximum(or more
generally, T-conornm) and minimum(or more generally;T-
norm), are used to combine consistent and inconsistent
sources of information respectively. Given twossibilis-

tic knowledge base8; = {(¢;, i), i = 1,...,n} and

By = {(v;, 8;),7 =1,...,m}, whereg, and); are classi-

cal propositional formulas, ang; andg; belonging to [0,1]

are necessity degrees ¢f and; respectively, the syntac-
tic results of merging3; and3; by the maximum combina-
tion mode and the minimum combination mode Brg, =

{(¢i V U5, min(as, 8;))|(¢i, i) € Bu, (5, B;) € B}
andB.,, = By U B; respectively.3,,, is always consistent
provided thai3, or B, is consistent, whilsB..,,, is consistent
only if the union of3; and B, is consistent. So the maxi-
mum combination mode is more advisable than the mini-
mum combination mode to deal with inconsistency. How-
ever, when the union of; and B, is consistent, the mini-
mum combination mode will result in a moseecificpossi-
bilistic knowledge base. That is, the possibility disttibn

of the combination of3; and; by the minimum combina-
tion mode is morespecificthan that of the combination of
By andB;y by the maximum combination mode. Therefore,
the maximum combination mode is teautiousto be used

to merge consistent possibilistic knowledge bases.

In this paper, we propose a split-combination method
based on the maximum (or T-conorm) and the minimum (or
T-norm) operators. Given two possibilistic knowledge lsase
By andB,y (whereB; U Bs is inconsistent but each of them
is individually consistent), we first split each of them into
two subbases such th&t = C; U D; andBy; = Cy U Dy
according to theupper free degreef B3, U B,. Theupper
free degreeof a possibilistic knowledge badgis the mini-
mum numbew in [0,1] such that thestrict a-cut of 5 does
not contain any conflict formulas’; U C, is the inconsis-
tent part of3; U B, andD; U D, is the consistent part of
By UB,. In the second step, we combifieandC, using the
maximum (or more general, T-conorm) combination mode,
while combiningD; andD- using the minimum (or more
generally, T-norm) combination mode. Finally, the union of



the possibilistic bases obtained by the second step is taken Given apossibilistic base3, a uniquepossibility distri-

as the result of the combination Bf and;. We prove that
the new combination mode reduces to the minimum combi-
nation mode when no conflict exists and that it is better than
the maximum combination mode for merging inconsistent
knowledge bases.

The new combination method cannot be applied to merge
flat (or classical) knowledge bases, i.e., knowledge bases

bution, denoted byri can be obtained by the principle of
minimum specificity. For allu € ,

1 if V((bz, ai) S B,w |: ¢i,
1 — maz{o;|lw £~ ¢;} otherwise.

mo(e) = { o)

Theinconsistency degreef 5, which defines the level of

without any priorities between their elements, because the inconsistency of3, is defined by

upper free degre@sed to split the possibilistic bases is re-

lated to priority. Therefore we propose an alternative ap-
proach to split knowledge bases which do not involve prior-
ity. The revised split-combination method can then be ap-
plied to merging classical knowledge bases.

This paper is organized as follows. In Section 2, we in-
troduce our split-combination method based on the maxi-
mum and the minimum operators for merging inconsistent
knowledge bases, in the framework of possibilistic logie W
will discuss the properties of the new method in this section
Then in Section 3, a semantic interpretation of the method
is presented. In Section 4, the maximum and the minimum

operators are extended to the T-norm and the T-conorm op-

erators, and the corresponding properties are investigate
An alternative approach to splitting the possibilistic Who

edge bases is proposed in Section 5. Finally, in Section 6,

we summarize the paper.

A Split-combination based Merging Method
Some basic definitions

In this section, we introduce some basic definitions in pos-
sibilistic logic (Dubois, Lang, and Prade 1994) and define
an upper free degre¢hat will be used to split possibilistic

bases. We only consider a finite propositional language de-

noted byL. The classical consequence relation is denoted
ask. ¢,1,7,... represent classical formulas.

In possibilistic logic, at the semantic level, the basic no-
tion is apossibility distribution denoted byr, which is a
mapping from a set of interpretatiofisto the interval [0,1].
m(w) represents the possibility degree of the interpretation
with the available beliefs. Frompossibility distributionr,

two measures defined on a set of propositional or first order
formulas can be determined. One is the possibility degree of

formula¢, denoted a3l(¢) = maz{r(w) : w | ¢}. The
other is the necessity degree of formglaand is defined as
N(§) =1 —TI(=g).

At the syntactic level, a formula, calledoassibilistic for-
mula is represented by a paip, «) where¢ is a formula
anda € [0,1]. Then uncertain pieces of information can be
represented by possibilistic knowledge basehich is a fi-
nite set ofpossibilistic formula®f the formB = {(¢;, a;) :

i = 1,..,n}. The possibilistic formula(¢;, a;) means
that the necessity degree ¢f is at least equal tey;, i.e.
N(¢;) > «;. In this paper, we only consider possibilis-
tic knowledge bases where every formulas a classical
propositional formula. The classical base associated &ith
is denoted a®*, namelyB* = {¢;|(¢:, o) € B}. A pos-
sibilistic baseB is consistent if and only if its classical base
B* is consistent.

Inc(B) =1 — max,75(w).

Definition 1 (Dubois, Lang, and Prade 1994)Let 5 be a
possibilistic base, and € [0,1]. We call thea-cut (re-
spectively striciv-cut) of 3, denoted by3-,, (respectively
B-.), the set of classical formulas i having a necessity
degree at least equal t@ (respectively strictly greater than
Q).

Theinconsistency degregf B in terms of then-cuts can be
equivalently defined as (Dubois, Lang, and Prade 1994):

Inc(B) = max{a;|B>q, is inconsistent}.

Definition 2 (Dubois, Lang, and Prade 1994)Let 5 be a
possibilistic base. Lefp, «) be a piece of information with
a>Inc(B). (¢, «) is said to be a consequencetfifdenoted
byBFr (¢, ), iff B> - ¢.

Definition 3 (Benferhat, Dubois, and Prade 1997b)A
subbaseA of 55 is said to be minimally inconsistent if and
only if it satisfies the following two requirements:

o (A)*E=false, where(A)* is the classical base od, and
o Vo € (A)", (A)"—{o} [~ false.

Definition 4 (Benferhat, Dubois, and Prade 1997b)A
possibilistic formula(¢, «) is said to befree in B iff it
does not belong to any minimally inconsistent subbad# of
Free(3) denotes the set of free formulasBn

Another concept that is based on théimally inconsis-
tent subbasand is related with the free formula is defined
as follows.

Definition 5 A possibilistic formula¢, «) is said to be in
conflict in B iff it belongs to some minimally inconsistent
subbase of.

Clearly, a formula is a conflict formulas &f iff it is not a
free formula of3.

Now, we give our definition of thepper free degreef a
possibilistic base, based on the definitiorcofflict formu-
las.

Definition 6 The upper free degree of a possibilistic b#se
is defined as:

Freey,(B) = min{a; € [0,1] : B>, does not

contain any conflict formulas}(2)

Freey,,(B) = 0 whenB is consistentB-.,,, contains some
free formulas of3, but not all of them.
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Definition 7 (upper-free-degree-based splitting) Given a
possibilistic baseBB, the splitting of B with regard to
Freey,p,(B) is defined as a paik C,D > such thatB =

C UD, where

C={(¢, o) € Bl a<Freeyu,(B)}

and
D ={(¢, o) € B| a>Freey,(B)}.

By Definition 6,C is inconsistent ifF'ree,,,,(8) > 0 andD
is always consistent. It is clear thatree,,,,(B)<Inc(B),
for each possibilistic knowledge baBe
Let us look at an example to illustrate how to split a pos-
sibilistic base.

Example 1 Given a possibilistic knowledge bade =
{(¢, 0.4),(=¢ V 1, 0,3),(=¢ V =y, 0.6),(7¢ V
v, 0.5), (= V6, 0.9),(¢ Vv 4, 0.7)}, by Definition 6, the
upper free degree df is 0.6. 5 is then split into< C,D >
such that

c = {(st 0'4)’ (ﬁgb \ % 073)’ (ﬁ(ﬁv -, 0~6)>
(— V7, 0.5)},
D = {(-¢Vé 09),(pVd 0.7)}.

In (Benferhat, Dubois, and Prade 1997a), some combi-
nation rules for merging possibilistic bases are proposed.
Among them, two basic combination modes, the maximum
combination mode and the minimum combination mode, are
introduced to merge inconsistent and consistent sources of

information respectively. Given two possibilistic badges
and By with possibility distributionsr;z, and mp, respec-
tively, the semantic results of the combinationffand B,

e Step 1: Split B; andB; with regard toF'ree,,,, (81 U B2)
as follows. Let< C’, D’ > be a splitting of3; U B2 with
regard toF'ree,,,(B1UB2). The splitting ofB; is a pair
< C1,Dy >suchthat; = C'nB; andD; = D'NB;. The
splitting of Bs is a pair< Cy, Dy > such that; = C'N By
andD; = D' N Bs.

e Step 2: CombineC; andC, by the maximum operator and

combineD; andD, by the minimum operator, as shown
by Equation (5) and Equation (6), the results are

C = {(¢iVy, min(as, B5))|(¢i, a;i) € C1,
(¥j, B5) € Ca}, (7)
D =D, UDs. (8)

e Step 3: The final result of the S-C combination method,
denoted byB3s_¢,isCUD.

In Step 1 above, we splif; into C; andD; and split5;
into Co and Ds by the upper free degreef 5; U By. By
Definition 6 and Definition 7, all the conflict formulas in
By U By occur inCy; U Cs. SoCy U Cq is inconsistent if
Freey,,(B1UB2) > 0andD; UD; is consistent. Since the
maximum operator is more advisable for combining incon-
sistent sources and the minimum operator is more advisable
combining consistent sources, we comhihendC, by the
maximum operator, and combirfe;, and D, by the mini-
mum operator in Step 2. We give an example to illustrate
the algorithm.

Example 2 Given two possibilistic knowledge
bases B; = {(¢, 0.2),(x», 04),(y, 0.7)} and
BQ = {(QS? 0'6)7(_‘11)7 05)5 (’Yv 03)} The upper

using the maximum combination mode and the minimum free degree of3; U B, is 0.5, soB; and B, are split as

combination mode are
3
(4)

Vw, T Bam (w) = ma’x{ﬂ—[ﬁ (w)7 TBy (’LU)},

Yw, g, (w) = min{rg, (w), 75, (w)}

respectively. And the syntactic results which are the coun-

terpart of the semantic results are

Baim = {(¢i V;, min(ay, B5))|(di, ai) € By,
and (1, B;) € Ba}, (5)
an = Bl U 82' (6)

By, and B,,,, are referred to as the results of ttisjunc-
tive and conjunctivecombination respectively (Benferhat,
Dubois, and Prade 1997a).

A split-combination method

Based on Definition 7, we now introduce our method which

splits and combines two possibilistic baggsandB,, where

By U By is inconsistent but each of them is individually con-

sistent. The procedure consists of the following steps:
Upper-free-degree-based-split-combination(S-C

Combination) Algorithm

b Step 0: Let Bl = {(¢1» a1)7~'~7(¢n7 an)} andBQ =
{(¥1, 1), (Wm, Bm)} be two possibilistic bases,
computeF'ree,,,(B1 U Ba).
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< C1, Dy > and< Cy, Do > such that
C = {(¢7 0'2)7 (wv 0'4)}7 D, = {(’7» 0'7)}

and

C2 = {(_‘1/)7 05)7 (73 03)}7 D2 = {((st 06)}

Applying the maximum combination mod&tcandC,, and
applying the minimum combination mode?p andD,, we
getC = {(¢ V7, 0.2), (¢ V ~, 0.2),( Vv, 0.3)} and
D = {(~, 0.7),(¢, 0.6)}. The final combination result of
By andB; is

Bsfc = {((ZS\/’Y, 0'2)7(¢vﬁ’¢)7 02)7(1/}\/77 03)7
(v, 0.7), (¢, 0.6)}.

Properties of the new combination method

For two possibilistic baseB, and B, if B; U B; is con-
sistent, by Definition 6, we havEree,,,(B1 U Bsy) = 0.
When we splitB; andB; using F'ree,,, (81 U Bs), we ob-
tainC; = 0, D; = By andCy, = 0, Dy = By, which re-
sults inBs_c = By U By. Therefore, the S-C combination
mode is equivalent to the minimum combination mode when
sources are consistent. Next we give some properties of the
new combination method whd#, U B, is inconsistent. In

the following, we always assume that the original possbili

tic knowledge base8; and3, are individually consistent.



Proposition 1 Possibilistic bas€ obtained by Step 2 of the
S-C algorithm is consistent if initial knowledge bases are
individually consistent.

Proof. SinceC; is consistent, there exists a model of it. As-
sumew is a valuation such that(¢;) = true for every
formula¢; € (C1)*, then since each formula i@ has the
form ¢; V 1;, we must have(¢; V ©;) = true, for all

¢; V ; € (C)*. Therefore, the valuation is also a model

of C, thusC is consistent.

Proposition 2 The final possibilistic bas®&s_~ obtained
by Step 3 in the S-C algorithm is consistent.

Proof. SupposeBs_c is inconsistent, then we hay€ U
D)*=false. By Equation (7), we havéC;)* = (C)*.
Therefore(C; U D)*=false. However we have assumed
that B; is consistent, s@; must be consistent. Therefore
there must exist some formulasZhwhich are in conflict
with formulas inC. This is a contradiction, because all for-
mulas inD are free in3; U B». This completes our proof.

Proposition 3 Given two possibilistic basds; and BB, let
Bs_c be the possibilistic base obtained by the S-C combi-
nation mode and,,,, be the possibilistic base obtained by
the maximum combination mode, then

Bs_c Fr (¢, @), forall (¢, o) € Bam 9)

Proof. By Equation (5), every formula ii;,, has the form
((bi\/’L/Jj, min(ai, ﬁj)),Where((ﬁi, a) e B and(zpj, ﬁj) €
B, so we consider four cases:

Case 1. «y, [B;<Free.,(B1 U By), then we have
(i V by, min(a;, B;)) € Bs—c. S0Bs—c bFr (¢i V
Yy, min(a, B5)).

Case 2: a;>Freey,,(Bi U By), and§; <Free,,,(B1
Bg), thenmin(ai, ﬁj) = ﬁj. Sinceg; |: (qbl Vv wj) and
a; > Bj, we haveBs_c Fr (i V 95, min(ai, B;)).

Case 3: a;<Free,,,(Bi U By), and3;>Freey,,(B1 U
Bs), this case is a dual to case 2.

Case 4: a;>Freeyp,(Bi U By) and 3;>Freeyy,,(B; U
B2), we can suppose;>g;, thenmin(a;, 8;) = 5;. Since
bi = (¢ V;), we haveBs_¢ Fr (¢i Vipy, min(ai, 35)).

Thus we complete the proof.

The converse of Proposition 3 is false. Let us look at an
counter-example.

Example 3 Given two possibilistic bases3; =
{(¢, 0.5),(=¢ V¥, 0.6),(~¢V, 0.8)} andB; = {(~¢ V
=), 0.4), (¢, 0.3), (¢V 4, 0.9), (- V4, 0.7), (6V~, 0.5)},
the upper free degree &, U B is 0.6. Therefore we split
Bi andB, as< C1, D, > and< Co, D> > such that

Cl = {((ba 05)5 (_‘(b vw’ 06)}7 Dl = {(_‘¢ \ e 08)}7

and
Co={(=¢ V1, 0.4), (1, 0.3),(5V v, 0.5)},

Dy ={(p V4, 0.9),(=pVd, 0.7)}.
CombiningC; and C,, and combiningD; and D, respec-
tively gives

C = {(¢V¥,03),(m¢ Ve, 03),(¢pViVy, 0.5),
(¢ Vi VIVy, 0.5)},

D={(~¢V~, 0.8),(6 V35 0.9), (= V6, 0.7)}
So we have

{(¢p V1, 0.3),(mp V1, 0.3),(m¢ V7, 0.8),

(mp VY VVy, 05),(pVEVy, 0.5),

(pV 4, 0.9), (- V4 0.7)}.

If we combine3; and By by the maximum combination

mode, the result is

Bim = {(m¢V-pViVvy, 0.7),(¢V -V, 0.5),
(VY VIVy, 0.5), (¢ VP Vy, 0.3),
(¢V, 0.3),(¢ V6, 0.5),(=pVIVy, 0.5),
(= V1, 0.3),(mpV h V-, 04),
(pVaVvn, 0.5)}

It is easy to check that all the possibilistic formulasig,,

can be inferred fronBg_ .

Proposition 3 and Example 3 show that &€ combination
mode is better than thmaximunmcombination mode.

The proposeé-C combination algorithm is computation-
ally very expensive. We are working on a method to reduce
the computational complexity by viewin§ = B, U B, as
a layered knowledge base with the inconsistency degree as
Inc(B). When computingF'ree,,,(B), only those formu-
lae that have the necessity degrees greaterithafi3) need
to be considered.

Bs_c =

Semantic Aspects of The S-C Combination
Method

In this section, we provide a semantic analysis of the S-C
combination method. LeB; and B, be two possibilistic
bases, based on Step 1 of the S-C algorithm, they can be
splitasB; = C; UD; andBs = C U Dy. Supposere, ,

me,, Tp, andmp, are the possibility distributions @f;, Cs,

D1, D, respectively. Then the combination®©f andC, by

the maximum combination modedssuch that

Yw, me(w) = max(re, (w), me,(w)),
and the combination aP; andD, by the minimum combi-
nation mode i¥ such that

Yw, mp(w) = min(mp, (w), mp,(w)).
Lemmal Let Bs_< be the combination result of the S-C
method, then

TBs_o(w) = min(maz(me, (W), me,(w)),
min(mp, (w), p, (w)))- (10)
Proof. Since Bs_¢ = C U D, if w is a model
of Bs_¢, then it is a model of bothC and D,
S0 ms_o(w) = 1 = min(re(w),mp(w))

min(rp, (), 10 ().

min(max(re, (w), 7e,(w)),

Otherwise, we have
WCUD(W)
= min(l — a;|lw & ¢4, (¢i, a;) €CUD)
in(me(w), mp(w))
min(max(re, (W), me, (w)),
(

min(mp, (w), mp,(w))).

TBs—c (w)

3
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Lemma 1 shows that the combination of two inconsistent
knowledge bases at the semantic level can be equally split
into two stages. In the first stage, the inconsistent and
consistent formulae are merged separately usingrthei-
mumand theminumumoperators respectively. In the sec-
ond stage, the merged two subsets of formulae are com-
bined again using theninimumoperator. The operations

A triangular conorm (T-conorm) ct is a two place real-
valued function whose domain is the unit square [&,[0],1]

and which satisfies the conditions 2-4 given in the previous
definition plus the following boundary conditions:

5. ct(1,1)=1,ct(a,0)=ct(0,a)=a.

Any T-conormct can be generated from a T-norm through

performed in these two stages are symmetric to the opera- the duality transformation:

tions in the syntactic combination procedure.

By the distributive law of max and min, that is,
min(a,max(b,c))=max(min(a,b),min(a,c)quation (10) is
equivalent to

maz(min(wcl (w)v D, (w)7 Dy (w))7
min(me, (w), T, (W), 70, (w)))
Proposition 4 Let B, By be two possibilistic bases, and let
mBs_. be the possibility distribution obtained by Equation
(10) andrp,, be the possibility distribution obtained by
Equation (3), themrs,_ is more specific thang, , thatis
TBs_o (W) < g, (w) forall w € Q.

Proof. Supposerg,, (w)#1, then by equation (1),
mini=1n{l — a;|lw = ~¢;, ¢; € B1}
min(min;—1 n{1 — ai|w = —¢s, ¢; € C1},
min=1,{1 — a;| = =¢i, ¢; € D1})

min(me, (w), 7, (w)).

mp,(w)). Therefore,

TBs—c ((.«J)

75, (W)

Similarly, 7z, (w) = min(re, (w),
(W), 7B, (w))

maz(min(me, (w), 7, (W)),

min(me, (W), mp,(W))).

Itis clearmp,_.,(w) < mg,, (w), SOTs,_, iS more specific
thanng, .

maz(mp,

TBam (w)

T-Norm and T-conorm-Based S-C
Combination Method

Some basic definitions

In (Benferhat, Dubois, and Prade 1997a), some triangular
norm (T-norm for short) based combination modes are in-
troduced to provide a reinforcement effect. Namely, if ex-
pert 1 assigns possibility; (w) < 1 to an interpretation

w, and expert 2 assigns possibility(w) < 1 to this in-
terpretation, then in some triangular norm mode@s,) <
min(m (w), m2(w)), wherer is the possibility distribution
obtained by combiningr; and, using a triangular norm
mode.

Definition 8 (Klement, Mesiar, and Paf 2000)A triangu-
lar norm (T-norm) tn is a two place real-valued function
tn : [0,1] x [0,1]—[0, 1] and which satisfies the following
conditions:

1. tn(0,0)=0, and tn(a,1)=tn(1,a)=a, for every a (boundary
condition);

tn(a,bXtn(c,d) wheneveti<c andb<d (monotonicity);
tn(a,b)=tn(b,a) (symmetry);

tn(a,tn(b,c))=tn(tn(a,b),c) (associativity).

2.
3.
4.
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ct(a,b) =1—tn(l —a,1-0)

and conversely.

It is easy to check that the maximum operator is a T-
conorm and the minimum operator is a T-norm. Other
frequently used T-norms are the product operator and the
Lukasiewicz T-norrtmax (0, a+b—1)). The duality relation
respectively yields the following T-conorm: tipeobabilis-
tic sum(a + b — ab), and thebounded surfmin(1, a + b)).

Given two possibilistic base8; and 5, with possibility
distributionsm, andw, respectively, the semantic results
of their combination by a T-norrm and a T-conormat are

Vw, Ttn (w) = tn(ﬂ-Bl (w)7 TBs (w))’ (11)
Yw, met(w) = ct(mp, (w), mp, (w)). (12)
The syntactic results associated witfy andr,; are respec-

tively the following knowledge bases (Benferhat, Dubois,
and Prade 1997a):

Bi, = BiUByU{(¢i vV, ctlai,B;))|(¢i, i) € By
and (’(ﬂj, ﬁj) S BQ}, (13)

By = {(¢z \/%7 m(%‘, 5;’))\(@, Oéi) € By
and (¢j, ﬁj) S 62} (14)

Syntactic and semantic results of the T-S-C
combination method

In Step 2 of the S-C combination algorithm, if we replace
themaximunoperator by th&-conormand replace thain-
imum operator by thel-norm then we get a more general
S-C combination mode, we call norm and T-conorm-
based split-combination mofte T-S-C combination mode
for short). By Equation (13) and Equation (14), the syntacti
results of the combination ¢f; andC, by T-conorm and the
combination ofD; andD, by T-norm are

C = {(¢iVy, tn(as, By))|(di, ;) € Crand
(Y5, By) € Ca}
and
D = Di1UDyU{(¢i Vi, ct(ai, B)))]

(¢i, i) € Dy and (Y5, B;) € D2}
respectively. Therefore, the syntactic result of comldamat
of B; andB; by the T-S-C combination mode is
{(¢i V ¥y, tn(au, B5))(¢i, i) € Ca
and (’l/)j, /8]) € CQ} UDyUDy U
{(¢i V ¥y, ct(ai, Bi))(di, i) € Dy
and (1, B;) € D2} (15)

Br_s—c



Proposition 5 Given two possibilistic base§; and B, if
Br_s_c¢ is the possibilistic base obtained by Equation (15)
and 5. is the possibilistic base obtained by Equation (14),
then every formula i3.; can be inferred fromBr_gs_¢,
namely

Br_s—ctax (¢, o), forall (¢, a) e B (16)
Proof.  Each formula in B, has the form (¢; V
¥;, tn(ay, B;)), SO we consider four cases:

Case 1. «;, ﬁngTeeupp(Bl U 82), then(q&i, Oél‘) eCy
and (¢, B;) € Co. Therefore,(¢; V ¢, tn(ay, ;) €
Br_s_c and we havéBr_g_¢c b, ((;52 \Y 1/1]‘, tn(ai, BJ))

Case 2. a;>Freeqyp,(Bi U By) and 3; <F'reeyp,(B; U
Bs), thentn(a;, 8;)<min{a;, 8;}< «;. Since(¢;, a) €
Dy, and ¢; }Z ¢; V ’l/}j, we haveBr_s_¢ Fx (d)z V
¥, tn(ai, B5))-

Case 3: a;<Freey,,(B1 U By) and 3;>Free,p, (B, U
Bs), this case is a dual to case 2.

Case 4: a;>Freeqyp,(Bi U By) and 3;>Freey,(B; U
Bs), then since (¢; V vj, ct(a;,3;)) € D and
ct(ai,ﬁj)Ztn(ai,[}j), we have BT,S,C Fr ((;51 V
¥y, tn(ay, B5)).

This completes our proof.

Example 4 (Continue Example 2J; and B, are split as
< Cy,D; > and< Cy, Do > such that

and
CQ = {(_‘wa 05)7 (77 03)}7 D2 = {(¢? 06)}

In this example, we choose max{(@; b — 1) which is the
Lukasiewicz T-norm as T-norm and mir(3;b) which is the

An Alternative Way to Split Possibilistic Bases
An alternative splitting approach

In the S-C algorithm, given two possibilistic basés and
B2, we split each of them using thupper free degreef their
union, such thaB; = C; UD; andBy = Co U Dy. Then we
combineC; andC, by themaximunoperator (or more gener-
ally a T-conormoperator) to deal with inconsistency. Since
Cy U C, consists of possibilistic formulas iB; U B2 with
necessity degrees less thalee,,,(B8; U Bs), there may
exist somdtree formulasn C; or C>. So, when we combine
C; andC, by themaximunmoperator, thestree formulasare
combined with other formulas as disjunctive forms. How-
ever, we knowfree formulaswill not cause inconsistency, so
it is safe to keep them unchanged. Therefore, we propose
the following approach to split the knowledge bases.

Definition 9 (free-formulas-based splitting) Given a possi-
bilistic baseB, the splitting of3 with regard toF'ree(B) is a
pair < Coon, Drree > such thatB = Coopn U Dppee, Where

DFree - {(d)v Ck)|(d), OL)GFTGG(B)},

Coon = B\ Drree = {(¢, a)|(¢, a)¢Free(B)}.

That is,Dr,... contains all the free formulas, agg,,,, con-
tains all the conflict formulas ii5.

Lemma 2 Let5 be a possibilistic knowledge base. [®be
split by upper-free-degree approach and free-formulas ap-
proach respectively, with the splitting resultsfas= C U D
andB = Ccon U Dpyee. ThenD C Dppee, andCe,p, C C.
Proof. Let (¢, «) € D, by Definition 5 and Definition 6, all
the formulas irD are free inB3, so(¢, «) is a free formula

bounded sum as T-conorm in the second fusion step. Thenin B. Thereforg(¢, o) € D andD C D. On the other hand,

combiningC; andC; by the bounded sum and combiniRg
andD- by the Lukasiewicz T-norm we obtdrand D such
that

C= {(¢\/’}/7 0), (¢vﬁ¢7 0), (¥ V1, 0)} =0,
D ={(y, 0.7),(¢0.6), (v V ¢, 1)}.

So the syntactic result of combination®f and 55 is

BT—S—C’ = {(’Ya O7)a (¢a 06)) (w \ ¢7 1)}

By Equation (14),5.; obtained by combinings; and 5.
by T-conorm operator min(d,+ b) is B.: = {(¢, 0), (¢ V
ﬁz/% O)u (¢\/’77 0)7 (1/J\/¢7 0)7 (’(/J\/’Y, 0)7 (¢\/’77 0'3)7.(ﬁ1/]\/
7, 0.2), (v, 00} = {($ V7. 0.3), (=) V 7, 0.2)}. Itis easy
to check that all the formulas iB., can be inferred from
Br_s_c.

Given two possibilistic base8; and B,, after Step 1 in
the T-S-C combination algorithn§; andB; are split into

Bi =C1 UD; and By = Co, U Ds.

Supposern¢,, mc,, mp,, Tp, are possibility distribu-
tions of C;, Co, Dy, D, respectively. Then by Equa-
tion (12) and Equation (11), the combination &f and
Cy by the T-conorm isC such thatV w,mc(w) =
ct(me, (w), e, (w)) and the combination ofD; and
Dy, by the T-norm isD such thatV w,np(w) =
tn(mp, (W), mp, (w)). Since Br_s_¢ = C U D, we
have V w,m5,_ s o(w) = min{nc(w),mp(w)} =
min{Ct(ﬂ-(ﬁ (w)7 TCy (’LU))7 tn(ﬂ-Dl (w)7 TDy (’LU))

Coon = (B\ D) C (B\ D) = C.

Now we revise the split-combination algorithm by replac-
ing theupper free degrebased splitting approach with the
free-formulasbased splitting approach.

Free-formulas-based-split-combination(F-S-C Com-
bination) Algorithm

e Step O: Let By = {(¢1, a1),..., (¢n, @)} andBy =
{1, B1)s-.., (¥m, Bm)} be two possibilistic bases,
computeFree(B; U Bs).

e Step 1Split B; and B, with regard toF'ree(3; U Bs) as
follows. Let< C’, D’ > be a splitting of3; U By with
regard toF'ree(3; U By). The splitting of 5; is a pair
< C1,Dy >suchthat; = C'nB; andD; = D'NB;. The
splitting of B; is a pair< Cy, Dy > such thaty = C'N By
andDy = D' N B.

e Step 2: CombineCc,,, andCe,y,, by the maximum op-
erator, and combin® g .., aNdD gy, by the minimum
operator. The results a®&,,, and Dg,... respectively.
By Equation (4) and Equation (5) we have

CCO” = {(¢l \4 wja min(aia ﬁj)|(¢lv ai) € CCOnlv
(1/)3'» ﬁj) € CCO“2}7 (17)
DFree = DFreel U DFT€62 . (18)

e Step 3The final result of the F-S-C combination method,
denoted b)BF—S—C- iISCcon U Drree-
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Lemma 3 The possibilistic basBr_s_ ¢ obtained by Step
3 in the F-S-C combination algorithm is consistent.

Proof. The proof of lemma 3 is similar to that of Proposition

2.
Proposition 6 Given two possibilistic bases; and B, if

Br_s_¢ is the possibilistic base obtained by the F-S-C

combination mode an#8s_ is the possibilistic base ob-
tained by the S-C combination mode, then

Br_s-ctx (¢, a), forall (¢, a) € Bs—c. (19)

Proof. Let (v, 0) € Bs_¢, sinceBs_¢ = C U D, where
C is obtained by Equation (7) an® is obtained by Equa-
tion (8), we havd~, §) € C UD. On the one hand, sup-
pose(y, ) € D, then(y, ¢) € D; UDy. By Lemma 2,
Dl - DFTeel and DQ C DFreez- SO(’Y? 6) € DFreel U
DFree2 = DFree- SinceBF—S—C = Ccon U Dpree, W€
have (v, 0) € Br_s-¢c, SOBr_s—¢ Fx (v, ). On
the other hand, suppose, §) € C, then(y, §) has the
form (¢; V ¢;, min(ay, 5;)), where(¢;, ;) € C; and
(¥, B;) € Co. By Lemma 2Ccon, C C1 andCeon, C Co.
We consider following two cases:

Case 1. (¢s, ;) € Coon, and (¢, 6;) € Coon,- In this
case, we havéy, 0) = (¢; V ¢;, min(ay, 8;)) € Coon- SO
(v, 0) € Br—s—c andBr_s—c Fx (7, 6)

Case 2 (¢i, i) € Ccon, OF (¥, B5) & Coon,. As-
sume(v;, 5;) & Coon,(for (¢i, a;) & Ccon,, the proof is
similar). In this case(t;, 8;) € Dryree, SO (¥}, () €
Br_s—c. Sincey; k= v, and 8;>min(a;, 5;) = 0, we
haveBr_s_c Fx (’y, 6)

This completes our proof.

Example 5 (Continue Example 3'ree(B;UBs) = {(—¢V
7, 0.8), (¢ V4, 0.9), (- V8, 0.7), (6 V7, 0.5)}. SoB; and
By are splitas< Ccon, , Drree, > and< Coonys Drree, >,
where

Coon, = {(¢, 0.5), (=¢ V¢, 0.6)},
Drree, = {(~6 V7, 0.8)}.
and
Coony = {(¥, 0.3), (¢ V =9, 0.4)},
Drree, = {(¢ V4, 0.9),(=p V6, 0.7),(6 Vv, 0.5)}.
By Equation (17) and Equation(18) we have

CCon = {(¢ \ ¢a 03)5 (_‘(b \ wa 03)}7

Drree = {(0¢ V7, 0.8),(6V4, 0.9), (- V4, 0.7),
(6 VvV, 0.5)}.
Therefore
Br_s—¢c = {(¢V,03),(mpV, 0.3),

{
(m¢ V4, 0.8),(¢V~, 0.9),
(—p V4, 0.7), (6 Vy, 0.5)},

which is equivalent to{(—¢ Vv v, 0.8),(¢, 0.3),(¢ V
3, 0.9), (- V4, 0.7)}. Itis easy to check thdfp_s_¢ Fr
(¢, o) forany (¢, a) € Bs_c.
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Application of F-S-C combination method to merge
flat knowledge bases

It has been pointed out in (Dubois, Lang, and Prade 1994)
that when the necessity degrees of all the possibilistic for
mulas are taken as 1, possibilistic logic will regress te-cla
sical logic. So classical logic is a special case of pogsibil
tic logic in which all the formulas have the same level of
priority. That is, given a set of formulaB = {¢1,..., ¢, }
in classical logic, we can relate it with a set of possilitist
formulasF = {(¢1, 1),...(¢n, 1)}. Therefore, our F-S-C
combination method can be applied to merge flat (or classi-
cal) knowledge bases.

In (Benferhat, Dubois, and Prade 1997hb), a consequence
relation calledfree consequence relatias defined to cope
with inconsistency in flat knowledge bases.

Definition 10 A formula¢ is said to be a free consequence
of a flat knowledge basi, denoted5 |=F.... ¢, if and only
if ¢ is logically entailed fromFree(B), namely,

B ':Free (b: fo FTGG(B) ): ¢

Given two flat knowledge basé% and3;, a method was
introduced in (Benferhat, Dubois, and Prade 1997b) which
concatenateds; U B, i.e., the result of merging i8,;UBs.
WhenB;UB; was inconsistent, some inconsistency tolerant
consequence relations, for example, the free consequence
relation, could be used to deal with it.

Proposition 7 Given two flat knowledge bas#s and 5,
every free consequence Bf U By can be inferred from
Br_s—c-.

Proof. When applying the F-S-C combination algorithm to
merge3; and BB, by taking all the necessity degrees of the
formulas inB; and B, as 1, we obtain

Dy UDy U{pV|p € Bi,1p € Ba,
¢, g Free(B; UBs)}.
SinceD; U Dy = Free(By U Bsy), we have

FT‘GC(Bl U 82) U {d)\/ ¢|¢) € B1,v € By,
o, v Free(By UBs)}.

SoFree(B1UBy) C Br_s_c. Ifyisa free consequence

of By UB;y, thenFree(B; UBs) F +. ThereforeBr_g_¢ F

Y.

The proof of proposition 7 shows thBf_ s keeps all the

free formula unchanged, and combine all the subbases con-
taining conflict formulas. By contrast, if we combifg and

Bs by concatenation and deal with the inconsistency using
the free consequence relation, then only free formulas are
used and the conflict formulas are ignored. Consequently,
the converse of proposition 7 is false.

Example 6 Given two flat baseB8; = {¢, =9V}, Bs =
{1, =V 4, ¥V 4}, the free base dB; U By is Free(B; U
Bs) = {~¢ V6, ¢V d}. SplittingB; and By with regard
to Free(B; U By), we haveB; = Ccony U Dpree, SUCh
thatCoon, = {0, "¢V =} and Dpree, = 0, and By =
Ccoony U DFree, SUCh thatCeon, = {9} and Drree, =
{=¢ V4, ¥V é}. Then we combin€c,,, and Ccon, by

Br_s—c¢ =

Br_s—c =



the maximum combination mode and comtihe,.., and
Drree, DY the minimum combination mode, the results are

Coon ={oV ¥} and Dpree = {9V 8, =h V §}.

So the possibilistic base of combination®fand B; by the
F-S-C combination mode Br_s_c = {¢V), ~pVé, ¥V
5}

In (Baral et al. 1992), some methods to combine knowl-
edge bases consisting of first order theories are introduced
Givenn classical knowledge bases, one method is to take the
union of them and select all the maximal consistent subbases
1 from the union to resolve the inconsistency, i.e., a formula

is a maximal-consistent-subbase based consequence (MCS-

consequence for short) of the union iff it can be inferred

from every maximal consistent subbases of the union. The
following example shows that our method is not comparable
with the MCS-consequence based method.

Example 7 Given two classical knowledge bas&s =
{¢7 _‘¢ \ _‘1% ’Y} andBQ = {wa ’ _‘¢ \ _‘FY} Since{¢7 _‘(b \
Y, v} and {¢, ~¢ V —y,~v} are two minimal inconsistent
subbases of31UBs, Free(B; U By) = 0. By the F-S-C
algorithm,Br_s_c = {¢p V,=p VvV = V =y,9 V v}. By
contrast,3; U B> contains five maximal consistent knowl-
edge basesB; = {Qba’(/}a’y}v By = {¢»1/Jaﬁ¢ \ ﬁV},
B; = {¢77a _‘¢ \ ﬁ¢}1 By, = {¢a 2NV Y, gV _‘7}1
Bs = {¢,7,7¢ V =, ~¢ V —y}. Itis easy to check that
1V~ can not be inferred froni,, therefore, itis nota MCS-
consequence d#;UB,. Howevery Vv € Brp_s_¢, SO it
can be inferred fronBr_s_ . Converselyp Vv v can be in-
ferred from eachB;, so it is a MCS-consequencel®fuBs.
However,p V ~ can not be inferred fro8r_s_¢.

Conclusions

In this paper we first proposed a new method for merging
inconsistent possibilistic bases. Fusion of possibilistises

is completed by two steps. In the first step, each of the pos-
sibilistic bases is split into two subbases with regard t th

upper free degree of their union, such that one subbase con-

tains formulas whose necessity degrees are less thaipthe
per free degreand the other contains formulas whose neces-
sity degrees are greater than tgper free degreeThen in

the second step, we combine those subbases containing for-

mulas with necessity degree less thanupeer free degree
using the maximum (or more generallyconorm) combina-

tion mode, while combining the subbases containing formu-
las with necessity degree greater thanupeer free degree
using the minimum (or more generallj;norn) combina-
tion mode. The union of the possibilistic bases obtained by
the second step is taken as the result of the combination of
the possibilistic bases we want to merge. We proved that
the combination mode obtained by the new method is better
than the maximum combination mode. We then proposed
another splitting method, calledrsee-formulas-basesplit-

ting. The combination algorithm, called a F-S-C combina-

A maximal consistent subbasgs of a knowledge bass is
a consistent subbase such that none of the consistent sublse of
containsX.

tion algorithm, obtained by thEree-formulas-basedplit-

ting can be applied to merge knowledge bases which are flat.
We proved that the F-S-C method is better tharfibe con-
sequencdased merging method in (Benferhat, Dubois, and
Prade 1997b).
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