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Abstract

We propose a sound and complete satisfiability algorithm for
propositional multi-context systems. In essence, the algo-
rithm is a distribution policy built on top of local reasoning
procedures, one for each context, which can be implemented
by (a diversity of) customized state-of-the-art SAT solvers.
The foremost intuition that has motivated our algorithm, and
the very potential strength of contextual reasoning, is that of
keeping reasoning aslocal as possible. In doing so, we im-
prove on earlier established complexity results by Massacci.
Moreover, our approach could be applied to enhance recent
proposals by Amir and Mcilraith towards a new partition-
based reasoning paradigm; particularly, our formalism allows
for a more expressive description of interpartition relations,
and we provide an algorithm that is explicitly designed to deal
with this expressiveness.

Introduction
The establishment of a solid paradigm for contextual
knowledge representation and contextual reasoning is of
paramount importance for the development of sophisticated
theory and applications in AI.

McCarthy (1987) pleaded for a formalization of context
as a possible solution to the problem ofgenerality, whereas
Giunchiglia (1993a) emphasized the principle oflocality –
reasoning based on large (common sense) knowledge bases
can only be effectively pursued if confined to a manageable
subset (context) of that knowledge base.

Contextual knowledge representation has been formalized
in several ways. Most notable are the propositional logic of
context developed by McCarthy, Buvač and Mason (1993;
1998), and the multi-context systems devised by Giunchiglia
and Serafini (1994), which later became associated with the
local model semantics (Ghidini & Giunchiglia 2001).

Contexts were first implemented as microtheories in the
famed CYC common sense knowledge base (Guha 1991).
However, while in CYC local microtheories were a choice,
in contemporary settings like the semantic web the notion
of local, distributed knowledge is a must. Modern archi-
tectures impose highly scattered, heterogeneous knowledge
fragments, which a central reasoner is not able to deal with.
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This engenders a high demand for distributed, contextual
reasoning procedures.

However, apart from few exceptions (Weyhrauch 1980;
Massacci 1996), a general approach towards the automa-
tion of contextual reasoning has so far rarely been pursued.
The pioneering work by Weyhrauch (1980) eventuated in
an interactive multi-contextual theorem prover calledFOL,
which was later developed by Giunchiglia (1993b) into a
more mature system calledGETFOL. Both systems however,
support automatic reasoning within a single context only.
Cross contextual reasoning is left to their users.

Massacci (1996) was the first to propose a completely
automatic tableaux-based decision procedure for contextual
reasoning. This procedure however, leaves open a substan-
tial number of efficiency issues and moreover, only applies
to propositional logic of context (PLC).

We propose an automatic decision procedure called CSAT
that computes satisfiability in multi-context systems (MCS).
Furthermore, as MCS has recently been proven strictly more
general than PLC (Bouquet & Serafini 2004), we show that
CSAT can be applied to settle satisfiability in PLC as well.

The contribution of this paper, then, is threefold:

• CSAT is the first sound and complete decision procedure
for propositional multi-context systems.

• CSAT is the first SAT-based decision procedure for con-
textual reasoning in general, and as such improves (in
terms of complexity) both on Massacci’s tableaux-based
procedure for PLC, and on implicit results (based on
equivalence results with modal logics) for MCS obtained
from (Serafini & Giunchiglia 2002).

• Our approach could be applied to enhance recent pro-
posals towards a new partition-based reasoning paradigm
(Amir & McIlraith 2000; 2004); compared to alternative
formalisms, MCS allows for more expressive descriptions
of interpartition (intercontextual) relations, and CSAT is
deliberately designed to deal with this expressiveness.

We proceed as follows. After defining propositional
multi-context systems and their local model semantics, we
explicate the contextual satisfiability problem and describe
CSAT. Subsequently, we consider CSAT ’s computational
complexity, and conclude with a discussion of the pros and
cons of our approach in comparison with similar ones.
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Multi-Context Systems
A simple illustration of the intuitions underlying MCS/LMS
is provided by the so-called “magic box” example (Ghidini
& Giunchiglia 2001), depicted below.

Mr.1 Mr. 2

Figure 1: The magic box

Example 1 Mr.1 and Mr.2 look at a box, which is called
“magic” because neither of the observers can make out its
depth. Both Mr.1 and Mr.2 maintain a local representation
of what they see. These representations must be coherent –
for instance, if Mr.1 thinks there’s a ball in the box, Mr.2
should not believe it’s empty.

We show how such interrelated local representations can
be captured formally. Our point of departure is a set of
indicesI. Each indexi ∈ I denotes acontext, which is
described by a corresponding formal (in this case standard
propositional) languageLi. To state that a formulaϕ in Li
holds in contexti we utilize so-calledlabeled formulasof
the form i : ϕ (when no ambiguity arises we simply refer
to labeled formulasas formulas). Two or more formulas
that apply to different contexts may be related by so-called
bridge rules. These are expressions of the form:

i1 : φ1, . . . , in : φn → i : ϕ (1)

where i1, . . . , in, i ∈ I and φ1, . . . , φn, ϕ are formulas.
Note that “→” does not denote implication (we’ll use “⊃”
for this purpose). Also note that our language does not
include expressions like¬(i : ϕ) and (i : ϕ ∧ j : ψ).
i : ϕ is called theconsequenceand i1 : φ1, in : φn are
calledpremisesof bridge rule (1). We writecons(br) and
prem(br) for the consequence and the set of all premises of
a bridge rulebr, respectively.

Definition 1 (Propositional Multi-Context System MCS)
A propositional multi-context system〈{Li}i∈I ,BR〉 over
set of indicesI consists of a set of propositional languages
{Li}i∈I and a set of bridge rulesBR.

In this paper, we assumeI to be (at most) countable andBR
to be finite. Note that the latter assumption does not apply to
MCSs withschematicbridge rules, such as provability - and
multi-agent belief systems (Giunchiglia & Serafini 1994).
The question whether our results may be generalized to cap-
ture these cases as well is subject to further investigation.

Example 2 The MCS that formalizes the scenario specified
in example 1 consists of two contexts1 and2, described by
L1 = L({l, r}) andL2 = L({l, c, r}), respectively. The
constraint that Mr.1 should believe the box to be nonempty
if Mr.2 believes this to be the case, is formalized by the fol-
lowing bridge rule:

2 : l ∨ c ∨ r → 1 : l ∨ r (2)

Let Mi denote the class of classical interpretations ofLi.
Each interpretationm ∈ Mi is called alocal modelof Li.
Interpretations of entire MCSs are calledchains. They are
constructed from sets of local models.

Definition 2 (Chain) A chain c over a set of indicesI is
a sequence{ci}i∈I , where eachci ⊆ Mi is a set of local
models ofLi. c is i-consistent ifci is nonempty; it isJ-
consistent, for someJ ⊆ I, if it is j-consistent for allj ∈ J ;
It is point-wise if|ci| ≤ 1 for all i ∈ I; set-wise otherwise.

A chain can be thought of as a set of “epistemic states”, each
corresponding to a certain context (or agent). The fact that
ci contains more than one model signifies thatLi is inter-
pretable in more than one unique way. So, set-wise chains
correspond to partial knowledge, whereas point-wise chains
indicate complete knowledge.

Example 3 Consider the situation depicted in Figure 1.
Both agents have complete knowledge, corresponding to a
point-wise chain{{{l, r}}, {{l,¬c,¬r}}}. We can imagine
a scenario however, in which Mr.1 and Mr.2’s views are re-
stricted to the right half and the left-most section of the box:

Mr.1 Mr. 2

Figure 2: The partially hidden magic box

Now, both Mr.1 and Mr.2 have only partial knowledge;
their observations may be interpreted in more than one way.
This is reflected by the set-wise chain:{

{{l,¬r} , {¬l,¬r}} ,
{{l,¬c,¬r} , {l,¬c, r} , {l, c,¬r} , {l, c, r}}

}
The epistemic states that a chain consists of concernone and
the samesituation. Therefore, arbitrary sets of local models
may not always constitute a “sensible” chain. The somewhat
vague conception of “sensibility” is captured by the more
formal notion of “bridge rule compliance” specified below.

Definition 3 (Bridge Rule Compliance and Satisfiability)
Let c be a chain,ϕ a formula overLi, and BR the set of
bridge rules of a multi-context systemMS.

1. c satisfiesi : ϕ if m |= ϕ for all local modelsm ∈ ci.
We writec |= i : ϕ.

2. c complies withBR if for all br ∈ BR either c |=
cons(br) or c 2 i : ξ for somei : ξ ∈ prem(br).

3. i : ϕ is satisfiable inMS if there is ani-consistent chain
c that satisfiesi : ϕ and complies withBR.

The contextual satisfiability problem, then, is to determine
whether or noti : ϕ is satisfiable inMS. In this paper,
we assumeϕ to be in conjunctive normal form (CNF). Note
however, that our results can easily be extended to the non-
CNF case along the lines of (Armando & Giunchiglia 1993).
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Example 4 One way to think of a bridge rule is as a de-
scription of the information flow among different contexts.
Bridge rule compliance, then, corresponds to effectuating
that information flow. Consider example 3, for instance.
Mr.2 knows that there is a ball in the box. Then, by bridge
rule (2), Mr.1 must also know of the presence of that ball.
He already knows that the right sector is empty, so he may
conclude that there is a ball in the left sector of the box.

Multi-context systems cannot be encoded into propositional
logic by simply indexing propositions. Such an encoding of
the following system, for instance, would be inconsistent.

Example 5 Consider an MCS with two contexts1 and 2,
described byL({p}) andL({q}), respectively, and subject
to the following bridge rules:

1 : p → 2 : q
1 : ¬p → 2 : q

The formula2 : ¬q is satisfied in this system by the chain:{
{{p} , {¬p}} ,
{{¬q}}

}
Henceforth we refer to the set of bridge rules of MS asBR,
and to the set of contexts involved by formulas inΦ asJ .

MC Assignments
Instead of directly looking for a chain that satisfiesi : ϕ in
MS, we will attempt to iteratively construct a so-calledMC
assignment. From this assignment, then, we will generate a
suitable chain.

In this subsection, we first define MC assignments and
their associated semantics. Then, we restate the satisfiability
problem in terms of MC assignments, and specify a way to
generate a chain that solves the original problem from an
MC assignment that solves its reformulation. We show that
this procedure is sound, and, finally, establish that a solution
for the reformulated problem exists if and only if a solution
for the original problem exists. Let us first introduce the
necessary terminology.

Definition 4 A local truth value assignmentπi is a function
that assigns truth values (true or false) to propositional
atoms ofLi. We callπi complete if it assigns a truth value
to every propositional atom ofLi, and partial otherwise. In
the special case thatπi does not assign a truth value to any
of the propositional atoms ofLi, it is called empty.

A local truth value assignmentπi is represented by a set of
literals. This set contains an atomp iff πi(p) = true and its
negation¬p iff πi(p) = false.

Definition 5 An MC local assignmentΠi is a set of local
truth value assignments. We say thatΠi is consistent if it
is nonempty, and inconsistent otherwise. An inconsistent
MC local assignment is denoted⊥. We callΠi complete
if it contains exactly one local truth value assignment, and
if, moreover, this local truth value assignment is complete.
Otherwise, we callΠi partial.

Definition 6 (MC Assignment) An MC assignmentΠ over
a set of indicesI is a sequence{Πi}i∈I of MC local assign-
ments. An MC assignmentΠ is i-consistent ifΠi is consis-
tent; it is J-consistent, for someJ ⊆ I, if it is j-consistent
for all j ∈ J . We callΠ complete if all its elements are
complete; otherwise,Πi is called partial.

Definition 7 (Bridge Rule Compliance and Satisfiability)
Let πi be a local truth value assignment,Πi an MC local
assignment,Π an MC assignment, andϕ a formula inLi.

1. πi satisfiesϕ if
∧
πi |= ϕ, where

∧
πi is the conjunction

of all the elements ofπi. We writeπi |= ϕ.
2. Πi satisfiesϕ if πi |= ϕ for all πi ∈ Πi. We writeΠi |= ϕ.
3. Π satisfiesi : ϕ if Πi |= ϕ. We writeΠ |= i : ϕ.
4. Π complies withBR if for all br ∈ BR either Π |=
cons(br) or Π 2 i : ξ for somei : ξ ∈ prem(br).

If there is ani-consistent MC assignmentΠ that satisfies
i : ϕ and complies withBR, we would like to be able to
automatically generate fromΠ a chain that satisfiesi : ϕ in
MS. This is established as follows:

Definition 8 (Generated Chain) The set of local models
mΠi generated by an MC local assignmentΠi consists of
exactly those local models ofLi that satisfy all the elements
of one of the local truth value assignments inΠi. Formally:

mΠi = {m ∈Mi | m |= l for all literals l in someπi ∈ Πi}

The chaincΠ generated by an MC assignmentΠ is obtained
by assigning to every componentcΠi of cΠ the set of local
modelsmΠi generated byΠi.

Note that an inconsistent MC local assignment generates
an empty set of local models. Moreover, a complete MC
assignment generates a point-wise chain (corresponding to
complete knowledge), whereas a partial MC assignment
generates a set-wise chain (indicating partial knowledge).

It is quite straightforward to see that ifΠ is i-consistent,
thencΠ is i-consistent. Moreover, ifΠ complies with a set
of bridge rules, thencΠ does so too. Finally, ifΠ |= i : ϕ,
thencΠ |= i : ϕ holds as well. From these observations we
directly obtain the following result.

Proposition 1 (Soundness)If Π is an i-consistent MC as-
signment that satisfiesi : ϕ and complies withBR, thencΠ

satisfiesi : ϕ in MS.

The opposite holds as well. From a chaincwe may obtain
an MC assignmentΠ, whose elementsΠi contain local truth
value assignments, each of which directly represents a local
model inci. If all local models inci are represented by a
local truth value assignment inΠi, then it is easy to see that
this construction preservesi-consistency, satisfaction, and
bridge rule compliance. This leads to the following result.

Proposition 2 (Completeness)If there is a chain that sat-
isfiesi : ϕ in MS, then there is also ani-consistent MC
assignmentΠ that satisfiesi : ϕ and complies withBR.

In summary, in order to solve the contextual satisfiability
problem we may first attempt to solve its reformulation in
terms of MC assignments. If a suitable MC assignment is
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determined, we can generate a chain that, by proposition 1,
constitutes a solution of the original problem. On the other
hand, if no such MC assignment exists, proposition 2 tells
us thati : ϕ is unsatisfiable.1

CSAT

Our approach is the following. Starting with some initial
MC assignmentΠ0, we attempt to construct a sequence
Π0,Π1, . . . ,Πk, such that:

• Π1 satisfiesi : ϕ.
• for all m ∈ {2, . . . , k}, Πm complies with the bridge

rules thatΠm−1 does not comply with.
• for all m ∈ {1, . . . , k}, Πm extendsΠm−1 in the follow-

ing sense:

Definition 9 (Extension) Let πi and π′i be two local truth
value assignments,Πi and Π′

i two MC local assignments,
andΠ andΠ′ two MC assignments over a set of indicesI.

1. π′i extendsπi if πi ⊆ π′i.
2. Π′

i extendsΠi if for everyπ′i ∈ Π′
i there is someπi ∈ Πi

such thatπ′i extendsπi.
3. Π′ extendsΠ if Π′

i extendsΠi for everyi ∈ I.

It is useful to observe thatΠ′
i is an extension ofΠi if and

only if mΠ′
i is a subset ofmΠi . So extending an MC local

assignment means restricting the set of local models that is
generated by that assignment.

This observation has two important implications. First,
we obviously want our initial assignmentΠ0 to be most
“general”, that is, we don’t want it to be an extension of
any other assignment. The only assignment exhibiting this
property is the one all of whose components consist of an
empty truth value assignment:Π0 = {{∅}, . . . , {∅}}. Note
that this assignment corresponds to a chaincΠ

0
all of whose

componentscΠ
0

i contain the entire set of local modelsMi.
Moreover, note thatΠ0 doesn’t satisfy any formula. This
means, in particular, thatΠ0 doesn’t satisfy any bridge rule
premise, and therefore complies withBR.

The second implication of alwaysextendingan assign-
ment, and thus restricting the corresponding set of local
models, is that once a formula is satisfied by some inter-
mediate assignmentΠm, then it is also satisfied byΠn, for
any n > m. This means that (1) ifi : ϕ is satisfied by
Π1, then it is also satisfied byΠm, for anym ∈ {1, . . . , k}.
Moreover, (2) if some intermediate assignmentΠm does not
comply with a bridge rulebr ∈ BR - that is,Πm satisfies
br’s premises, but does not satisfy its consequence - then any
extension ofΠm that were to comply withbr should satisfy
br’s consequence(it can by no means be made to not-satisfy
one ofbr’s premises). So obtainingΠm+1 from Πm con-
sists in extendingΠm so as to satisfy the consequences of
the bridge rules thatΠm does not comply with. Finally, (3)
once an intermediate assignment satisfies the consequence
of some bridge rulebr (and therefore complies withbr), any
of its extensions will also satisfybr’s consequence and thus
comply withbr.

1Note that it remains to be shown that a suitable MC assignment
exists only if our algorithm finds one.

Algorithm 1 CSAT

CSAT(Φ,Π,BR, I, J)
begin
I∗ := {i ∈ I | i : ϕ ∈ Φ};

Π∗ :=
{

Π∗
i |

Π∗
i = LSAT(ϕ,Πi) for i ∈ I∗

Π∗
i = Πi for i ∈ I/I∗

}
;

for all j ∈ J do
if Π∗

j = ∅ then
returnFalse;

end if
end for
BR∗ := {br ∈ BR | Π∗ |= i : η forall i : η ∈ prem(br)}
if BR∗ = ∅ then

returnΠ∗;
end if
Ψ∗ := {cons(br) | br ∈ BR∗};

Φ∗ :=

{
i : ϕ | ϕ =

∧
i:ξ∈Ψ∗

ξ , i ∈ I

}
;

return CSAT(Φ∗,Π∗,BR/BR∗, I, J);
end

This approach is implemented by the CSAT procedure,
specified in Algorithm 1. For the sake of generality, and
to provide for elegant recursion, CSAT is designed to settle
satisfiability of asetof labeled formulas. Apart from this set
of formulasΦ, it takes as its input an MC assignmentΠ, a set
of bridge rulesBR, a set of contexts (indices)I, and finally,
a subsetJ ⊆ I of contexts whose consistency is required.

CSAT is called withΠ being the MC assignment overI all
of whose components consist of an empty truth value assign-
ment, and yields aJ-consistent extensionΠ∗ of Π that sat-
isfies every formula inΦ in compliance withBR, or False
if it fails to construct such an MC assignment.

Extensions are always constructedlocally. That is, CSAT
first determines the setI∗ of contexts concerned by formu-
las in Φ, and then, for everyi ∈ I∗, calls a sub-procedure
LSAT that extendsΠi so as to satisfyi : ϕ. The local exten-
sions obtained in this way are simply taken together to form
a “global” extensionΠ∗ of Π.

If Π∗ is J-inconsistent, any further extension ofΠ∗ will
be J-inconsistent as well. Therefore, if such is the case
CSAT recognizes a failure, and returnsFalse. Otherwise,
CSAT determines the setBR∗ of bridge rulesall of whose
premises are satisfied byΠ∗. If BR∗ is empty,Π∗ is a solu-
tion. Otherwise, makingΠ∗ comply withBR∗ yields a new
satisfiability problem, namely that of extendingΠ∗ so as to
satisfy the consequence of everybr ∈ BR∗. Bridge rule con-
sequences that concern the same context are taken together
in order to obtain a setΦ∗ consisting of at most one formula
i : ϕ for every contexti ∈ I. A new instance of CSAT is
addressed to extendΠ∗ so as to satisfyΦ∗. Recursively pro-
ceeding like this, an MC assignment is constructed that, at
any stage, satisfies the formulas inΦ, and at some point ei-
ther becomesJ-inconsistent, or complies with the entire set
of bridge rulesBR.
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Algorithm 2 LSAT

LSAT(ϕ,Πi)
begin
return

⋃
πi∈Πi

DPLL(ϕ, πi);

end
DPLL(ϕ, πi)
begin
if πi |= ϕ then

return{πi};
else ifπi |= ¬ϕ then

return∅;
else ifassign(ϕ, πi) contains a unit clausel then

return DPLL(ϕ, πi ∪ {l});
else
l := chooseUnassignedLiteral(ϕ, πi);
return DPLL(ϕ, πi ∪ {l}) ∪ DPLL(ϕ, πi ∪ {¬l})

end if
end

LSAT takes as its input a formulaϕ and an MC local as-
signmentΠi, and yields a consistent extension ofΠi that
satisfiesϕ, or the empty set if it fails to construct such an
extension.

Its foremost principle, and the very strength of contextual
reasoning, is that oflocality. The efficiency of a contextual
reasoning process ensues from restricting its resources to a
small number of contexts. LSAT is designed accordingly.
Concretely, this amounts to constructing an assignmentΠ∗

i
that does notunnecessarilysatisfy any bridge rule premises.
In this way the chance of having to re-establish bridge rule
compliance is minimized, and therefore reasoning in other
contexts is required only if strictly necessary.

It is again useful to reformulate this idea in terms of sets
of local models: the desired extensionΠ∗

i of Πi should cor-
respond to the set of local modelsmΠ∗

i that is obtained by
removing frommΠi exactlythose local models that do not
satisfyϕ. This constraint is settled by requiringΠ∗

i to be a
complete extensionof Πi with respect toϕ.

Definition 10 (Complete Extension)An extensionΠ∗
i of

an MC local assignmentΠi is called complete with respect
to a formulaϕ if for every complete local truth value assign-
mentπ′i that extends someπi ∈ Πi and satisfiesϕ, there is
an elementπ∗i of Π∗

i so thatπ′i is an extension ofπ∗i .

LSAT indeed constructs complete extensions. In fact, LSAT
returns the union of the extensions of all the truth value
assignments contained byΠi. These extensions are deter-
mined by yet another sub-procedure, called DPLL, which
is a variant of the Davis-Putnam-Longemann-Loveland SAT
procedure (Davis, Longemann, & Loveland 1962). The so
called “pure literal rule” is left out to avoid incomplete ex-
tensions, and instead of returning one suitable local truth
value assignment (orFalse if such an assignment does not
exist), DPLL yields a compact representation of the set of
all suitable local truth value assignments (which may be the
empty set). The “compactness” of this representation is for-
mally characterized by the notion ofstrong non-redundancy.

Definition 11 (Strong Non-Redundancy)An MC local as-
signmentΠi is called strongly non-redundant if for every
πi, π

′
i ∈ Πi, there is a literall so thatl ∈ πi and¬l ∈ π′i. In

this case,πi andπ′i are mutually inconsistent.

DPLL is based on what is calledsemantic branching, that is,
branching on truth values of propositional variables. As a
result, each branching step generates two mutually inconsis-
tent local truth value assignments, and because of this, DPLL
yields a strongly non-redundant set of local truth value as-
signments. By induction the same holds for LSAT.

As argued and empirically supported in (D’Agostino &
Mondadori 1994; Giunchiglia & Sebastiani 1996; 2000) this
characteristic implies a significant and fundamental gain of
efficiency with respect to reasoning procedures based on
what is calledsyntactic branching, that is, branching on the
syntactic structure of the to-be-satisfied formula. This has
motivated us to use DPLL as a foundation of our algorithm,
rather than, for instance, a (syntactically branching) tableau.

Example 6 Let us describe a simple simulation of the al-
gorithm. Consider example 3. Mr.1 knows that there is no
ball in the right section of the box (1 : ¬r); Mr.2 knows that
there is a ball in the leftmost section of the box (2 : l). We let
CSAT determine whetherΨ = {1 : ¬r, 2 : l} is satisfiable
or not. It proceeds as follows.
First, an assignmentΠ1 is determined so as to satisfyΨ:

Π1 = {{{l,¬r} , {¬l,¬r}} , {{l}}}

Then, to make it comply with bridge rule (2):

2 : l ∨ c ∨ r → 1 : l ∨ r

Π1 is extended so as to satisfy1 : l ∨ r. We obtain:

Π2 = {{{l,¬r}} , {{l}}}

which complies with bridge rule (2), and indeed conveys that
Mr.1 knows of the ball’s presence in the left section of the
box (as established earlier in example 4).

Termination, Soundness and Completeness
The set of bridge rule consequences that is satisfied by the
MC assignment which is being constructed is strictly ex-
panded by every recursive call to CSAT. Since there is only
a finite number of bridge rule consequences that are to be
satisfied, CSAT is therefore bound to terminate.

Soundness and completeness of CSAT are easily derived.
To see that if a contextual satisfiability problem can be
solved, a suitable MC assignment will be constructed by
CSAT, it is crucial to realize that every iteration yields a
completeextension of the assignment constructed so far. On
the other hand, if CSAT produces an MC assignment, we
already know by proposition 1 that satisfiability is veritable.

Computational Complexity
We have presented CSAT in deterministic form. The
lower bound for the complexity of deterministic solutions
to the classical (non-contextual) satisfiability problem is
O(2P (ϕ)), whereϕ is the to-be-satisfied formula andP (ϕ)
is the number of propositional variables occurring inϕ.
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The complexity of CSAT is given not only in terms of the
formula whose satisfiability is to be determined, but also in
terms of the bridge rules of the MCS that is considered. Let
Ψ(BR) denote the set of consequences of bridge rules inBR.
We immediately obtain the following complexity results:

tc(DPLL(ϕ, πi)) = O(2P (ϕ))

tc(LSAT(ϕ,Πi)) = O(2P (ϕ))

tc(CSAT(Φ,Π,BR, I, J)) = O( max
i:ϕ∈Φ∪Ψ(BR)

2P (ϕ))

Notice that CSAT is optimal in that it does not exceed the
lower bound inflicted by the complexity of classical SAT.
Moreover, the only parameters of CSAT that exert an influ-
ence on its complexity, apart from the input formula itself,
are theconsequencesof the bridge rules inBR. That is,
bridge rule premises can be unlimitedly intricate, without
having any impact on CSAT ’s overall complexity.

We now construct a non-deterministic variant of CSAT
that operates in polynomial time. First, we provide a non-
deterministic version of LSAT. Observe that LSAT ’s essen-
tial task is to produce an extensionΠ∗

i of a given MC local
assignmentΠi that satisfies, and is complete with respect to
a given formulaϕ. This is established non-deterministically
by proceeding as follows:

1. Generate an extensionΠ∗
i of Πi

2. Check satisfaction: for every local truth value assignment
π∗i ∈ Π∗

i , verify thatπ∗i |= ϕ
3. Check completeness ofΠ∗

i with respect toϕ: for every
complete local truth value assignmentπ′i which extends
someπi ∈ Πi, but which doesnot extend anyπ∗i ∈ Π∗

i ,
check if π′i 2 ϕ, or equivalently, asπ′i is complete, if
π′i |= ¬ϕ

Unfortunately, all these processes may require exponential
time, as the number of possible ways to appoint an extension
Π∗
i of Πi (process 1), as well as the number of local truth

value assignmentsπ∗i andπ′i for which π∗i |= ϕ andπ′i |=
¬ϕ must be verified (process 2 and process 3, respectively)
may be exponential.

We will show, however, that CSAT can be adapted such
that this is never the case. To this end, we return to view-
ing the course of our algorithm in terms of local models.
As we remarked earlier, extending an MC local assignment
Πi corresponds to removing certain local models frommΠi .
Then, to verify thatΠ∗

i satisfiesϕ is to make sure that every
local model contained inmΠ∗

i does so. Similarly, checking
whether an extensionΠ∗

i of Πi is complete with respect toϕ
consists in verifying whether the models that were removed
frommΠi did indeed not satisfyϕ. Now if only |mΠi | was
non-exponential to start with, then extendingΠi (process 1),
and checking for satisfaction (process 2) and completeness
(process 3) could surely be executed in polynomial time.
By the following proposition, this may in fact be assured.

Proposition 3 (Bounded Model Property) A set of formu-
lasΦ is satisfiable in a multi-context system MS iff it is satis-
fied by a chain that contains at most|Φ|+|BR| local models.

Proof. Take anyJ-consistent chainc that satisfiesΦ in
compliance withBR. Let BR∗ ⊆ BR be the set of bridge
rules whose consequences are not satisfied byc. Every
br ∈ BR∗ must have a premise which is not satisfied in
some local modelm(br) contained byc. On the other hand,
every formulai : ϕ ∈ Φ must be satisfied in at least one
local modelm(i : ϕ) in ci. The chainc∗ obtained fromc by
eliminating all local models except:⋃

br∈BR∗

m(br) ∪
⋃
i:ϕ∈Φ

m(i : ϕ)

is still J-consistent, satisfiesΦ in compliance withBR and
contains at most|Φ|+ |BR∗| ≤ |Φ|+ |BR| local models.�

So the non-deterministic variant of CSAT may take as its
initial MC assignment, instead ofΠ0 = {{∅}, . . . , {∅}}
(corresponding to the chain each of whose components is
the entire set of local modelsMi of Li), an assignment
ΠBR that corresponds to a chaincBR, which contains at most
|Φ|+|BR| local models. Clearly, any component ofcBR con-
tains at most|Φ| + |BR| local models as well. In this case,
process 1 requires timeO(|Φ| + |BR|), whereas process 2
and 3 are guaranteed to terminate inO((|Φ|+ |BR|)× |ϕ|).
As a result, the non-deterministic variant of LSAT described
above terminates in timeO((|Φ|+ |BR|)× |ϕ|).

The corresponding version of CSAT consists in first
constructing an initial assignmentΠBR and then non-
deterministically executing LSAT at most|BR| times.

ConstructingΠBR, or its associated chaincBR, merely in-
volves a non-deterministic assignment of truth values to the
atomic propositions in(P (Φ) ∪ P (BR)) for each of its (at
most |Φ| + |BR|) local models. This can be done in time
O((|Φ|+ |BR|)× (|P (Φ)|+ |P (BR)|)).

Contextual satisfiability clearly subsumes classical satisfi-
ability and is therefore NP-hard (Cook 1971). Putting things
together we obtain:

Theorem 1 Contextual satisfiability is NP-complete. Sat-
isfiability of a set of formulasΦ in compliance with a set
of bridge rulesBR can be determined in non-deterministic
polynomial time:

O((|Φ|+ |BR|)×

 (|P (Φ)| + |P (BR)|)
+

( max
i:ϕ∈Φ∪Ψ(BR)

|ϕ| × |BR|)

)

Related Work
Recent work by Giunchiglia and Sebastiani (2000) can be
considered as a first step towards general decision proce-
dures for contextual satisfiability. The aim of this work is
to define SAT-based decision procedures for modal logics.
Its motivation is highly associated with the possibility of
defining a particular class of multi-context systems called
hierarchical meta contexts, whose instances are equiva-
lent to various modal logics (Giunchiglia & Serafini 1994).
Resulting procedures have been proven orders of magni-
tude faster than previous tableau-based decision procedures.
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CSAT can be seen as a generalization of this approach to
the entire class of multi-context systems, as opposed to the
particular class of hierarchical meta contexts.

Massacci (1996) introduced a tableaux-based procedure
that determines satisfiability in PLC. He established a non-
deterministic time complexityO(|ϕ|4), where |ϕ| is the
length of the to-be-satisfied formula. CSAT is designed
to determine satisfiability in MCS/LMS. However, as PLC
can be embedded in MCS/LMS (Bouquet & Serafini 2004),
CSAT may be applied to settle satisfiability in PLC as well.
In doing so we attain the following complexity result:

Theorem 2 Satisfiability of a formulaϕ in PLC can be com-
puted in non-deterministic polynomial timeO(|ϕ|3).

Let ϕ be a formula in PLC. We construct a multi-context
system MCS(ϕ) and a labeled formulaε : ϕ, so thatε : ϕ is
satisfiable in MCS(ϕ) iff ϕ is satisfiable in PLC. For every
nesting patternist(k1, . . . , ist(kn, ψ) . . .) in ϕ, let MCS(ϕ)
contain a context labeled with the sequencek1 . . . kn. Let
the language of contextk1 . . . kn consist of all the atomic
propositions inψ, in addition to a new atomic proposition for
each formula of the formist(k, χ) occurring inψ. Finally,
equip MCS(ϕ) with the following bridge rules2:

k̄k : ψ → k̄ : ist(k, ψ)
k̄ : ist(k, ψ) → k̄k : ψ
k̄ : ¬ist(k, ist(h, ψ)) → k̄k : ¬ist(h, χ)
k̄ : ¬ist(k,¬ist(h, ψ)) → k̄k : ist(h, χ)

wherek̄ = k1 . . . kn refers to any context of MCS(ϕ), whose
language containsist(k, ψ) or ist(k, ist(h, χ)), respectively.

Example 7 Considerϕ = p ∨ ist(k, q ⊃ (ist(h, r ∧ s) ⊃
ist(j, q))). MCS(ϕ) consists of four contexts which are la-
beledε (the empty sequence),k, kh, and kj, respectively.
The language ofε, Lε, contains two propositions,p and
ist(k, q ⊃ (ist(h, r∨s) ⊃ ist(j, q))); Lk contains two propo-
sitions,q and ist(h, r∧s); Lkh = L({r, s}); Lkj = L({q}).
The bridge rules of MCS(ϕ) are as stated above.

Proposition 4 (Bouquet & Serafini, 2004)ϕ is satisfiable
in PLC if and only ifε : ϕ is satisfiable in MCS(ϕ).

Proof for theorem 2. By proposition 4 satisfiability prob-
lems in PLC can be transformed into equivalent satisfiability
problems in MCS/LMS. This transformation can be estab-
lished in linear time.

Every bridge rule in MCS(ϕ) involves at least one propo-
sition of the formist(k, ψ). Every such proposition occurs
in at most four bridge rules. Every subformula ofϕ of the
form ist(k, ψ) (and nothing else) results in a proposition
of the form ist(k, ψ) in the language of exactly one con-
text in MCS(ϕ). The number of subformulas ofϕ of the
form ist(k, ψ) is bounded by|ϕ|. From these observations,
we may conclude that the number of bridge rules|BR| of
MCS(ϕ) is bounded by4 × |ϕ|. By construction, the num-
ber of propositional atoms involved in any bridge rule of
MCS(ϕ) is at most two. Furthermore, the length|cons(br)|

2The first two bridge rules correspond to the notions ofentering
andexiting contexts (McCarthy & Buvǎc 1998), while the others
correspond to the∆ axiom introduced in (Buvǎc & Mason 1993).

of the consequence of any bridge rulebr ∈ BR is bounded
by |ϕ|. This implies thatmaxi:ψ∈{ε:ϕ}∪Ψ(BR) |ψ| = |ϕ|.

By theorem 1, satisfiability ofΦ = {ε : ϕ} in MCS(ϕ)
can be determined in time:

O((|Φ|+ |BR|)×

 (|P (Φ)| + |P (BR)|)
+

( max
i:ψ∈Φ∪Ψ(BR)

|ψ| × |BR|)


In the light of the above observations this is reducible to:

O(|ϕ|3)

�

Recently Amir and McIlraith (2000; 2004) have defined
forward/backward propagation algorithms (called MP and
BMP, respectively) that compute satisfiability of a theory
T , which is partitioned into sub-theories (orpartitions)
T1, . . . , Tn. Partitions are related by the overlap between the
signatures of their respective languages, which is called the
communication languagebetween these partitions. Roughly
speaking, to check satisfiability of a partitioned theoryTi≤n
(B)MP determines a partial order≺ overTi≤n, and then -
iterating overTi≤n according to≺, and propagating logical
consequences of one partition to the next through the com-
munication language between two consecutive partitions -
determines all the models ofTi≤n.

At a first glance, there is a strict analogy between par-
titioned theories and multi-context systems. Each partition
can be seen as a context, and overlap between two partitions
can be simulated via bridge rules of the formi : p → j : p
and i : ¬p → j : ¬p, wherep is in the communication
language betweenTi andTj . However, the analogy breaks
at the semantical level. The semantics of a partitioned the-
ory can be seen as the projection of a global semantics for
T onto each local languageTi. Or, the other way around, a
model forT is the combination of one model for eachTi.
Conversely, a chain associates to every context aset of local
models. Therefore, it cannot be considered as a set of chunks
of a global model. In other words, in Amir and McIlraith’s
approach eachTi represents a partial theory of the world,
while in ours each context represents an epistemic/belief
state about the world. However, the analogy can bemadeto
work, by considering onlyI-consistent point-wise chains.
So the two approaches should be compared subject to this
hypothesis.

CSAT, then, exhibits two main improvements w.r.t.
(B)MP. First, bridge rules allow us to express more complex
relations between contexts (partitions) than communication
languages do. For instance, we can relate three (or more)
contexts via a bridge rulei : ϕ, j : ψ → k : χ, while (B)MP
is limited to considering overlap between pairs of partitions.
Furthermore, bridge rules aredirectional, i.e. i : p → j : p
does not implyj : p → i : p. Communication languages
can only describesymmetricrelations between partitions. At
last, CSAT is more general than (B)MP in that it does not re-
quire any partial order between contexts. It naturally deals
with any kind of relational structure between them.
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Conclusion
This paper describes CSAT, an algorithm which computes
satisfiability in propositional multi-context systems. Both
from a representational and a computational point of view
CSAT is an improvement on state-of-the-art contextual/
modular reasoning systems. It brings down the worst
case complexity bound of contextual satisfiability to non-
deterministicO(|φ|3) (from the earlier establishedO(|φ|4)).
Moreover, from a representational perspective, it computes
satisfiability of a set of theories interacting via bridge rules,
as opposed to a set of simply overlapping partial theories.
Finally, while designing our algorithm we have kept in
mind a distributed peer-to-peer implementation. As a result,
CSAT is modular, i.e. global reasoning consists in compos-
ing local reasoning procedures, and CSAT is backtrack-free,
i.e. solutions are build - or rather confined - incrementally,
imposing a minimal restriction at every step. These features
support a natural implementation of CSAT in a peer-to-peer
architecture, in which each peer performs local reasoning
within a context and propagates its conclusions to neighbor
peers via bridge rules. Modularity supports local reasoning;
backtrack-freeness avoids infinite loops.
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