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Abstract

Merging operators aim at defining the beliefs/goals of
a group of agents from the beliefs/goals of each mem-
ber of the group. Whenever an agent of the group has
preferences over the possible results of the merging pro-
cess (i.e. the possible merged bases), she can try to rig
the merging process by lying on her true beliefs/goals
if this leads to a better merged base according to her
point of view. Obviously, strategy-proof operators are
highly desirable in order to guarantee a fair merging
process even when some of them are not sincere. In
fact, when strategy-proofness is not guaranteed, it may
be questioned whether the result of the merging process
actually represents the beliefs/goals of the group. In
this paper, the strategy-proof landscape for many merg-
ing operators from the literature, including model-based
ones and formula-based ones, is drawn. Both the gen-
eral case and several restrictions on the merging process
(among others, the number of agents and the presence
of integrity constraints), are considered.

Introduction
Merging operators aim at defining the beliefs/goals of a
group of agents from the beliefs/goals of each member of
the group. Though beliefs and goals are distinct notions,
merging operators can typically be used for merging either
beliefs or goals. Thus, most of the logical properties given
in (Konieczny & Pino Pérez 1998; 1999) for characterizing
rational belief merging operators can be used for character-
izing as well rational goal merging operators.

Whatever beliefs or goals are merged, there are numerous
situations where agents have preferences on the possible re-
sults of the merging process (i.e. the merged bases). As far
as goals are concerned, an agent is surely satisfied when her
individual goals are chosen as goals of the group. In the case
of belief merging, an agent can be interested in imposing her
beliefs to the group (i.e. “convincing” the other agents), es-
pecially because the result of a further decision stage may
depend on the beliefs of the group.

So, as soon as an agent participates to a merging process,
the strategy-proofness problem has to be considered. The
question is: is it possible for a given agent to improve the
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result of the merging process with respect to her own point
of view by lying on her true beliefs/goals, given that she
knows the beliefs/goals of each agent of the group and the
way beliefs/goals are merged. When strategy-proofness is
not guaranteed, it may be questioned whether the result of
the merging process actually represents the beliefs/goals of
the group.

For an example of manipulation, let us consider the fol-
lowing illustrating scenario:

Example 1 Marie, Alain and Pierre always spend their
evening together. They have to plan what they will do this
evening. Pierre wants to go to a restaurant for diner, but
not to the movie. Marie does not want to go out for diner.
Alain does not want to stay at home, i.e. he wants to go to
the restaurant or to the movie. If one uses a usual merging
operator for defining the goal of the group1, then the goal of
the group will be to go out for diner and not to the movie.
Marie will not be very happy. . . However, if Marie lies and
claims that she wants to go to the movie but not to the restau-
rant, then the result of the merging process will be different.
Indeed, in this case, the goal of the group will be to go either
to the restaurant or to the movie: Marie may still avoid to
go out for diner.

The aim of this work is to draw the strategy-proofness
landscape for many merging operators from the literature,
including model-based ones and formula-based ones. For
each operator under consideration, we aim at determining
whether it is strategy-proof in the general case, and un-
der some restrictions on the merging process (including the
number of agents and the presence of integrity constraints)
and on the set of available strategies for the agents.

The rest of the paper is organized as follows. First we
give the needed basic definitions. We then recall the def-
initions of the main propositional belief merging operators
of the literature. After what, we give several definitions of
strategy-proofness based on a general notion of satisfaction
index. Then, we report our strategy-proofness results. We
end by noticing related work, just before a concluding dis-
cussion. Due to space limitations, only the most typical (and
short) proofs are given in the paper.

1Formally, the model-based operator 4d,Σ.
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Preliminaries
We consider a propositional language L defined in the stan-
dard way from a finite set of propositional variables P and
the usual connectives, including > and ⊥.

An interpretation (or world) is a total function from P to
{0, 1}, denoted by a bit vector whenever a strict total order
on P is specified. The set of all interpretations is noted W .
An interpretation ω is a model of a formula φ ∈ L if and
only if it makes it true in the usual truth functional way. [φ]
denotes the set of models of formula φ, i.e. [φ] = {ω ∈
W | ω |= φ}.

A belief/goal base K denotes the set of beliefs/goals of
an agent, it is a finite and consistent set of propositional for-
mulas, interpreted conjunctively.

∧

K denotes the singleton
belief/goal base containing the conjunction of every formula
of K. We say that a base K is complete if it has a unique
model, such a base is noted Kω.

A belief/goal profile E denotes the group of agents that
is involved in the merging process. It is a multi-set (bag) of
belief/goal bases E = {K1, . . . , Kn} (hence two agents are
allowed to exhibit identical bases).
⊆ will denote set containment and ⊂ strict set contain-

ment, i.e. A ⊂ B if and only if A ⊆ B and A 6= B.
The multi-set union is noted t and the multi-set contain-
ment relation is noted v. The cardinal of a finite set A is
noted #(A). The same notation is used for a multi-set (the
cardinal of a finite multi-set is the sum of the numbers of
occurrences of each of its elements). We note by

∧

E the
conjunction of bases of E, i.e.

∧

E =
∧

K1 ∧ . . . ∧
∧

Kn,
where

∧

Ki denotes the conjunction of all formulas from
Ki (i ∈ 1 . . . n). A profile E is said to be consistent if and
only if

∧

E is consistent.
A pre-order ≤ is a reflexive and transitive relation. A pre-

order is total if ∀ω, ω′ ω ≤ ω′ or ω′ ≤ ω. Let ≤ be a
pre-order, we define the corresponding strict ordering < as
ω < ω′ if and only if ω ≤ ω′ and ω′ 6≤ ω, and the induced
equivalence relation (indifference) ' is given by ω ' ω′ if
and only if ω ≤ ω′ and ω′ ≤ ω. We write ω ∈ min(A,≤)
if and only if ω ∈ A and @ω′ ∈ A s.t. ω′ < ω.

The result of the merging of the bases of a profile E, un-
der the integrity constraints µ is the base denoted 4µ(E).
The integrity constraints consist of a consistent formula the
merged base has to satisfy (it may represent some physical
laws, some norms, etc.).

Merging operators
We recall in this section the two main families of merging
operators from the literature. The first family is defined by
a selection of some interpretations, usually using a notion
of distance. The second family is defined by a selection
of some formulas in the set-theoretic union of the bases.
For more details on those two families, see for example
(Konieczny, Lang, & Marquis 2002; 2004).

Model-based operators

The first family is based on the selection of some interpreta-
tions, the “closest” ones to the given profile (Revesz 1997;

Konieczny & Pino Pérez 1998; 1999; Lin & Mendelzon
1999; Liberatore & Schaerf 1998).

Definition 1 A pseudo-distance between interpretations is a
total function d : W ×W 7→ IR+ such that for any ω, ω′,
ω′′ ∈ W:
• d(ω, ω′) = d(ω′, ω), and
• d(ω, ω′) = 0 if and only if ω = ω′.
A distance between interpretations is a pseudo-distance

that satisfies triangular inequality:
• d(ω, ω′) ≤ d(ω, ω′′) + d(ω′′, ω′).

Two widely used distances between interpretations are
Dalal distance (Dalal 1988), denoted dH , which is the Ham-
ming distance between interpretations (i.e. the number of
propositional variables on which the two interpretations dif-
fer); and the drastic distance, denoted dD, which is the sim-
plest pseudo-distance one can define: it gives 0 if the two
interpretations are the same one, and 1 otherwise.

Definition 2 An aggregation function f is a total func-
tion associating a nonnegative real number to every fi-
nite tuple of nonnegative real numbers and s.t. for any
x1, . . . , xn, x, y ∈ IR+:

• if x ≤ y, then
f(x1, . . . , x, . . . , xn) ≤ f(x1, . . . , y, . . . , xn).

(non-decreasingness)
• f(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0.

(minimality)
• f(x) = x. (identity)

Widely used functions are the max (Revesz 1997;
Konieczny & Pino Pérez 2002b), the sum Σ (Revesz 1997;
Lin & Mendelzon 1999; Konieczny & Pino Pérez 1999),
or the leximax GMax (Konieczny & Pino Pérez 1999;
2002b).

The chosen distance between interpretations induces a
“distance” between an interpretation and a base, which in
turn gives a “distance” between an interpretation and a pro-
file, using the aggregation function. This latter distance
gives the needed notion of closeness ≤E (a pre-order in-
duced by E).

Definition 3 Let d be a pseudo-distance between interpreta-
tions and f be an aggregation function. The result 4d,f

µ (E)
of the (model-based) merging of E given the integrity con-
straints µ is defined by:

• d(ω, K) = minω′|=Kd(ω, ω′).

• d(ω, E) = f{Ki∈E}(d(ω, Ki)).

• ω ≤E ω′ if and only if d(ω, E) ≤ d(ω′, E).
• [4d,f

µ (E)] = min([µ],≤E).

Let us step back to the example given in introduction in
order to illustrate the way model-based merging operators
work:

Example 2 Consider the set P with two propositional vari-
ables m(ovie) and r(estaurant), taken in this order. The
goals of the three agents are then given by the following
bases: K1 whose set of models is {00, 10} (Marie’s wishes),
K2 whose set of models is {01, 10, 11} (Alain’s wishes) and
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[µ] dH(ω, K1) dH(ω, K2) dH(ω, K3) ∆dH ,Σ
µ ({K1, K2, K3})

00 0 1 1 2
01 1 0 0 1
10 0 0 2 2
11 1 0 1 2

Table 1: Merging with ∆dH ,Σ
µ .

K3 whose set of models is {01} (Pierre’s wishes). There is
no integrity constraint (µ = >).

Table 1 sums up the computations of the result of the
merging for the operator ∆dH ,Σ

µ . It states, for each model
of the integrity constraints (first column) the distances be-
tween this model and the bases, and in the last column the
aggregate distance between the model and the profile. Ac-
cording to this operator, [∆dH ,Σ

µ ({K1, K2, K3}] = {01}, so
the goal of the group is to go to the restaurant and not to the
movie.

Formula-based merging
The other main family of merging operators is composed
of operators usually called “formula-based operators” or
“syntax-based operators”, since the syntactic form of the
bases at play may easily influence the result of the merg-
ing process: replacing a base {ϕ1, . . . , ϕn} by the (logically
equivalent) base {ϕ1∧ . . .∧ϕn} may lead to change the cor-
responding merged base (while it is not the case for model-
based operators). Formula-based operators are based on the
selection of consistent subsets of formulas in the union of
the bases of the profile E. Several operators are obtained
by letting vary the selection criterion. The result of the
merging process is the set of consequences that can be in-
ferred from all selected subsets. See (Baral et al. 1992;
Baral, Kraus, & Minker 1991; Rescher & Manor 1970;
Konieczny 2000) for more details.

Definition 4 MAXCONS(K, µ) is the set of all M that sat-
isfy:

• M ⊆ K ∪ {µ}, and
• µ ∈ M , and
• If M ⊂ M ′ ⊆ K ∪ {µ}, then M ′ is not consistent.

When maximality must be taken w.r.t. cardinality, we
use the notation MAXCONScard(K, µ). To be more precise,
MAXCONScard(K, µ) is the set of all M that satisfy:

• M ⊆ K ∪ {µ}, and
• µ ∈ M , and
• If #(M) < #(M ′) with {µ} ⊆ M ′ ⊆ K ∪{µ}, then M ′

is not consistent.

Let MAXCONS(E, µ) = MAXCONS(
⋃

Ki∈E
Ki, µ).

The following operators have been defined so far (Baral,
Kraus, & Minker 1991; Baral et al. 1992; Konieczny 2000):

Definition 5 Let E be a profile and let µ be an integrity
constraint:

4C1
µ (E) =

∨{M ∈ MAXCONS(E, µ)}.
4C3

µ (E) =
∨{M | M ∈ MAXCONS(E,>) and M ∪ {µ}
consistent}.

4C4
µ (E) =

∨

{M ∈ MAXCONScard(E, µ)}.
4C5

µ (E) =
∨

{M ∪ {µ} | M ∈ MAXCONS(E,>) and
M ∪ {µ} consistent}
if this set is not empty and µ otherwise.

4C1
µ (E), 4C3

µ (E) and 4C4
µ (E) correspond respectively

to Comb1(E, µ), Comb3(E, µ) and Comb4(E, µ) as de-
fined in (Baral et al. 1992). There is no 4C2 operator
since the corresponding Comb2 operator is equivalent to
Comb1 (Baral et al. 1992). The 4C5 operator is a slight
modification of 4C3 in order to get more logical proper-
ties (Konieczny 2000). Note that unlike the other operators,
4C3

µ may generate inconsistent merged bases.
Let us step back to the example given in introduction:

Example 3 Marie, Alain and Pierre wishes can be respec-
tively encoded by the following bases K1 = {¬r}, K2 =
{m ∨ r} and K3 = {¬m, r}, so E = {K1, K2, K3}. The
maximal (w.r.t. set inclusion) consistent subsets in the union
of those bases are (there is no integrity constraint µ = >):
{¬r, m∨ r}, {¬r,¬m}, and {m∨ r,¬m, r}. So for this ex-
ample we get 4C1

µ (E) = 4C3
µ (E) = 4C5

µ (E) ≡ ¬r∨¬m,
that means that the goal of the group is not to go to the movie
or not to go to the restaurant. And with 4C4

µ (E) ≡ ¬m∧ r,
that means that the group has to go to the restaurant but not
to the movie.

Note also that if we encode Pierre’s wishes as K ′
3 =

{¬m ∧ r}, so with E′ = {K1, K2, K
′
3}, then the maximal

(w.r.t. set inclusion) consistent subsets in the union of those
bases are {¬r, m∨r} and {m∨r,¬m∧r}. So, in this case,
we get 4C1

µ (E′) = 4C3
µ (E′) = 4C4

µ (E′) = 4C5
µ (E′) ≡

(m ∧ ¬r) ∨ (¬m ∧ r). Accordingly, the goal of the group is
to go either to the movie or to the restaurant, but not to both.

This last example shows that syntax-sensitivity can be an
additional mean of manipulation. For example, if one uses
the 4C4 merging operator, then it is more interesting for
Pierre to express his wishes trough K3 rather than with K ′

3
(although those two bases are logically equivalent). In the
first case the result of the merging is logically equivalent to
K3, it is no more the case with K ′

3 (see (Lafage & Lang
2000) for a similar example of syntax-sensitivity in a prefer-
ence aggregation context).

Other valuable formula-based operators can be defined,
for instance by replacing each base K by the singleton con-
taining the conjunction of its elements before making the
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[µ] dH(ω, K1) dH (ω, K ′
1) dH(ω, K2) dH(ω, K3) ∆dH ,Σ

µ ({K1, K2, K3}) ∆dH ,Σ
µ ({K ′

1, K2, K3})

00 0 1 1 1 2 3
01 1 2 0 0 1 2
10 0 0 0 2 2 2
11 1 1 0 1 2 2

Table 2: ∆dH ,Σ
µ is not strategy-proof for idw

.

union. As the comma - which is a specific connective, even
if it is not truth-functional - is usually not equivalent to stan-
dard conjunction in the formula-based framework, such op-
erators may easily give merged bases that differ from their
original counterpart, as illustrated in the above example.
Clearly enough, the resulting operators are not any longer
sensitive to the syntactic presentation of the bases (replacing
every base by a logically equivalent one leads to the same
merged base). Formally, we have:

Definition 6 Let E = {K1, . . . , Kn} be a profile and let µ
be an integrity constraint:

• 4cC1
µ (E) = 4C1

µ ({
∧

K1, . . . ,
∧

Kn}).
• 4cC3

µ (E) = 4C3
µ ({∧ K1, . . . ,

∧

Kn}).
• 4cC4

µ (E) = 4C4
µ ({

∧

K1, . . . ,
∧

Kn}).
• 4cC5

µ (E) = 4C5
µ ({∧ K1, . . . ,

∧

Kn}).
See (Konieczny 2000; Konieczny, Lang, & Marquis 2002;

2004) for other refinements of formula-based operators, that
allow a finer use of the distribution of the information.

Strategy-proofness
The strategy-proofness issue for a merging operator can be
stated as follows: is it possible for a given agent to improve
the result of the merging process with respect to her own
point of view by lying on her true beliefs/goals, given that
she knows the beliefs/goals of each agent of the group and
the way beliefs/goals are merged? If this question can be
answered positively, then the operator is not strategy-proof
(the agent may benefit from being untruthful). Thus, a merg-
ing operator is not strategy-proof if one can find a profile
E = {K1, . . . , Kn} which represents the bases of the other
agents, an integrity constraint µ, and two bases K and K ′

such that the result of the merging of E and K ′ is better for
the agent than the result of the merging of E with her true
base K.

Definition 7 (strategy-proofness)
Let i be a satisfaction index, i.e. a total function from L ×
L to IR. A merging operator ∆ is strategy-proof for i if
and only if there is no integrity constraint µ, profile E =
{K1, . . . , Kn}, base K and base K ′ s.t.

i(K, ∆µ(E t {K ′})) > i(K, ∆µ(E t {K})).
A profile E is said to be manipulable by a base K for index
i given a merging operator ∆ and an integrity constraint µ
if and only if there exists a base K ′ s.t.

i(K, ∆µ(E t {K ′})) > i(K, ∆µ(E t {K})).

Clearly, there are numerous different ways to define the
satisfaction of an agent given a merged base. Many ad hoc
definitions can be considered. This is closely related to the
problem of measuring how similar two logical bases are,
hence it is close to verrisimilitude issues (see e.g. (Kuipers
1987)).

The following three indexes are meaningful when no ad-
ditional information are available.

The first two indexes are drastic ones: they range to
{0, 1}, so the agent is either fully satisfied or not satisfied
at all.

Definition 8 (weak drastic index)

idw
(K, K∆) =

{

1 if
∧

K ∧
∧

K∆ is consistent,
0 otherwise.

This index takes value 1 if the result of the merging (noted
K∆ in the definition) is consistent with the agent’s base K,
and 0 otherwise. It means that the agent is considered fully
satisfied as soon as its beliefs/goals are consistent with the
merged base.

Definition 9 (strong drastic index)

ids
(K, K∆) =

{

1 if K∆ |= K,
0 otherwise.

This index takes value 1 if the agent’s base is a logical
consequence of the result of the merging, and 0 otherwise.
In order to be fully satisfied, the agent must impose her be-
liefs/goals to the whole group.

The last index is not a boolean one, leading to a more
gradual notion of satisfaction. The more compatible the
merged base with the agent’s base the more satisfied the
agent. The compatibility degree of K with K∆ is the (nor-
malized) number of models of K that are models of K∆ as
well:

Definition 10 (probabilistic index)

ip(K, K∆) =
#([K] ∩ [K∆])

#([K∆])
.

When #([K∆]) = 0, we set ip(K, K∆) = 0.

ip(K, K∆) is the probability to get a model of K from a
uniform sampling in the models of K∆. This index takes its
minimal value when no model of K is in the models of the
merged base K∆, and its maximal value when each model
of the merged base is a model of K. Strategy-proofness for
these three indexes are not independent notions:
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[µ] dH(ω, K1) dH(ω, K ′
1) dH(ω, K2) ∆dH ,Σ

µ ({K1, K2}) ∆dH ,Σ
µ ({K ′

1, K2})

01 0 0 2 2 2
10 1 2 0 1 2
11 1 1 1 2 2

Table 3: Manipulability of ∆dH ,Σ for idw
and ip for two bases.

Proposition 1

• If a merging operator is strategy-proof for ip, then it is
strategy-proof for idw

.
• Consider a merging operator that generates only consis-

tent bases. If it is strategy-proof for ip, then it is strategy-
proof for ids

.

On the other hand, one can prove that strategy-proofness
for idw

and strategy-proofness for ids
are logically indepen-

dent in the general case (an operator can be strategy-proof
for one of them without being strategy-proof for the other,
and it can be strategy-proof for both of them or for neither).

Let us conclude this section with our running example,
and give formal arguments explaining how Marie can ma-
nipulate the merging process:

Example 4 We consider three bases, [K1] = {00, 10}
(Marie’s wishes), [K2] = {01, 10, 11} (Alain’s wishes)
and [K3] = {01} (Pierre’s wishes). There is no con-
straint (µ = >). [∆dH ,Σ

µ ({K1, K2, K3})] = {01} and
idw

(K1, ∆
dH ,Σ
µ ({K1, K2, K3})) = 0, which means that

Marie is not satisfied. If Marie reports K ′
1 whose set of

models is {10} instead of K1, then [∆Σ
µ ({K ′

1, K2, K3})] =

{01, 10, 11} and idw
(K1, ∆

dH ,Σ
µ ({K ′

1, K2, K3})) = 1, that
is more satisfactory from her point of view. Table 2 gives the
details of the computations for this example.

Strategy-proofness results
In the general case, both the family of model-based op-
erators and the family of formula-based operators are not
strategy-proof for the three indexes we consider. This means
that there are operators from those families which are not
strategy-proof.

However, imposing further restrictions may lead to
strategy-proofness. Considering them in a systematic way
allows us to draw the strategy-proofness landscape for both
families.

A first restriction concerns the number of bases to be
merged. The interesting case is when #(E) = 2, where we
can sometimes reach strategy-proofness whereas for larger
profiles the operator is manipulable. Since {>} typically
plays the role of a neutral element for all the operators
we consider, in the sense that for every E, µ, we have
4µ(E) ≡ 4µ(E t {>}), manipulation is monotonic with
respect to the number of bases for those operators: if an op-
erator is manipulable for #(E) = n, then it is manipulable
for #(E) > n.

A second parameter is the completeness of the be-
liefs/goals of the agent who aims at manipulating. In some

cases, having such strong beliefs/goals renders any strategy
impossible.

A third significant parameter is the presence of integrity
constraints. On the one hand, adding nontrivial integrity
constraints (µ 6≡ >) can render a manipulation possible,
while it is not when no integrity constraints are consid-
ered. The other way, adding integrity constraints may pre-
vent from any manipulation (simply by choosing a constraint
µ that is not consistent with the base K of the untruthful
agent) which would be possible otherwise.

Another restriction bears on the possible available strate-
gies. In the general case the untruthful agent is free from
reporting any base, even if it is “quite far” from her true
base. However, there are numerous situations for which the
other agents participating to the merging process have some
information about her true base. In the following, we con-
sider two restrictions on available strategies (and the corre-
sponding notions of strategy-proofness): the erosion (resp.
dilatation) manipulation is when the reported base K ′ is nec-
essarily logically stronger (resp. weaker) than the true one
K. The erosion (resp. dilatation) manipulation is safe for
the untruthful agent when the other agents may only have
access to a subset of the countermodels (resp. models) of
her true beliefs/goals.

Model-based operators
The main strategy-proofness result for model-based merging
operators in the general case holds when the drastic distance
dD is considered:

Proposition 2 Let f be any aggregation function. ∆dD,f is
strategy-proof for ip, idw

and ids
.

As shown on the running example, the family obtained
by considering the Hamming distance is not strategy-proof.
Let us now focus on this family, and consider successively
the two operators obtained by considering Σ and GMax as
aggregation functions.

As to ∆dH ,Σ, the number of bases and the presence of in-
tegrity constraints are significant. Let’s see first that ∆dH ,Σ

is not strategy-proof in the general case.

Proposition 3 ∆dH ,Σ is not strategy-proof for any of idw
,

ids
and ip, even if there are only two bases involved in the

merging process.

Proof : The following example shows the manipulabil-
ity of ∆dH ,Σ for idw

(and then for ip). Let us consider the
constraint µ = a ∨ b and the two bases K1 and K2 defined
by their respective sets of models: [K1] = {00, 01} and
[K2] = {10}. We have [∆dH ,Σ

µ ({K1, K2})] = {10} and
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[µ] dH (ω, K1) dH(ω, K ′
1) dH(ω, K2) ∆dH ,Σ

µ ({K1, K2}) ∆dH ,Σ
µ ({K ′

1, K2})

100 1 2 1 2 3
110 1 1 2 3 3
111 0 0 2 2 2

Table 4: Manipulability of ∆dH ,Σ for ids
for two bases.

idw
(K1, ∆

dH ,Σ
µ ({K1, K2})) = 0. On the other hand, if the

agent whose base is K1 gives K ′
1, with [K ′

1] = {01} instead
of K1, we obtain [∆dH ,Σ

µ ({K ′
1, K2})] = {01, 10, 11} and

idw
(K1, ∆

dH ,Σ
µ ({K ′

1, K2}) = 1. This example shows the
manipulability of ∆dH ,Σ even if there are only two bases in
the profile. The computations are detailed in Table 3.

The following example shows the manipulabil-
ity of ∆dH ,Σ for ids

. Let us consider the con-
straint µ = (a ∧ b) ∨ (a ∧ ¬b ∧ ¬c) and the two
bases K1 and K2 defined by their sets of mod-
els: [K1] = {000, 111} and [K2] = {000, 001}.
We have [∆dH ,Σ

µ ({K1, K2})] = {111, 100} and
ids

(K1, ∆
dH ,Σ
µ ({K1, K2})) = 0. On the other hand,

if the agent whose base is K1 gives K ′
1, with [K ′

1] = {111}
instead of K1, we obtain [∆dH ,Σ

µ ({K ′
1, K2})] = {111} and

ids
(K1, ∆

dH ,Σ
µ ({K ′

1, K2})) = 1. This example shows the
manipulability of ∆dH ,Σ for ids

even if there are only two
belief bases in the profile. The computations are detailed in
Table 4.

�

When no integrity constraints are considered (i.e. µ ≡
>), any operator ∆d,Σ

> (where d is a distance) is strategy-
proof for the indexes idw

and ids
when only two bases are

considered:

Proposition 4 Let d be any distance. Provided that only
two bases are to be merged, ∆d,Σ

> is strategy-proof for the
indexes idw

and ids
.

But this result holds only for two bases since we have the
following:

Proposition 5 ∆dH ,Σ
> is not strategy-proof for indexes idw

and ids
if at least three bases are involved in the merging

process.

Imposing further constraints may protect from any manip-
ulation:

Proposition 6 For any distance d, ∆d,Σ is strategy-proof
for the indexes ip, idw

and ids
when the initial base K is

complete.

Proof :

• idw
and ids

. The property is a direct consequence of
Proposition 12, showing that if ∆d,Σ is manipulable for
idw

and ids
by a belief base K, then it is manipulable by

erosion. But this is impossible whenever K is complete.

• ip. Reductio ad absurdum: let us suppose that there is an
operator ∆d,Σ, where d is any distance, which is manip-
ulable for ip given a complete base [Kω1

] = {ω1}. So,
there exists an integrity constraint µ, a profile E, and a
base K ′ s.t.:

ip(Kω1
, ∆d,Σ

µ (Kω1
t E)) < ip(Kω1

, ∆d,Σ
µ ({K ′} t E)).

If we have ip(Kω1
, ∆d,Σ

µ (Kω1
t E)) = 0, then we have

idw
(Kω1

, ∆d,Σ
µ (Kω1

t E)) = 0 too. In that case, manip-
ulation for ip implies manipulation for idw

but we proved
that no manipulation is possible for idw

. As a conse-
quence, we can suppose that ip(Kω1

, ∆d,Σ
µ (Kω1

tE)) 6=
0. Consequently:

#(Kω1
∩ [E 4Σ

µ Kω1
])

#([E 4Σ
µ Kω1

])
6= 0

(where E4Σ
µ Kω1

is a light notation for ∆d,Σ
µ (Kω1

tE)).
This equation allows us to infer that ω1 is a model of
E 4Σ

µ Kω1
. In order to increase ip(Kω1

, ∆d,Σ
µ (K ′ tE)),

we have to reduce the number of models of E4Σ
µ K ′ com-

pared to E4Σ
µ Kω1

, without removing ω1 from [E4Σ
µ K ′].

So we have to find ω2 6= ω1 s.t.:

ω2 |= E 4Σ
µ Kω1

and ω2 6|= E 4Σ
µ K ′.

So, ω2 |= µ, and we have:

d(ω2, E t Kω1
) = d(ω1, E t Kω1

) (1)

and:
d(ω2, E t {K ′}) > d(ω1, E t {K ′}) (2)

(because ω1 is a model of both E4Σ
µ Kω1

and E4Σ
µ K ′).

With the aggregation function Σ, we get from equation 1:

d(ω2, ω1) + d(ω2, E) = d(ω1, E)

and from equation 2:

d(ω2, K
′) + d(ω2, E) > d(ω1, K

′) + d(ω1, E).

Replacing d(ω1, E) by d(ω2, ω1) + d(ω2, E), we obtain:

d(ω2, K
′)+d(ω2, E) > d(ω1, K

′)+d(ω2, ω1)+d(ω2, E),

so:
d(ω2, K

′) > d(ω1, K
′) + d(ω2, ω1).

If ω′
1 is a model of K ′ s.t. d(ω1, K

′) = d(ω1, ω
′
1), then

we have:

d(ω2, K
′) > d(ω1, ω

′
1) + d(ω2, ω1).

Furthermore, by definition of min, we have d(ω2, ω
′
1) ≥

d(ω2, K
′), so:

d(ω2, ω
′
1) > d(ω1, ω

′
1) + d(ω2, ω1)

which contradicts the triangular inequality.
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[µ] dH(ω, K1) dH(ω, K ′
1) dH(ω, K2) ∆dH ,GMax

µ ({K1, K2}) ∆dH ,GMax
µ ({K ′

1, K2})

000 1 0 3 (3, 1) (3, 0)
001 0 1 2 (2, 0) (2, 1)
010 2 1 2 (2, 2) (2, 1)
011 1 2 1 (1, 1) (2, 1)
100 2 1 2 (2, 2) (2, 1)
101 1 2 1 (1, 1) (2, 1)
110 3 2 1 (3, 1) (2, 1)
111 2 3 0 (2, 0) (3, 0)

Table 5: Manipulability of ∆dH ,GMax for idw
with two complete bases.

�

In contrast to ∆dH ,Σ, ∆dH ,GMax is not strategy-proof
even in very restricted situations:

Proposition 7

• ∆dH ,GMax is not strategy-proof for the satisfaction in-
dexes idw

and ip, even if there is no constraint (µ ≡ >),
the initial base K is complete and only two agents are
involved in the merging process.

• ∆dH ,GMax is strategy-proof for ids
when:

– two bases are considered, and
– µ ≡ >, and
– the initial base is complete.
If one of these conditions is not satisfied, then ∆dH ,GMax

is no more strategy-proof for ids.

Proof : We just give the proof for idw
and ip. Table

5 shows the manipulability of ∆dH ,GMax for the weak
satisfaction index idw

and two complete bases. We consider
K1 s.t. [K1] = {001} and K2 with [K2] = {111}, and
µ = >. We have [∆dH ,GMax

µ ({K1, K2})] = {011, 101},
so no model of K1 belongs to ∆dH ,GMax

µ ({K1, K2})
and idw

(K1, ∆
dH ,GMax
µ ({K1, K2}) = 0. If agent 1

gives K ′
1 with [K ′

1] = {000} instead of K1, then
[∆dH ,GMax

µ {K ′
1, K2})] = {001, 010, 011, 100, 101, 110}

and idw
(K1, ∆

dH ,GMax
µ ({K ′

1, K2}) = 1. Since manipula-
bility for idw

holds, manipulability for ip holds as well.
�

Formula-based operators
For the probabilistic index, almost none of the formula-
based operators under consideration is strategy-proof:

Proposition 8

• No operator among 4C1, 4C3, 4C4, 4C5 is strategy-
proof for ip, even if there are only two agents involved in
the merging process, there is no constraint (µ ≡ >) and
the initial base K is complete.

• 4cC1 and 4cC5 are strategy-proof for ip if there are only
two agents involved in the merging process, but none of

them is strategy-proof for ip if three agents or more are
involved in the merging process, even if µ ≡ > and if the
initial base is complete.

• 4cC3 is strategy-proof for ip if there are only two agents
involved in the merging process and if µ ≡ >, but it is
not strategy-proof for two agents if µ 6≡ >, or if three
agents or more are involved in the merging process, even
if the initial base is complete.

• 4cC4 is strategy-proof for ip.

Proof : We only give here an example of manipulation
of 4C for ip, with #(E) = 2, a complete base K, and
µ = >. Consider E = {K1, K2}, with K1 = {a ∧ b}
and K2 = {¬(a ∧ b)}. Then 4C1

> (E) ≡ >, and
ip(K1,4C1

> (E)) = 1
4 . But if agent 1 gives K ′

1 = {a, b}
instead of K1, then 4C1

> ({K ′
1, K2}) ≡ a ∨ b, and

ip(K1,4C1
> ({K ′

1, K2})) = 1
3 . So E is manipulable by K1

for ip. The same example holds for 4C4. It remains to note
now that 4C1

> = 4C3
> = 4C5

> to conclude the first point of
the proof.

�

For the two drastic indexes, the results are more nuanced:

Proposition 9

• 4C1 and 4cC1 are strategy-proof for both idw
and ids

.

• 4C3 and 4cC3 are not strategy-proof for any of idw
, ids

,
even if there are only two bases involved in the merging
process and the initial base K is complete, but they are
strategy-proof for both indexes if µ = >.

• 4C4 is not strategy-proof for any of idw
, ids

, even if there
are only two bases involved in the merging process, the
initial base K is complete, and µ ≡ >.

• 4cC4 is strategy-proof for idw
and ids

.

• 4C5 and 4cC5 are not strategy-proof for both idw
and

ids
in the general case. But strategy-proofness can be

achieved in the following restricted cases: 4C5 and 4cC5

are strategy-proof for both idw
and ids

if µ ≡ >. 4C5

and 4cC5 are strategy-proof for idw
if the initial base is

complete. 4cC5 is strategy-proof for both idw
and ids

if
there are only two bases involved in the merging process.
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Ensuring strategy-proofness: the case of complete
bases
Let us now focus on a very specific case: the situation where
every base is complete. While this situation is rather unfre-
quent when dealing with belief bases to be merged, it can
be imposed in a goal merging setting, especially if it guaran-
tees strategy-proofness. This explains why we consider such
a case in this paper.

Proposition 10 The strategy-proofness landscape for sev-
eral merging operators under the restriction each base is
complete is given in Table 6. f is any aggregation function,
d is any distance,

√
means “strategy-proof”, − means “non

strategy-proof” even if #(E) = 2 and µ ≡ >, −∗ means
“non strategy-proof” even if either #(E) = 2 or µ ≡ >,
but “strategy-proof” if both #(E) = 2 and µ ≡ >. Fi-
nally, −> means “non strategy-proof” even if #(E) = 2,
but “strategy-proof” whenever µ ≡ >.

∆ ip idw
ids

∆dD,f
√ √ √

∆d,Σ √ √ √

∆dH ,GMax − − −∗

4C1 − √ √

4C3 − −> −>

4C4 − − −
4C5 − √ −>

4cC1 √ √ √

4cC3 √ √ √

4cC4 √ √ √

4cC5 √ √ √

Table 6: Strategy-proofness of merging operators when each
base is complete.

As Proposition 10 shows, no operator among ∆dH ,GMax

and the 4C ones ensures full strategy-proofness in the re-
stricted case where two complete bases are to be merged
and no integrity constraint is considered. Contrastingly, all
the other operators offer strategy-proofness for the three in-
dexes whenever every base is complete.

Restricted strategies
We will now focus on two restrictions on the available strate-
gies for the untruthful agents. The erosion (resp. dilatation)
manipulation is when the reported base K ′ is necessarily
logically stronger (resp. weaker) than the true one K.

Definition 11 Let i be a satisfaction index.

• A merging operator is erosion strategy-proof for i if and
only if there is there is no integrity constraint µ, profile
E = {K1, . . . , Kn}, base K and base K ′ s.t. K ′ |= K
and i(K, ∆µ(E t {K ′})) > i(K, ∆µ(E t {K})).

• A merging operator is dilatation strategy-proof for i if and
only if there is there is no integrity constraint µ, profile

E = {K1, . . . , Kn}, base K and base K ′ s.t. K |= K ′

and i(K, ∆µ(E t {K ′})) > i(K, ∆µ(E t {K})).
The erosion (resp. dilatation) manipulation is safe for the

untruthful agent when the other agents may only have access
to a subset of the countermodels (resp. models) of her true
beliefs/goals.

The first result gives the dilatation strategy-proofness of
model-based operators:

Proposition 11 Let d be a pseudo-distance and let f be an
aggregation function. ∆d,f is dilatation strategy-proof for
the indexes ip, idw

and ids
.

This result has to be compared with the ones in the unre-
stricted case (previous sections), where most of the operators
are not strategy-proof. It is not the same story for erosion.
We can find profiles that can be manipulated using the ero-
sion strategy (see the running example).

Nevertheless, when d is a distance, Σ is the aggrega-
tion function and drastic indexes are considered, ∆d,Σ is
strategy-proof if and only if it is erosion strategy-proof:

Proposition 12 Let d be any distance. If ∆d,Σ is not
strategy-proof for idw

(resp. ids
), then it is not erosion

strategy-proof for index idw
(resp. ids

).
Furthermore, a belief profile E is manipulable by K for

idw
(resp. ids

) given ∆d,Σ and µ if and only if the manip-
ulation is possible using a complete base Kω |= K, i.e.
there exists Kω |= K s.t. idw

(K, ∆d,Σ
µ (E t {Kω})) >

idw
(K, ∆d,Σ

µ (Et{K})) (resp. ids
(K, ∆d,Σ

µ (Et{Kω})) >

ids
(K, ∆d,Σ

µ (E t {K}))).
This result shows that it it enough to focus on each com-

plete base that implies K to determine whether a profile E
is manipulable by a base K for idw

.

Related work
In the propositional merging framework considered in the
paper, the beliefs/goals K of each agent induce a two strata
partition of the worlds: the models of K are preferred to its
countermodels. When agents report full preference relations
(that can be encoded in various ways, e.g., explicitly, or by a
prioritized belief base, an ordinal conditional function, etc),
the aggregation problem consists in defining a global pref-
erence relation from individual preference relations. This
problem has been addressed for a long time in social choice
theory (it can be traced back at least to Condorcet (1785)
and Borda (1781)).

In social choice theory (Arrow, Sen, & Suzumura 2002),
the strategy-proofness problem has received great attention.
One of the more famous result of social choice theory is that
there is no strategy-proof preference aggregation procedure.
This result is known as Gibbard-Satterthwaite impossibility
theorem (Gibbard 1973; Satterthwaite 1975; Moulin 1988).

Since this result has been stated, there has been a lot of
work for deriving strategy-proofness results under some re-
strictions (see (Kelly 1988; Arrow, Sen, & Suzumura 2002)
for example). In some sense, our work is relevant to such
approaches. Nonetheless, our work is original - as far as
we know - from two points of view: on the one hand, the
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#(E) K µ ∆dD,f ∆dH,Σ ∆dH,Gmax 4C1 4C3 4C4 4C5 4dC1 4dC3 4dC4 4dC5

ip

= 2

Kω

> √ √ − − − − − √ √ √ √

µ
√ √ − − − − − √ − √ √

K

> √ − − − − − − √ √ √ √

µ
√ − − − − − − √ − √ √

> 2

Kω

> √ √ − − − − − − − √ −

µ
√ √ − − − − − − − √ −

K

> √ − − − − − − − − √ −

µ
√ − − − − − − − − √ −

idw

= 2

Kω

> √ √ − √ √ − √ √ √ √ √

µ
√ √ − √ − − √ √ − √ √

K

> √ √ − √ √ − √ √ √ √ √

µ
√ − − √ − − − √ − √ √

> 2

Kω

> √ √ − √ √ − √ √ √ √ √

µ
√ √ − √ − − √ √ − √ √

K

> √ − − √ √ − √ √ √ √ √

µ
√ − − √ − − − √ − √ −

ids

= 2

Kω

> √ √ √ √ √ − √ √ √ √ √

µ
√ √ − √ − − − √ − √ √

K

> √ √ − √ √ − √ √ √ √ √

µ
√ − − √ − − − √ − √ √

> 2

Kω

> √ √ − √ √ − √ √ √ √ √

µ
√ √ − √ − − − √ − √ −

K

> √ − − √ √ − √ √ √ √ √

µ
√ − − √ − − − √ − √ −

Table 7: The strategy-proofness landscape.

√
means that in the corresponding case (given by the line), the operator (given by the column) is strategy-proof.

− means that in the corresponding case the operator is not strategy-proof.
The first column denotes the satisfaction index under consideration.
The second column states that the results hold for two bases (= 2) or more (> 2).
The third column states that the results hold for complete bases (Kω) or not (K).
The fourth column states that the results hold when there are integrity constraints (µ) or not (>).
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preference relations considered here are two-strata total pre-
orders, and not strict total orderings; on the other hand, the
result of a merging process is usually not a single world but
still a two-strata total pre-order, and the number of models
of the merged base is not constrained a priori. That leads to
a more complex notion of strategy-proofness. In particular,
we must commit to the choice of a satisfaction index, which
is not needed when working with preference relations.

A study of strategy-proofness of some merging operators
has been carried out in (Meyer, Ghose, & Chopra 2001). The
framework considered in this paper is clearly distinct from
the one used in our work. Agents may report full prefer-
ence relations, encoded as stratified belief bases, or equiv-
alently by ordinal conditional functions or κ-functions (one
can also look to (Lafage & Lang 2000) for an interesting
characterization of weighted preferences aggregation meth-
ods). The merging operators under consideration escape
Gibbard-Satterthwaite theorem (as well as Arrow theorem)
since a commensurability assumption between the agents’
preference relations is made (the same remark applies also
to possibilistic base merging as defined in (Benferhat et al.
2002)). Roughly, commensurability means that we allow
to compare the satisfaction degrees of different agents. It
means that we do not work with pre-orders, but with a more
quantitative framework, where one uses a common (or at
least comparable) scale for all agents. It is well-known that
the commensurability assumption is sensible in many situa-
tions, but when dealing with agents preferences, commensu-
rability must be used carefully (for human agents, it is com-
monly accepted in social choice theory that this assumption
is very strong).

Conclusion and further work
Investigating the strategy-proofness of merging operators is
important from a multi-agent perspective whenever some
agents can get (part of) the beliefs/goals of the other
agents participating to the merging process. When strategy-
proofness is not guaranteed, it may be questioned whether
the result of the merging process actually represents the be-
liefs/goals of the group.

In this paper, we have drawn the strategy-proofness land-
scape for many merging operators, including model-based
ones and formula-based ones. While both families are not
strategy-proof in the general case, we have shown that sev-
eral restrictions on the merging framework or on the avail-
able strategies may lead to strategy-proofness. As to model-
based operators, the choice of a distance appears crucial.
Thus, model-based operators are strategy-proof when based
on the drastic distance, while they are typically not strategy-
proof when based on Dalal distance. Among formula-
based merging operators 4C1 achieves the highest degree
of strategy-proofness in the sense that it is strategy-proof for
the drastic indexes. Results are summarized in Table 7.

In light of our study, strategy-proofness appears as a prop-
erty independent from rationality, at least when rationality
is captured by the postulates given in (Konieczny & Pino
Pérez 1998; 1999). It means that satisfying those rational-
ity postulates neither prevents from manipulability nor im-
plies it. Nevertheless, we can note that arbitration opera-

tors (Konieczny & Pino Pérez 2002a), like ∆d,GMax, are
more sensitive to manipulation than majority operators, like
∆d,Σ. This is easily explained by the fact that arbitration
operators are egalitarist: they aim at giving a result that is
close to each base of the profile. So a change in a sin-
gle base can have a real impact on the whole result. Con-
trastingly, majority operators, that listen to majority wishes
to define the resulting base, often do not take into account
bases that are not in the majority (this is sometimes called
the “majority dictatorship”), hence it is more likely that a
change in a single base has no impact on the result of the
merging. Strategy-proofness also appears as independent
from the computational complexity of query answering from
a merged base (see (Konieczny, Lang, & Marquis 2002;
2004)). Hence, strategy-proofness is actually a further di-
mension that can be used to evaluate and compare merging
operators.

This work calls for several perspectives. One of them
consists in defining other non-drastic satisfaction indexes.
In particular in cases the agent knows that the result of the
merging process could not fit her beliefs/goals (for exam-
ple if her beliefs/goals are not consistent with the integrity
constraints), she still can be interested in achieving a result
that is as close as possible to her beliefs/goals. Closeness
can be captured by a notion of distance, and a possible sat-
isfaction index would be “Dalal index”, which could be de-
fined as follows (by homogeneity with the other indexes):
iDalal(K, K∆) = 1 − dH([K],[K∆])

#(P) .
Another interesting issue is to study the strategy-

proofness problem when coalitions are allowed. The ques-
tion is to know if a group of agents can coordinate for
achieving a better result of the merging for all of them. This
interesting issue requires more hypotheses on the agents
abilities, since it requires communication abilities, in order
to allow agents to propose to others to form a coalition, and
to coordinate on the base each member of the coalition must
give for achieving the wanted result. For this work, it seems
that games in coalitional form, studied in game theory (We-
ber 1994; Greenberg 1994), can provide some interesting
notions and results.

A third perspective is to identify the complexity of de-
termining whether a profile can be manipulated by a base
given an operator. Indeed, using a merging operator that is
not strategy-proof is not necessarily harmful if finding out
a strategy is hard. Such a complexity issue has been in-
vestigated for voting schemes (Conitzer & Sandholm 2003;
Conitzer, Lang, & Sandholm 2003; Conitzer & Sandholm
2002a; 2002b) when individual preferences are given ex-
plicitly (which is not the case in our framework). A first
result follows easily from Proposition 12: if the distance d
between interpretations can be computed in polynomial time
in the input size (which is not a strong assumption), deter-
mining whether a given profile can be manipulated by a base
given ∆d,Σ

µ and µ is in Σp
2.
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