
Automated Reformulation of Specifications by Safe Delay of Constraints

Marco Cadoli and Toni Mancini
Dipartimento di Informatica e Sistemistica
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Abstract

In this paper we propose a form of reasoning on specifications
of combinatorial problems, with the goal of reformulating
them so that they are more efficiently solvable. The reformu-
lation technique highlights constraints that can be safely “de-
layed”, and solved afterwards. Our main contribution is the
characterization (with soundness proof) of safe-delay con-
straints with respect to a criterion on the specification, thus
obtaining a mechanism for the automated reformulation of
specifications applicable to a great variety of problems, e.g.,
graph coloring and job-shop scheduling. This is an advance-
ment with respect to the forms of reasoning done by state-of-
the-art-systems, which typically just detect linearity of spec-
ifications. Another contribution is a preliminary experimen-
tation on the effectiveness of the proposed technique, which
reveals promising time savings.

Introduction
State-of-the-art systems and languages for constraint mod-
elling and programming (e.g., AMPL (Fourer, Gay, &
Kernigham 1993), OPL (Van Hentenryck 1999), DLV (Eiter
et al. 1998), SMODELS (Niemelä 1999), NP-SPEC (Cadoli &
Schaerf 2001)) clearly separate the specification of a prob-
lem from its instances, adopting the two-level general ar-
chitecture depicted in Figure 1. Some of them (e.g., AMPL)
also allow the user to choose a posteriori one out of several
solvers, being able to translate a specification into different
formats. Others (e.g., OPL) go one step further, by automat-
ically choosing the most appropriate solver for a problem,
thus offering a (primitive) form of reasoning on the spec-
ification (OPL only checks whether the specification is lin-
ear, in this case invoking a linear –typically more efficient–
solver).

We aim to a more ambitious long-term goal, i.e., to au-
tomatically reformulate the specification –independently on
the instance– to improve the efficiency of computation. We
get inspiration from the relational database technology, since
it is well-known that reformulating queries –independently
on the database– may result in greater efficiency. As an ex-
ample, making selections as soon as possible is a simple
heuristic that typically allows to decrease the number of ac-
cesses to disk (cf., e.g., (Abiteboul, Hull, & Vianu 1995)).
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Figure 1: Two-level general architecture for constraint solv-
ing.

Reformulation is a difficult task in general: a specification
is essentially a formula in second-order logic, and it is well
known that the equivalence problem is undecidable already
in the first-order case (Börger, Gräedel, & Gurevich 1997).
For this reason, our current research focuses on restricted
forms of reformulation, and, more specifically, on selecting
constraints that can be safely “delayed”, and solved after-
wards.

The NP-complete graph k-coloring problem offers a sim-
ple example of a constraint of this kind. The problem
amounts to find an assignment of nodes to k colors such
that:

• Each node has at least one color (covering);

• Each node has at most one color (disjointness);

• Adjacent nodes have different colors (good coloring).

For each instance of the problem, if we obtain a solution ne-
glecting the disjointness constraint, we can always choose
for each node one of its colors in an arbitrary way in a later
stage (cf. Figure 2). We call a constraint with this property
a safe-delay constraint. It is interesting to note that the stan-
dard DIMACS formulation in SAT of k-coloring omits the
disjointness constraint.

Of course not all constraints are safe-delay: as an exam-
ple, both the covering and the good coloring constraints are
not. Intuitively, identifying the set of constraints of a specifi-
cation which are safe-delay may lead to several advantages:

• The instantiation phase (cf. Figure 1) will typically be
faster, since safe-delay constraints are not taken into ac-
count. As an example, let’s assume we want to use a SAT
solver (after instantiation) for the solution of k-coloring
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Figure 2: Delaying the disjointness constraint in 3-coloring.

on a graph with n nodes and e edges. The SAT in-
stance encoding the k-coloring instance –in the obvious
way, cf., e.g., (Frisch & Peugniez 2001)– has n · k propo-
sitional variables, and a number of clauses which is n,
n · k · (k − 1)/2, and e · k for covering, disjointness,
and good coloring, respectively. If we delay disjointness,
n · k · (k − 1)/2 clauses must not be generated.

• Solving the simplified problem, i.e., the one without dis-
jointness, might be easier than the original formulation for
some classes of solvers, since removing constraints makes
the set of solutions larger. For each instance it holds that:

{solutions of original problem} ⊆
{solutions of simplified problem}.

In our (even if preliminary) experiments, using a SAT
solver, we obtained a fairly consistent (in some cases,
more than one order of magnitude) speed-up for hard in-
stances of various problems, e.g., graph coloring and job-
shop scheduling. On top of that, we implicitly obtain
several good solutions. The approach seems promising
for some classes of instances even when state-of-the-art
solvers for integer linear programming like CPLEX are
used (cf. Section “Experimental results”).

• Ad hoc efficient methods for solving delayed constraints
may exist. As an example, for k-coloring, the problem of
choosing only one color for the nodes with more than one
color is O(n).

The architecture we propose is illustrated in Figure 3 and can
be applied to any system which separates the instance from
the specification. It is in some sense similar to the well-
known divide and conquer technique, but rather than divid-
ing the instance, we divide the constraints. In general, the
first stage will be more computationally expensive than the
second one, which, in our proposal, will always be doable in
polynomial time.

The goal of this paper is to understand in which cases a
constraint is safe-delay. Our main contribution is the charac-
terization of safe-delay constraints with respect to a seman-
tic criterion on the specification. This allows us to obtain
a mechanism for the automated reformulation of a specifi-
cation that can be applied to a great variety of problems,
including the so-called functional ones.

After recalling some preliminaries, we present our refor-
mulation technique and an experimentation on its effective-
ness, on both benchmark and randomly generated instances,
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Figure 3: Reformulation architecture.

using both a SAT solver and state-of-the-art linear and con-
straint programming solvers. We also present a discussion
on the adopted experimental methodology. Afterwards, we
describe conclusions, and future and related work.

Preliminaries
In this paper, we use existential second-order logic (ESO)
for the specification of problems, which allows to represent
all search problems in the complexity class NP (Fagin 1974).
The use of ESO as a modelling language for problem spec-
ifications is common in the database literature, but unusual
in constraint programming, therefore few comments are in
order. Constraint modelling systems like those mentioned
in the Introduction have a richer syntax and more complex
constructs, and we plan to eventually move from ESO to
such languages. For the moment, we claim that studying the
simplified scenario is a mandatory starting point for more
complex investigations, and that our results can serve as a
basis for reformulating specifications written in higher-level
languages. In Section “Methodological discussion” we dis-
cuss further our choice. Coherently with all state-of-the-art
systems, we represent an instance of a problem by means of
a relational database. All constants appearing in a database
are uninterpreted, i.e., they don’t have a specific meaning.

An ESO specification describing a search problem π is a
formula

ψπ
.= ∃�S φ(�S, �R), (1)

where �R = {R1, . . . , Rk} is the input relational schema
(i.e., a fixed set of relations of given arities denoting the
schema for all input instances for π), and φ is a closed first-
order formula on the relational vocabulary �S∪ �R∪{=} (“=”
is always interpreted as identity).

An instance I of the problem is given as a relational
database over the schema �R, i.e., as an extension for all re-
lations in �R. Predicates (of given arities) in the set �S =
{S1, . . . , Sn} are called guessed, and their possible exten-
sions (with tuples on the domain given by constants occur-
ring in I plus those occurring in φ, i.e., the so called Her-
brand universe) encode points in the search space for prob-
lem π on instance I.

Formula ψπ correctly encodes problem π if, for every in-
put instance I, a bijective mapping exists between solutions

KR 2004    389



to π and extensions of predicates in �S which verify φ(�S, I).
More formally, the following must hold:

For each instance I:

Σ is a solution to π(I) ⇐⇒ {Σ, I} |= φ.

It is worthwhile to note that, when a specification is instanti-
ated against an input database, a constraint satisfaction prob-
lem (in the sense of (Dechter 1992)) is obtained.
Example 1. In the “three-coloring” NP-complete decision
problem (cf. (Garey & Johnson 1979, Prob. GT4)) the input
is a graph, and the question is whether it is possible to give
each of its nodes one out of three colors (red, green, and
blue), in such a way that adjacent nodes (not including self-
loops) are never colored the same way. The question can be
easily specified as an ESO formula ψ over a binary relation
edge:

∃RGB ∀X R(X) ∨G(X) ∨B(X) ∧ (2)

∀X R(X) → ¬G(X) ∧ (3)

∀X R(X) → ¬B(X) ∧ (4)

∀X B(X) → ¬G(X) ∧ (5)

∀XY X �=Y ∧ R(X) ∧ R(Y ) → ¬edge(X,Y ) ∧ (6)

∀XY X �=Y ∧G(X) ∧G(Y ) → ¬edge(X,Y ) ∧ (7)

∀XY X �=Y ∧ B(X) ∧B(Y ) → ¬edge(X,Y ), (8)

where clauses (2), (3-5), and (6-8) represent the covering,
disjointness, and good coloring constraints, respectively.
Referring to the graph in Figure 2, the Herbrand universe
is the set {a, b, c, d, e}, the input database has only one re-
lation, i.e., edge, which has five tuples (one for each edge).
In what follows, the set of tuples from the Herbrand uni-
verse taken by guessed predicates will be called their exten-
sion and denoted with ext(). By referring to the previous
example, formula ψ is satisfied, e.g., for ext(R) = {d},
ext(G) = {a, e}, ext(B) = {b, c} (cf. Figure 2, right). The
symbol ext() will be used also for any first-order formula
with one free variable. An interpretation will be sometimes
denoted as the aggregate of several extensions.

Reformulation
In this section we show sufficient conditions for constraints
of a specification to be safe-delay. We refer to the architec-
ture of Figure 3, with some general assumptions:
1. As shown in Figure 2, the output of the first stage of com-

putation may –implicitly– contain several solutions. In
the second stage we do not want to compute all of them,
but just to arbitrarily select one.

2. The second stage of computation can only shrink the ex-
tension of a guessed predicate. Figure 4 represents the
extensions of the red predicate in the first (R∗) and sec-
ond (R) stages of Figure 2 (ext(B) and ext(G) are un-
changed).
This assumption is coherent with the way most algorithms
for constraint satisfaction operate: each variable has an
associated finite domain, from which values are progres-
sively eliminated, until a satisfying assignment is found.

ext(G)ext(B)

d
ext(G)

ext(R*)

ext(B)

ext(R)

ext(R)ext(R*)

c

b
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e

Figure 4: Extensions for the 3-coloring specification.

Identification of safe-delay constraints requires reasoning on
the whole specification, taking into account relations be-
tween guessed and database predicates. For the sake of
simplicity, we will initially focus our attention on a single
monadic guessed predicate, trying to figure out which con-
straints concerning it can be delayed. Afterwards, we extend
our results to sets of monadic guessed predicates, then to bi-
nary predicates.

Single monadic predicate. We refer to the 3-coloring
specification of Example 1, focusing on one of the guessed
predicates, R, and trying to find an intuitive explanation for
the fact that clauses (3–4) can be delayed. We immediately
note that clauses in the specification can be partitioned into
three subsetsNOR,NEGR, POSR with –respectively– no,
only negative, and only positive occurrences of R.

Neither NOR nor NEGR clauses can be violated by
shrinking the extension ofR. Such constraints will be called
safe-forget for R, because if we decide to process (and sat-
isfy) them in the first stage, they can be safely ignored in the
second one. We note that this is just a possibility, and we are
not obliged to do that: as an example, clauses (3–4) will not
be processed in the first stage.

Although in general POSR clauses are not safe-forget
–because shrinking the extension of R can violate them–
we now show that clause (2) is. In fact, if we equivalently
rewrite clauses (2) and (3–4), respectively, as follows:

∀X ¬B(X) ∧ ¬G(X) → R(X) (2)′

∀X R(X) → ¬B(X) ∧ ¬G(X), (3 − 4)′

we note that clause (2)′ sets a lower bound for the exten-
sion of R, and clauses (3–4)′ set an upper bound for it; both
the lower and the upper bound are ext(¬B(X) ∧ ¬G(X)).
If we use –in the first stage– clauses (2,5–8) for computing
ext(R∗) (in place of ext(R)), then –in the second stage–
we can safely define ext(R) as ext(R∗) ∩ ext(¬B(X) ∧
¬G(X)), and no constraint will be violated (cf. Figure 4).
The next theorem shows that is not by chance that the an-
tecedent of (2)′ is semantically related to the consequence
of (3–4)′.
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Theorem 1. Let ψ be an ESO formula of the form:

∃S1, . . . , Sh, R

Ξ ∧ ∀X α(X)→R(X) ∧ ∀X R(X)→β(X),

where Ξ is a conjunction of clauses, both α and β are arbi-
trary formulae in which R does not occur andX is the only
free variable, and it holds that:

Hyp 1: R either does not occur or occurs negatively in Ξ;
Hyp 2: |= ∀X α(X) → β(X).

Let ψs be:

∃S1, . . . , Sh, R
∗ Ξ∗ ∧ ∀X α(X) → R∗(X),

where R∗ is a new predicate symbol, and Ξ∗ is Ξ with R
replaced by R∗, and ψd be:

∀X R(X) ↔ R∗(X) ∧ β(X).

For each database D and each list M s of extensions for
(S1, . . . , Sh, R

∗) such that (D,M s) |= ψs, then:

(D,Ms − ext(R∗), ext(R)) |= ψ.

where ext(R) is the extension of R as defined by M s and
ψd.

Proof. Let D be any database,M s be any list of extensions
for (S1, . . . , Sh, R

∗) such that (D,M s) |= ψs, and ext(R)
be an extension for R such that (D,M s, ext(R)) |= ψd.

From the definition of ψd, it follows that:

(D,Ms, ext(R)) |= ∀X R(X) → R∗(X),

and so, since clauses in Ξ∗ contain at most negative occur-
rences of R∗, that:

(D,Ms, ext(R)) |= Ξ. (9)

Furthermore, from the definition of ψ s it follows that:

(D,Ms) |= ∀X α(X) → R∗(X),

and from Hyp 2 that:

(D,Ms) |= ∀X α(X) → R∗(X) ∧ β(X).

This implies, by the definition of ψd, that:

(D,Ms, ext(R)) |= ∀X α(X) → R(X). (10)

Moreover, by the same definition, it is also true that:

(D,Ms, ext(R)) |= ∀X R(X) → β(X). (11)

From (9–11), and from the observation that R ∗ does not oc-
cur in any of the right parts of them, the thesis follows.

Referring to Figure 3, ψ is the specification, D is
the instance, ψs is the “simplified specification”, and
∀X R(X) → β(X) is the “delayed constraint”. Solving ψs

againstD produces –if the instance is satisfiable– a list of ex-
tensionsM s (the “output”). Evaluating ψd againstM s cor-
responds to the “PostProcessing” phase in the second stage;
since the last stage amounts to the evaluation of a first-order
formula against a fixed database, it can be done in logarith-
mic space (cf., e.g., (Abiteboul, Hull, & Vianu 1995)), thus
in polynomial time.

In other words, the theorem says that, for each satisfiable
instance D of the simplified specification ψs, each solution
M s of ψs can be translated, via ψd, to a solution of the orig-
inal specification ψ; we can also say that Ξ ∧ ∀X α(X) →
R(X) is safe-forget, and ∀X R(X) → β(X) is safe-delay.

Referring to the specification of Example 1, Ξ is the con-
junction of clauses (5–8), and α(X) and β(X) are both
¬B(X) ∧ ¬G(X), cf. clauses (3–4)′. Figure 4 represents
possible extensions of the red predicate in the first (R∗)
and second (R) stages, for the instance of Figure 2, and
Figure 6 (left) shows that, if Hyp 2 holds, the constraint
∀X α(X) → R(X) can never be violated in the second
stage.

We are guaranteed that the two-stage process preserves at
least one solution of ψ by the following proposition.

Proposition 1. Let D, ψ, ψs and ψd as in Theorem 1. For
each database D, if ψ is satisfiable, ψs and ψd are satisfi-
able.

Proof. Let D be any database, and M be any list of exten-
sions for (S1, . . . , Sh, R) such that (D,M) |= ψ. Let R∗ be
defined in such a way that ext(R∗) = ext(R).

It is immediate to show that (M − ext(R), ext(R∗)) |=
ψs, and (M, ext(R∗)) |= ψd.

To substantiate the reasonableness of the two hypotheses of
Theorem 1, we play the devil’s advocate and add to the spec-
ification of Example 1 the constraint

∀X edge(X,X) → R(X), (12)

saying that self-loops must be red. We immediately notice
that now clauses (3–4) are not safe-delay: intuitively, after
the first stage, nodes may be red either because of (2) or
because of (12), and (3–4) are not enough to set the cor-
rect color for a node. Now, if –on top of (5–8)– Ξ con-
tains also the constraint (12), Hyp 1 is clearly not satisfied.
Analogously, if (12) is used to build α(X), then α(X) be-
comes edge(X,X) ∨ (¬B(X) ∧ ¬G(X)), and Hyp 2 is
not satisfied. Figure 6, right, gives further evidence that the
constraint ∀X α(X) → R(X) can be violated if ext(R) is
computed using ψd and ext(α) is not a subset of ext(β).

Summing up, a constraint with a positive occurrence ofR
can be safely forgotten only if there is a safe-delay constraint
which justifies it.

Some further comments about Theorem 1 are in order:

• Ξ does not need to be a conjunction of clauses, but can
be any formula such that, from any structureM such that
M |= Ξ, by shrinking ext(R) and keeping everything
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Figure 6: Extensions with and without Hyp 2.

else fixed we obtain another model of Ξ. As an example,
Ξ may contain the conjunct ∃X R(X) → G(X).

• Although Hyp 2 calls for a tautology check –which is
not decidable in general– we will see in what follows that
many specifications satisfy it by design.

Set of monadic predicates. Theorem 1 can be applied re-
cursively to the specification ψs, by focusing on a different
guessed predicate, in order to obtain a new simplified speci-
fication (ψs)s and new delayed constraints (ψs)d. Since, by
Proposition 1, satisfiability of such formulae is preserved, it
is afterwards possible to translate, via (ψs)d, each solution
of (ψs)s to a solution of ψs, and then, via ψd, to a solution
of ψ.

The procedure REFORMULATE in Figure 5 deals with the
general case of a set of guessed predicates: if the input spec-
ification ψ is satisfiable, it returns a simplified specification
ψs and a list of delayed constraints ψd. Algorithm SOLVE-
BYDELAYING gets any solution of ψs and translates it, via
the evaluation of formulae in the list ψd –with LIFO policy–
to a solution of ψ.

As an example, we evaluate the procedure REFORMU-
LATE on the specification of Example 1, by focusing on the
guessed predicates in the order R,G,B. The output is the
following simplified specification ψs that omits all disjoint-
ness constraints (i.e., clauses (3–5)):

∃R∗G∗B ∀X R∗(X) ∨G∗(X) ∨B(X) ∧
∀XY X �=Y ∧R∗(X) ∧R∗(Y ) → ¬edge(X,Y ) ∧
∀XY X �=Y ∧G∗(X) ∧G∗(Y ) → ¬edge(X,Y ) ∧
∀XY X �=Y ∧B(X) ∧ B(Y ) → ¬edge(X,Y ),

and the following list ψd of delayed constraints:

∀X R(X) ↔ R∗(X) ∧ ¬G(X) ∧ ¬B(X); (13)

∀X G(X) ↔ G∗(X) ∧ ¬B(X). (14)

Note that the check that ∀X β(X) is not a tautology prevents
the (useless) delayed constraint ∀X B(X) ↔ B∗(X) to be
pushed in ψd.

From any solution of ψs, a solution of ψ is obtained by re-
constructing first of all the extension for G by formula (14),
and then the extension for R by formula (13) (synthesized,
respectively, in the second and first iteration). Since each
delayed constraint is first-order, the whole second stage is
doable in logarithmic space.

We observe that the procedure REFORMULATE is intrin-
sically non-deterministic, because of the partition that must
be applied to the constraints.

Binary predicates. To highlight how our reformulation
technique can be extended to handle specifications with
binary predicates, we consider the specification of the k-
coloring problem using a binary predicate Col –the first ar-
gument being the node and the second the color, which is
as follows (constraints represent, respectively, covering, dis-
jointness, and good coloring):

∃Col ∀X ∃Y Col(X, Y ) ∧
∀XY Z Col(X, Y ) ∧ Col(X,Z) → Y = Z ∧
∀XY Z X �= Y ∧ Col(X,Z) ∧ Col(Y, Z) →

¬edge(X,Y ).

Since the number of colors is finite, it is always possible to
unfold the above constraints with respect to the second argu-
ment of Col. As an example, if k = 3, we obtain –up to an
appropriate renaming of the Col predicate– the specification
of Example 1. The above considerations imply that we can
use the architecture of Figure 3 for a large class of specifica-
tions, including the so called functional specifications, i.e.,
those in which the search space is a (total) function from a
finite domain to a finite codomain. A safe-delay functional
specification is an ESO formula of the form

∃P Ξ ∧ ∀X ∃Y P (X,Y ) ∧
∀XY Z P (X,Y ) ∧ P (X,Z) → Y = Z,

where Ξ is a conjunction of clauses in which P either does
not occur or occurs negatively. In particular, the disjoint-
ness constraints are safe-delay, while the covering and the
remaining ones, i.e., Ξ, are safe-forget. Formally, sound-
ness of the architecture on safe-delay functional formulae is
guaranteed by Theorem 1.

Safe-delay functional specifications are quite common;
apart from graph coloring, notable examples are Job-shop
scheduling and Bin packing, that we consider in the follow-
ing:

Example 2. In the Job-shop scheduling problem (Garey &
Johnson 1979, Prob. SS18), we have sets (sorts) J for jobs,
K for tasks, and P for processors. Jobs are ordered col-
lections of tasks and each task has an integer-valued length
(encoded in binary relation L) and the processor that per-
forms it (in binary relation Proc). Each processor can per-
form a task at the time, and tasks belonging to the same job
must be performed in their order. Finally, there is a global
deadlineD that has to be met by all jobs.

An ESO specification for this problem is as follows. For
simplicity, we assume that relation Aft contains all pairs of
tasks 〈k′, k′′〉 of the same job such that k ′ comes after k′′ in
the given order (i.e., it encodes the transitive closure), and
that relation T ime encodes all time points until deadlineD
(thus it contains exactly D tuples). Moreover, we assume
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Algorithm SOLVEBYDELAYING
Input: a specification Φ, a databaseD;
Output: a solution of 〈D,Φ〉, if satisfiable,

‘unsatisfiable’ otherwise;
begin
〈Φs,Φd〉 = REFORMULATE(Φ);
if (〈Φs, D〉 is satisfiable) then
begin

let M be a solution of 〈Φs, D〉;
while (Φd is not empty) do
begin

Constraint d = Φd.pop();
M = M∪ solution of d;
// cf. Theorem 1

end;
return M ;

end;
else return ‘unsatisfiable’;

end;

Procedure REFORMULATE
Input: a specification Φ;
Output: the pair 〈Φs,Φd〉, where Φs is a simplified

specification, and Φd a stack of
delayed constraints;

begin
Stack Φd = the empty stack;
Φs = Φ;
for each monadic guessed pred. R in Φs do
begin

partition constraints in Φs according to Thm 1, in:
〈Ξ; ∀Xα(X)→R(X); ∀XR(X)→β(X)〉;

if the prev. step is possible with ∀Xβ(X) �=TRUE
then begin

Φd.push(‘∀XR(X)↔R∗(X)∧β(X)’);
Φs = Ξ∗ ∧ ∀X α(X) → R∗(X);

end;
end;
return 〈Φs,Φd〉;

end;

Figure 5: Algorithm for safe-delay in case of a set of monadic predicates.

that predicate“≥” and function “+” are correctly defined
on constants in T ime. It is worth noting that these assump-
tions do not add any expressive power to the ESO formalism,
and can be encoded in ESO with standard techniques.

∃S ∀k, t S(k, t) → K(k) ∧ T (t) ∧ (15)

∀k∃t S(k, t) ∧ (16)

∀k, t′, t′′S(k, t′) ∧ S(k, t′′) → t′ = t′′ ∧ (17)

∀k′, k′′, j, t′, t′′, l′ Job(k′, j)∧Job(k′′, j)∧
k′ �=k′′ ∧Aft(k′′, k′) ∧ S(k′, t′) ∧ S(k′′, t′′)∧ (18)

L(k′, l′) → t′′ ≥ t′ + l′ ∧
∀k′, k′′, p, t′, t′′, l′, l′′
Proc(k′, p) ∧ Proc(k′′, p) ∧ k′ �= k′′ ∧ L(k′, l′)∧
L(k′′, l′′) ∧ S(k′, t′) ∧ S(k′′, t′′) → (19)

[
(t′≥ t′′→ t′≥ t′′+l′′) ∧ (t′≤ t′′→ t′′≥ t′+l′)]∧

∀k, t, l T (k) ∧ S(k, t) ∧ L(k, l) → T ime(t+l). (20)

Constraints (15–17) force a solution to contain a tuple 〈k, t〉
(t being a time point) for every task k, hence to encode an
assignment of exactly a starting time to every task (in par-
ticular, (17) assigns at most one starting time to each task).
Moreover, constraint (18) forces tasks that belong to the
same job to be executed in their order without overlapping,
while (19) avoids a processor to perform more than one task
at each time point. Finally, (20) forces the scheduling to ter-
minate before deadlineD.

To reformulate the Job-shop scheduling problem, after un-
folding the specification in such a way to have one monadic

guessed predicate St for each time point t, we focus on
a time point t and partition clauses in the specification in
which St does not occur, occurs positively, or negatively, in
order to build Ξ, α(k), and β(k). The output of this phase is
as follows:

• α(k) .=
∧

t�=t ¬St(k) (obtained by unfolding (16));

• β(k) .=
∧

t�=t ¬St(k) (obtained by unfolding (17)).

α and β above clearly satisfy Hyp 2 of Theorem 1. More-
over, according to the algorithm in Figure 5, by iteratively
focusing on all predicates St, we can delay all such (un-
folded) constraints. It is worth noting that the unfolding of
guessed predicates is needed only to formally characterize
the reformulation with respect to Theorem 1, and must not
be performed in practice.

Intuitively, the constraint we delay, i.e. (17), imposes at
most one start time for each task: thus, by delaying it, we
allow a task to have multiple starting times, i.e., the task
does not overlap with any other task at any of its start times.
Again, in the second stage, we can arbitrarily choose one of
them. We observe that a similar approach has been used in
(Crawford & Baker 1994) for an optimized ad-hoc transla-
tion of this problem into SAT, where propositional variables
represent the encoding of earliest starting times and latest
ending times for all tasks, rather than their exact scheduled
times.

Example 3. In the Bin packing problem (Garey & Johnson
1979, Prob. SR1) (cf. also (Martello & Toth 1990)), we are
asked to pack a set I of items, each one having a given size,
into a setB of bins, each one having a given capacity. Under
the assumption that input instances are given as extensions

KR 2004    393



for relations I , S, B, and C, where I encodes the set of
items, B the set of bins, S the size of items (a tuple 〈i, s〉
for each item i), and C the capacity of bins (a tuple 〈b, c〉
for each bin b), an ESO specification for this problem is as
follows:

∃P ∀i, b P (i, b) → I(i) ∧B(b) ∧ (21)

∀i∃b I(i) → P (i, b) ∧ (22)

∀i, b, b′ P (i, b) ∧ P (i, b′) → b = b′ (23)

∀b, c C(b, c) →
sum ({s | P (i, b) ∧ S(i, s)}) ≤ c (24)

where, to simplify notations, we assume bounded integers
to encode the size of items and capacity of bins, and the
existence of a function sum that returns the sum of elements
that belong to the set given as argument. Bounded integers
and arithmetic operations over them do not add expressive
power to ESO.

In the above specification, a solution is a total mapping
P from items to bins. Constraints force the mapping to be,
respectively, over the right relations (21), total (22), mon-
odrome (23), and satisfying the capacity constraint for every
bin (24).

In particular, by unfolding the guessed predicate P to |I|
monadic predicatesPi, one for every item i, and, coherently,
the whole specification, the constraints that can be delayed
are the unfolding of (23), that force an item to be packed in
exactly one bin. Thus, by iteratively applying Theorem 1 by
focusing on all unfolded guessed predicates, we intuitively
allow an item to be assigned to several bins. In the second
stage, we can arbitrarily choose one bin to obtain a solution
of the original problem.
It is worth noting that arithmetic constraints do not interfere
with our reformulation technique. As an instance, in the last
example, the “≤” predicate leads to clauses that remain sat-
isfied if the extension of the selected guessed predicate is
shrunk, while keeping everything else fixed.

Non-shrink second stages. As specified in Section “Re-
formulation”, we have focused on second stages in which
the extension of the selected guessed predicate can only be
shrunk, while those for the other ones remain fixed.

Actually, there are other specifications which are
amenable to be reformulated by safe-delay, although with
a different kind of second stages. As an example, we show
a specification for the Golomb ruler problem.
Example 4. In the Golomb ruler problem (www.csplib.
org, Prob. 3), we are asked to put m marks M1, . . . ,Mm

on different points on a ruler of length l in such a way that:
(i) mark i is put on the left (i.e., before) mark j if and only
if i < j, and (ii) the m(m − 1)/2 distances among pairs
of distinct marks are all different. By assuming that input
instances are given as extensions for unary relationsM (en-
coding the set of marks) and P (encoding the l points on
the ruler), and that the function “+” and the predicate “<”
are correctly defined on tuples in M and on those in P , a
specification for this problem is as follows:

∃G∀m, i G(m, i) →M(m) ∧ P (i) ∧ (25)

∀m∃i M(m) → P (m, i) ∧ (26)

∀m, i, i′ G(m, i) ∧G(m, i′) → i = i′ ∧ (27)

∀m,m′, i, i′ G(m,i) ∧G(m′,i′) ∧m<m′ → i<i′∧ (28)

∀m,m′, i, i′, n, n′, j, j′

G(m, i) ∧G(m′, i′) ∧G(n, j) ∧G(n′, j′)∧ (29)

m<m′ ∧ n<n′ ∧ (m<n ∨ (m=n ∧m′<n′)) →
(i′ − i) �= (j′ − j).

A solution is thus an extension for the guessed predicate G
which is a mapping (25–27) assigning a point in the ruler to
every mark, such that the order of marks is respected (28)
and distances between two different marks are all differ-
ent (29).

Differently from the previous examples, the constraint that
can be delayed here is (28), that forces the ascending order-
ing among marks. By neglecting it, we extend the set of
solutions of the original problem with all of their permuta-
tions. In the second stage, the correct ordering among marks
can be enforced in polynomial time.

By unfolding the binary guessed predicate G, we ob-
tain |M | monadic predicates Gm, one for each mark m.
Once a solution of the simplified specification has been com-
puted, by focusing on all of them, in order to reinforce the
m(m−1)/2 unfolded constraints derived from (28), we pos-
sibly have to exchange tuples among pairs of predicatesGm

and Gm′ , for all m �= m′, and not to shrink the extensions
of single guessed predicates. A similar kind of second stage
is needed for reformulating some permutation problems by
safe-delay.

Furthermore, a modification of some of the other con-
straints may be needed to ensure the correctness of the re-
formulation. As an example, in constraint (29) differences
must be replaced by their absolute values.

We are currently investigating the formal aspects of such
a generalization, and whether this kind of reformulations
are effective in practice. Some preliminary results on refor-
mulating a class of permutation problems that include, e.g.,
Hamiltonian path, Permutation flow-shop, and Tiling prob-
lems, appear in (Mancini 2003).

Methodological discussion
In this section we make a discussion on the methodology
we adopted in this work, in particular the use of ESO as a
modelling language, and the choice of the solvers for the
preliminary experimentation.

Using ESO for specifying problems wipes out many as-
pects of state-of-the-art languages which are somehow diffi-
cult to take into account, thus simplifying the task of finding
criteria for reformulating problem specifications. However,
ESO, even if somewhat limited, is not too far away from
the modelling languages provided by some commercial sys-
tems. An example is AMPL, which admits only linear con-
straints: in this case, the reformulation technique described
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in Theorem 1 can often be straightforwardly applied; for in-
stance, a specification of the k-coloring problem in such a
language is as follows:

param n nodes;
param n colors integer,> 0;
set NODES := 1..n nodes;
set EDGES within NODES cross NODES;
set COLORS := 1..n colors;
# Coloring of nodes as a 2-ary predicate
var Coloring {NODES,COLORS} binary;
s.t. CoveringAndDisjointness {x in NODES}:

# nodes have exactly one color
sum {c in COLORS} Coloring[x,c] = 1;

s.t. GoodColoring {(x,y) in EDGES, c in COLORS}:
# nodes linked by an edge have diff. colors
Coloring[x,c] + Coloring[y,c]<= 1;

The reformulated specification can be obtained by simply re-
placing the “CoveringAndDisjointness” constraint with the
following one:

s.t. Covering {x in NODES}
sum {c in COLORS} Coloring[x,c]>= 1;

As for languages that admit non linear constraints, e.g., OPL,
it is possible to write a different specification using integer
variables for the colors and inequality of colors between ad-
jacent nodes. In this case it is not possible to separate the
disjointness constraint from the other ones, since it is im-
plicit in the definition of the domains.

We also note that, as shown in Examples 2, 3, and 4, we
can consider useful syntactic sugar for encoding bounded
integers, operations and relations such as “sum”, “+”, “≤”,
etc., without adding expressive power to ESO.

For what concerns the experimentation, it must be noted
that a specification written in ESO naturally leads to a trans-
lation into a SAT instance. For this reason, we have cho-
sen to use a SAT solver to start the experimentation of the
proposed technique. Anyway, we repeated the experimen-
tation using the state-of-the-art commercial systems CPLEX
(linear) and SOLVER (non-linear). Thus, SAT-based exper-
iments have to be considered as a starting point and an en-
couraging evidence of the reasonableness of the proposed
approach, by showing that consistent speed-ups in the solv-
ing process can be obtained by a mere reformulation of a
pure declarative specification. Actually, this evidence has
been partially confirmed by the experiments done using the
linear integer programming solver CPLEX: also in this case,
several classes of instances benefit from safe-delay.

Experimental results
We made an experimentation of our reformula-
tion techniques on 3-coloring (randomly gener-
ated instances), k-coloring (benchmark instances
from the DIMACS repository ftp://dimacs.
rutgers.edu/pub/challenge), and job-shop
scheduling (benchmark instances from OR library
www.ms.ic.ac.uk/info.html), solving each
instance both with and without delaying the disjointness
constraints, using both the DPLL-based SAT system SATZ

(Li & Anbulagan 1997) (and an ad hoc program (Cadoli
& Schaerf 2001) for the instantiation stage), and the
state-of-the-art constraint and linear programming system
OPL (Van Hentenryck 1999), obviously using it as a pure
modelling language, and omitting search procedures. For
what concerns the latter system, we wrote both a linear
and a non-linear specification for the above problems, and
applied our reformulation technique to the linear ones (cf.
previous section). Experiments were executed on an Intel
2.4 GHz Xeon bi-processor computer. The size of instances
was chosen so that our machine is able to solve (most of)
them in more than few seconds, and less than one hour. In
this way, both instantiation and post-processing times are
negligible, and comparison can be done only on solving
time.

Summing up, we solved several thousands of instances.
For what concerns the SAT experimentation, it is worth not-
ing that in all instances the SAT time without disjointness
is less than or equal to the time with disjointness. As far
as CPLEX is concerned, we found that several (but not all)
instances benefitted from delaying constraints, especially
those for which the linear specification is more efficient than
the non-linear one (cf. the following paragraphs).

In what follows, we refer to the saving percentage, de-
fined as the ratio:

(time with disj. − time without disj.) /time with disj.

3-coloring. We solved the problem on 3,500 randomly
generated graph instances with 430 nodes each. The num-
ber of edges varies, and covers the phase transition region
(Cheeseman, Kanefski, & Taylor 1991): the ratio (# of di-
rected edges/# of nodes) varies between 2 and 6. The av-
erage solving time (150 instances for each fixed number of
edges) varies between fractions of a second and a minute.
The saving percentage in the SAT-based experiments varies
between 15% and 50%, for both positive and negative in-
stances, the hardest instances being at 30%. Experimenta-
tion with CPLEX and SOLVER is planned.

k-coloring. Results of our SAT-based experiments are
shown in Table 1 (n and e are the number of nodes and
edges). The saving percentage varies between 9.0% and
59%. On the other hand, when applying the reformulation
technique to OPL, we observed two major evidences:

1. It is not the case that a specification (linear or non-linear)
is always more efficient than the other one. In partic-
ular, the ratio between the solving time of CPLEX and
SOLVER is highly variable, and the linear specification can
be much more efficient than the non-linear one, especially
for negative instances.

2. By focusing on the class of instances for which the linear
specification is more efficient than the non-linear one, we
found out several instances in which delaying the disjoint-
ness constraint leads to appreciable time savings.

Job shop scheduling. We considered two instances
known as FT06 (36 tasks, 6 jobs, 6 processors, solvable
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with deadline 55) and LA02 (50 tasks, 10 jobs, 5 processors,
solvable with deadline 655). SAT solving times are listed in
Table 2 for different values for the deadline. As it can be ob-
served, the saving is quite consistent. For what concerns the
experiments in OPL, CPLEX seems not to be affected much
by delaying constraints (or even affected negatively), and
anyway it is slower than SOLVER.

Summing up, delaying of constraints seems to be always ef-
fective when using a SAT solver. As far as CPLEX is con-
cerned, we have mixed evidence. We plan to extend the
experimentation to problems in which SAT performs worse
than other solvers.

As concluding remarks, it has to be observed that, differ-
ently from the SAT-based experimentation, in the OPL-based
one it not always the case that the reformulation technique
leads to positive time savings. Consequently, further studies
have to be done in order to better understand when and why
the linear specification is more efficient than the non-linear
one, and when and why delaying the disjointness constraint
is profitable, when dealing with linear specifications. From
our current point of view, it seems that the linear specifica-
tion, at least for the above problems, is often more efficient
when dealing with negative instances.

Conclusions, related and future work
In this paper we have shown a simple reformulation architec-
ture and proven its soundness for a large class of problems.
The reformulation allows to delay the solution of some con-
straints, which often results in faster solving. In this way,
we have shown that reasoning on a specification can be very
effective.

Although Theorem 1 calls for a tautology checking (cf.
Hyp 2), we have shown different specifications for which
this test is easy. Furthermore, we believe that, in practice,
an automated theorem prover (ATP) can be used to reason
on specifications, thus making it possible to automatically
perform the task of choosing constraints to delay. As an
example, in (Cadoli & Mancini 2004) we have shown that
state-of-the-art ATPs usually perform very well in similar
tasks (i.e., detecting and breaking symmetries and function-
ally dependent predicates on problem specifications).

Related work. Several researchers addressed the issue of
reformulation of a problem after the instantiation phase:
as an example, in (Weigel & Bliek 1998) it is shown
how to translate an instantiated CSP into its Boolean form,
which is useful for finding different reformulations, while in
(Choueiry & Noubir 1998) the proposed approach is to gen-
erate a conjunctive decomposition of an instantiated CSP, by
localizing independent subproblems. Finally, in (Freuder &
Sabin 1997) it is shown that abstracting problems by sim-
plifying constraints is useful for finding more efficient refor-
mulations of the original problem; the abstraction may re-
quire backtracking for finding solutions of the original prob-
lem. In our work, we focus on reformulation of the specifi-
cation, and, differently from other techniques, the approach
is backtracking-free: once the first stage is completed, a so-

lution will surely be found by evaluating the delayed con-
straints.

Other papers investigate the best way to encode an in-
stance of a problem into a format adequate for a spe-
cific solver. As an example, many different ways for en-
coding graph coloring or permutation problems into SAT
have been figured out, cf., e.g., (Frisch & Peugniez 2001;
Walsh 2001). Conversely, we take a specification-oriented
approach.

Finally, we point out that a logic-based approach has also
been successfully adopted in the ‘80s to study the query op-
timization problem for relational DBs. Analogously to our
approach, the query optimization problem has been attacked
relying on the query (i.e., the specification) only, without
considering the database (i.e., the instance), and it was firstly
studied in a formal way using first-order logic (cf., e.g., (Aho
& Ullman 1979; Chandra & Merlin 1977)). In a later stage,
the theoretical framework has been translated into rules for
the automated rewriting of queries expressed in real world
languages and systems.

Future work. In this paper we have focused on a form of
reformulation which partitions the first-order part of a spec-
ification. This basic idea can be generalized, as an exam-
ple by evaluating in both stages of the computation a con-
straint (e.g., (12)), or to allow non-shrink second stages (cf.,
e.g., the specification for the Golomb ruler problem in Ex-
ample 4), in order to allow reformulation for a larger class of
specifications. Even more generally, the second stage may
amount to the evaluation of a second-order formula. In the
future, we plan –with a more extensive experimentation– to
check whether such generalizations are effective in practice.

Another important issue is to understand the relation-
ships between delaying constraints and other techniques,
e.g., symmetry breaking. In fact, it not always the case
that delaying constraints, and so making the set of solu-
tions larger, improves the solving process. Adding, e.g.,
symmetry-breaking or implied constraints are well known
techniques that may reach the same goal with the opposite
strategy, i.e., reducing the set of solutions. Currently, it is
not clear in which cases removing constraints results in bet-
ter performances with respect to adding more constraints to
the specification itself, even if it seems that an important role
is played by the nature of constraints we remove or add, e.g.,
by their amenability to propagation in the search tree.

Finally, it is our goal to rephrase the theoretical results
into rules for automatically reformulating problem specifi-
cations given in more complex languages, e.g. AMPL and
OPL, which have higher-level built-in constructs.

Acknowledgements. This research has been supported
by MIUR (Italian Ministry for Instruction, University, and
Research) under the FIRB project ASTRO (Automazione
dell’Ingegneria del Software basata su Conoscenza), and un-
der the COFIN project “Design and development of a soft-
ware system for the specification and efficient solution of
combinatorial problems, based on a high-level language, and
techniques for intensional reasoning and local search”.

396    KR 2004



SAT CPLEX SOLVER
Instance Colors Solvable? W/ disj. W/o disj. % saving W/ disj. W/o disj. % saving W/ disj.
le450 5d 5 Y 6.0 5.2 13.3 540.8 628.1 −16.1 1.2
le450 15a 13 N – – – 8.6 6.3 26.7 –
le450 25a 21 N – – – 83.6 17.2 79.4 –
DSJC125.9 21 N – – – 1408.4 936.7 33.5 –
DSJC250.1 9 Y 1.6 0.9 43.8 – – – 12.5
DSJR500.1 11 N – – – 2.2 1.3 40.9 297.4
DSJR500.1 12 Y – – – 18.4 18.1 1.6 0.5
queen8 8 9 Y 1.5 1.2 20.0 – 2411.2 >33.0 1.9
queen9 9 10 Y 32.1 25.3 21.2 – – – 134.8

queen10 10 15 Y 1.3 0.9 30.8 3.3 3.1 6.1 0.9
queen11 11 13 Y 22.9 17.7 22.7 – 125.1 >96.5 41.7
queen12 12 15 Y 1.3 0.8 38.5 463.7 228.3 50.8 9.7
fpsol2.i.2 21 N – – – 21.8 13.6 37.6 –

(‘–’ means that the solver did not terminate in one hour)

Table 1: Solving times (seconds) for k-coloring.

SAT CPLEX SOLVER
Instance Deadline Solvable? W/ disj. W/o disj. % saving W/ disj. W/o disj. % saving W/ disj.
FT06 100 Y – 4.6 ∼100 117.4 – ∼ −∞ 1.1
FT06 65 Y 3.7 1.7 52.8 – – – 1.2
FT06 55 Y 4.0 1.6 60.7 – – – 1.5
FT06 54 N 16.1 4.3 73.6 – – – –
FT06 52 N 2.0 1.0 48.0 – – – 7.2
LA02 1200 Y 4.6 2.1 53.9 31.2 – ∼ −∞ 1.5
LA02 1000 Y 2.9 1.5 48.8 – – – 1.6
LA02 960 Y 22.2 1.8 91.8 – – – –
LA02 860 Y 740.0 8.5 98.8 – – – –
LA02 840 Y – 15.1 ∼100 – – – –

(‘–’ means that the solver did not terminate in one hour)

Table 2: Solving times (seconds) for job shop scheduling.
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