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Abstract

The causal logic from (Bochman 2003b) is shown to provide
a natural logical basis for logic programming. More exactly,
it is argued that any logic program can be seen as a causal the-
ory satisfying the Negation As Default principle (alias Closed
World Assumption). Moreover, unlike well-known transla-
tions of logic programs to other nonmonotonic formalisms,
the established correspondence between logic programs and
causal theories is bidirectional in the sense that, for an appro-
priate causal logic, any causal theory is reducible to a logic
program. The correspondence is shown to hold for logic pro-
grams of a most general kind involving disjunctions and de-
fault negations in heads of the rules. It is shown also to be
adequate for a broad range of logic programming semantics,
including stable, supported and partial stable models. The
results strongly suggest that the causal logic can serve as a
(long missing) logic of logic programming.

Introduction
In order to fulfil the role of a general-purpose computa-
tional formalism for knowledge representation and reason-
ing, logic programming should have a clear logical (declar-
ative) basis that would allow a systematic and transparent
representation of the real world information. From its very
beginning, logic programming was based on the idea that
program rulesmust have both a procedural and declarative
meaning. Thus, the declarative meaning of a definite pro-
gram rule was taken to be the meaning of the correspond-
ing classical implication. This understanding has been chal-
lenged, however, with the introduction of negation as fail-
ure as a replacement of the classical negation in logic pro-
grams. At the first stage, Clark’s completion (Clark 1978)
and Reiter’s Closed World Assumption (Reiter 1978) were
commonly accepted as giving more adequate interpretations
of logic programs and deductive databases. A formal explo-
ration of these interpretations have led to three-valued com-
pletion (Fitting 1985), and to supported models of logic pro-
grams (Apt, Blair, & Walker 1988). Nevertheless, for some
time these developments peacefully coexisted with an opin-
ion that they reflect a purely pragmatic concession, and an
ideal solution should still consist in the full use of classical
negation in programs and queries (cf. (Shepherdson 1988)).
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Things have changed, however, with the discovery that
logic programs with negation as failure allow to represent
significant parts of nonmonotonic reasoning. Moreover,
general nonmonotonic formalisms inspired a new kind of se-
mantics for logic programs, the stable and answer set seman-
tics (Gelfond & Lifschitz 1988; 1991). These developments
have advanced logic programming to the role of a general
computational mechanism for knowledge representation and
nonmonotonic reasoning (see, e.g., the overviews (Apt &
Bol 1994; Baral & Gelfond 1994)). In addition, Przymusin-
ski has developed a comprehensive semantic framework of
partial stable models, with the stable and well-founded se-
mantics as special cases.

The idea of a dual interpretation of logic programs, pro-
cedural and declarative, persisted in all these developments.
However, the original question “What is a declarative mean-
ing of a program rule?”has been replaced with the global
question “What is a declarative meaning of a logic pro-
gram?”, and an answer to this latter question has been com-
monly thought as settled by assigning logic programs some
nonmonotonic semantics. Of course, there were reasons for
this shift, since already the completion of a logic program
does not say much about meaning of a single program rule.

Unfortunately, the above solution to the problem of deter-
mining declarative meaning of logic programs turns out to
be problematic, the main source of the problem being that
the nonmonotonic semantics of logic programs are global,
and hence do not give a direct interpretation of program
rules, but only of the program as a whole. As was rightly
noted already in (Shepherdson 1988), this solution does not
allow to see the written text of a program as its declarative
meaning. For example, adding new rules to a program does
not necessarily mean that the extended program contains
more information (since the associated semantics are non-
monotonic). Worse still, quite diverse programs can have
the same ‘meaning’ according to this understanding, witness
such programs as {p ← q} and {q ← p} (both have the
empty least model). Consequently, the association of logic
programs with a meaning of this kind turns out to be useless
for most purposes we could possibly have in invoking this
notion (be it knowledge representation or program updates).
As a result, the programming methodology and knowledge
representation in logic programming lack a systematic ba-
sis, and are largely an art based on accumulated experience,
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contrary to initial aspirations behind logic programming.
A general way of resolving the above problem that we

suggest in this study is based on a clear separation between
logical and nonmonotonic aspects of reasoning with logic
programs. Once such a separation is made, a declarative
meaning of a logic program (and even of a single program
rule) could be identified with its logical meaning naturally
determined by the associated monotonic logic and its seman-
tics. The nonmonotonic semantics will play no direct role in
this description; the declarative meaning will determine the
nonmonotonic semantics of a program, but not vice versa.

A more specific idea that will be developed in the paper
is that the causal logic introduced in (Bochman 2003b) al-
lows to provide a natural and exact logical basis for logic
programming. The causal logic has been shown to be ade-
quate for reasoning with causal theories (McCain & Turner
1997; Giunchiglia et al. 2003), as well as for providing
a syntax-independent representation of abductive reasoning
(Bochman 2004). In this respect, the present study can also
be seen as a further justification of our claim that the causal
logic is a powerful general-purpose formalism for nonmono-
tonic reasoning that suggests a viable alternative to other
nonmonotonic formalisms (such as default logic).

Causal inference relations
We will assume that our basic language is an ordinary propo-
sitional language with the classical connectives and con-
stants {∧,∨,¬,→, t, f}. In addition, � and Th will stand,
respectively, for the classical entailment and the associated
logical closure operator.

A causal ruleis a rule of the form A⇒B, where A and B
are classical propositions. Informally, such a rule says that,
whenever A holds, it causes (or explains) B.

Definition 1. A causal inference relationis a relation⇒ on
the set of propositions satisfying the following conditions:

(Strengthening) If A � B and B⇒C, then A⇒C;
(Weakening) If A⇒B and B � C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B ∧ C;
(Or) If A⇒C and B⇒C, then A ∨B⇒C;
(Cut) If A⇒B and A ∧B⇒C, then A⇒C;
(Truth) t⇒ t;
(Falsity) f⇒ f .

Though causal relations satisfy most of the rules for the
classical entailment, their distinctive feature is that they are
not reflexive, that is, do not satisfy the postulate A⇒A.

The rule Or permits reasoning by cases; this feature dis-
plays one of the main advantages of causal reasoning as
compared with, say, default logic. Speaking generally, the
rule indicates that the causal logic is an objective(exten-
sional) logical system, a system of reasoning about the
world. In this respect, it is similar to classical logic (which is
also extensional), and distinct from modal (intensional) for-
malisms that deal primarily with beliefs and knowledge we
have about the world.

An important property of causal relations is the following
decomposition of causal rules:

Lemma 1. Any causal ruleA⇒B is equivalent to a pair of
rulesA ∧ ¬B⇒ f andA ∧B⇒B.

By a constraintwe will mean a causal rule of the form
A⇒ f . Such constraints correspond to state constraints in
action theories, and their role consists in describing ordi-
nary factual information about the world: a fact A can
be expressed as a constraint ¬A⇒ f . On the other hand,
causal rules A ∧ B⇒B are logically (factually) trivial, but
they play an important explanatory role in causal reasoning.
Namely, they say that in any situation in which A holds, we
can freely accept B, since it is self-explanatory. Such rules
could be called explanatorycausal rules. Now the above
lemma says that any causal rule can be decomposed into a
(non-causal) constraint and an explanatory rule. This de-
composition separates two kinds of information conveyed
by causal rules. One is a logical information that constraints
the set of admissible models, while the other is an explana-
tory information describing what propositions are caused
(explainable) in such models.

We extend causal rules to rules having arbitrary sets of
propositions as premises as follows: for any set u,

u⇒A ≡
∧

a⇒A, for some finite a ⊆ u.

The above stipulation secure the compactnessof causal
inference relations. C(u) will denote the set of propositions
caused by u, that is

C(u) = {A | u⇒A}.
The operator C will play much the same role as the usual

derivability operator for consequence relations.

A possible worlds semantics
A semantic interpretation of causal relations can be given in
terms of standard possible worlds models. As usual, a pos-
sible worlds modelis a triple W = (W, R, V ), where W is
a set of worlds, R a binary accessibility relation on W , and
V a function assigning each world a propositional interpre-
tation. Intuitively, αRβ means that α and β are, respectively
an initial state (input) and a possible output state of a causal
inference based on a given set of causal rules. A possible
worlds model will be called quasi-reflexiveif its accessibil-
ity relation satisfies the condition:

If αRβ, then αRα.
The following definition provides the notion of validity

for causal rules in such models:
Definition 2. A⇒B will be said to be valid in a possible
worlds model (W, R, V ) if, for any worlds α, β such that
αRβ, if A holds in α, then B holds in β.

The canonical semantics of a causal relation is determined
by worlds (maximal deductively closed sets) α for which
C(α)⊆α. These are the worlds that are closed with respect
to the causal rules of⇒. The accessibility relation on such
worlds is defined as follows:

αRβ ≡ C(α) ⊆ α ∩ β

The canonical semantics can be shown to be adequate for
the source causal relation, and hence we obtain the following
completeness result.
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Theorem 2. A relation is causal if and only if it is deter-
mined by a quasi-reflexive possible worlds model.

A four-valued representation
It turns out that causal inference relations can also be given
a four-valued semantics. According to Belnap’s interpre-
tation of four-valued logics (Belnap 1977), any four-valued
valuation function is representable as a function assigning
each proposition some subsetof the set of classical truth-
values {t, f}. By this interpretation, a four-valued assign-
ment can be seen as a pair of ordinary classical assignments
corresponding, respectively, to (independent) assignments
of truth and falsity to propositions. To be more exact, for
any four-valued interpretation ν, we can define the follow-
ing two assignments:

ν |= A iff t ∈ ν(A)
ν =|A iff f ∈ ν(A)

As is shown in (Bochman 1998a), the above representa-
tion allows to define any four-valued connective using pairs
of definitions with respect to each of the above two val-
uations. In particular, the four connectives {∨,∼,¬,N},
defined below, determine what was termed in (Bochman
1998a; 1998b) the set of classicalfour-valued functions:

ν |= A ∨B iff ν |= A or ν |= B

ν =|A ∨B iff ν =|A and ν =|B
ν |=∼A iff ν =|A
ν =| ∼A iff ν |= A

ν |=¬A iff ν �|= A

ν =| ¬A iff ν �=|A
ν |=NA iff ν �=|A
ν =|NA iff ν =|A

The negation connectives ¬ and ∼ will be called, respec-
tively, a local and global negation. Each of them can be used
together with the disjunction to define a natural conjunction:

A ∧B ≡ ∼(∼A ∨ ∼B) ≡ ¬(¬A ∨ ¬B).

The above two negations satisfy de Morgan rules with
respect to disjunction and conjunction, as well as Double
Negation. The third negation connective N will be called an
ht-negationdo its close similarity with the negation in the
logic of here-and-there (see (Lifschitz, Pearce, & Valverde
2001)). As can be verified, N satisfies the de Morgan rules.
It does not satisfy, however, the Double Negation rule, only
a weaker ‘Triple Negation’ rule NNNA ≡ NA.

The connectives generated by the set {∨,¬}will be called
local classical connectives. A distinctive feature of such
connectives is that they behave in an entirely classical way
with respect to each of the two valuations determining a
four-valued assignment.

Note now that any pair of worlds determines a four-valued
interpretation, and vice versa. Moreover, the classical con-
nectives defined on worlds correspond in this sense precisely
to the local classical connectives. In addition, a binary ac-
cessibility relation on worlds is actually a certain set of pairs

of worlds. Consequently, a possible worlds semantics can
be identified with a set of four-valued interpretations deter-
mined by pairs of worlds (α, β) such that αRβ. Then the
following definition provides the corresponding notion of
validity for causal rules in the language of the local classical
connectives:

Definition 3. A causal rule A⇒B is valid in a set of four-
valued interpretations I, if ν �=|A implies ν � B, for any
ν ∈ I.

Let us denote by ⇒I the set of all causal rules that are
valid in I. In addition, let us say that a set of of four-valued
interpretations is quasi-reflexive, if (viewed as a set of pairs
of interpretations) it determines a quasi-reflexive relation.
Then we immediately obtain

Theorem 3. A set⇒ of causal rules is a causal relation iff
⇒ = ⇒I, for some quasi-reflexive set of four-valued inter-
pretationsI.

The above result shows that the four-valued semantics
gives a complete semantic characterization of causal infer-
ence relations. Moreover, causal relations constitute in this
sense a fully expressive four-valued formalism - any four
valued connective can be characterized in a systematic way
by adding a suitable set of postulates for causal relations.
For example, the following rules provide a complete char-
acterization of the global negation and ht-negation in the
framework of causal inference:

¬A⇒ ∼ A ∼ A⇒¬A

A⇒¬∼A ¬∼A⇒A

¬A⇒NA NA ∧A⇒ f
A⇒¬NA ¬NA ∧ ¬A⇒ f

Moreover, any non-local connective can be systematically
eliminatedfrom the causal rules. For example, whereas the
equivalences below show how they can be eliminated:

A∧ ∼ C⇒B ≡ A⇒B ∨ C

A⇒B ∨ ∼C ≡ A ∧ C⇒B

A ∧ ¬∼C⇒B ≡ A⇒C→B

A⇒B ∨ ¬∼C ≡ A ∧ ¬C⇒B

A ∧NC⇒B ≡ A ∧ ¬C⇒B

A⇒B ∨NC ≡ A ∧ C⇒B

A ∧ ¬NC⇒B ≡ A ∧ C⇒B

A⇒B ∨ ¬NC ≡ A ∧ ¬C⇒B

The above equivalences show, in effect, that both these
negation connectives behave similarly in heads of the causal
rules, and that N reduces to the classical negation in the
bodies of such rules. On the other hand, they show also that
using each of these negations, we can move all premises to
heads of causal rules:

A⇒B ≡ t⇒NA ∨B ≡ t⇒∼A ∨B

The above reductions show, in effect, that causal infer-
ence relations can be translated into full-fledged four-valued

KR 2004    429



logics. In fact, this representation is closely related to the no-
tion of a nestedlogic program; in particular, the distinction
between the global and ht-negation is closely related to the
distinction between the negations used in two formalizations
of nested logic programs suggested, respectively, in (Lloyd
& Topor 1984) and (Lifschitz, Tang, & Turner 1999).

As yet another general consequence of the above repre-
sentation, we obtain that causal relations constitute a logi-
cal counterpart of biconsequence relations (Bochman 1998a;
1998b) for the language of local classical connectives. Thus,
given a causal relation ⇒, we can construct the associated
biconsequence relation directly as the following set of bise-
quents:

{a : b � c : d |
∧

(¬b ∪ d)⇒
∨

(¬a ∪ c)}
The above set constitutes a biconsequence relation satis-

fying all the rules for the local classical connectives.

The nonmonotonic semantics
In addition to the monotonic semantics, described above, a
causal relation determines also a natural nonmonotonic se-
mantics.

Due to non-reflexivity of ⇒, only some causally con-
sistent worlds are also worlds in which any proposition is
caused by some causal rule. These are the worlds α that are
fixed points of C, that is, α = C(α). In such ‘exact’ worlds
any fact is causally explained.

Definition 4. The nonmonotonic semanticsof a causal re-
lation ⇒ is the set of all its exact worlds, that is, worlds α
such that α = C(α).

Propositions that hold in all exact worlds can be consid-
ered as the nonmonotonic consequences determined by the
causal relation.

By a causal theorywe will mean an arbitrary set of causal
rules. A nonmonotonic semantics of a causal theory ∆ will
be identified with the nonmonotonic semantics of the least
causal relation⇒∆ that includes ∆. As has been shown in
(Bochman 2003b), this semantics coincides with the seman-
tics of causal theories defined in (McCain & Turner 1997).

Let us introduce the following definitions:

Definition 5. Causal theories ∆ and Γ will be called

• (nonmonotonically) equivalentif they determine the same
set of exact worlds;
• strongly equivalentif, for any set Φ of causal rules, ∆∪Φ

is equivalent to Γ ∪ Φ;
• causally equivalentif⇒∆ =⇒Γ.

Two theories are causally equivalent if and only if each
theory can be obtained from the other using the inference
postulates of causal relations. Strongly equivalent theories
are ‘equivalent forever’, that is, they are interchangeable in
any larger causal theory without changing the nonmonotonic
semantics. Consequently, strong equivalence can be seen as
an equivalence with respect to the monotonic logic of causal
theories. And the next result from (Bochman 2003b) shows
that this logic is precisely the logic of causal relations.

Theorem 4. Two causal theories are strongly equivalent if
and only if they are causally equivalent.

The above result implies that causal relations are maxi-
mal inference relations that are adequate for nonmonotonic
reasoning with causal theories.

Causal Interpretations of Program Rules
Now we are going to interpret logic programs in terms of
causal rules. Speaking generally, the suggested interpreta-
tion is based on a recurrent idea that logic program rules
express causal, or explanatory, relationship between propo-
sitional atoms (see, e.g., (Dix, Gottlob, & Marek 1994;
Schlipf 1994)).

In what follows, for a set u of propositions, u will denote
its complement, while notu the set {not p | p ∈ u}.

A logic programΠ is a set of program rules of the form

not d, c← a,not b (*)

where a, b, c, d are finite sets of propositional atoms.
A pair (u, v) of sets of atoms will be called an interpre-

tation; u and v are the sets of atoms that are, respectively,
true and false in the interpretation (in a four-valued sense).
An interpretation (u, v) will be called a bimodel(or a par-
tial model) of a program Π, if it is closed with respect to the
rules of Π, that is, for any rule (*) from Π, if a ⊆ u and
b ⊆ v, then either c∩u �= ∅, or d∩v �= ∅. A set u is a model
of a program Π, if (u, u) is a bimodel of Π.

Despite the diversity of existing semantics for logic pro-
grams, a general understanding of their meaning presup-
poses an asymmetric treatment of positive and negative in-
formation, which is reflected in viewing not as negation as
failure. Such an understanding can be uniformly captured in
causal logic by accepting the following additional postulate:

(Default Negation) ¬p⇒¬p, for any atom p.

The above condition reflects a principle of negation by de-
fault, according to which negations of propositional atoms
are self-explainable propositions (or abducibles). The ef-
fect of this postulate is that negated atoms are explainable
whenever they can be consistently assumed to hold. In this
sense, Default Negation reflects also a kind of Closed Word
Assumption(CWA), namely, that ¬p can be safely assumed
to hold whenever p is not caused (explained) by other facts
(cf. (Reiter 1980) for a similar description of CWA).

In what follows, we will denote by DN the set of causal
rules ¬p⇒¬p, for all atoms p of the underlying language.

The supported interpretation
Mainly for historical reasons, we will begin with the causal
interpretation of logic programs based on the completion
semantics. A semantic counterpart of Clark’s completion,
called supported models, has been introduced in (Apt, Blair,
& Walker 1988) for normal logic programs. A generaliza-
tion to disjunctive programs has been suggested in (Baral &
Gelfond 1994), while an extension to programs with nega-
tion in heads has been defined in (Inoue & Sakama 1998).
In what follows, we will use this latter definition.
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Definition 6. A model u of a program Π will be called
supported, if, for any p∈u, Π contains a rule (*) such that
a, d ⊆ u, b ⊆ u, and c ∩ u = {p}.

It turns out that the corresponding causal interpretation of
logic programs can be obtained by interpreting a program
rule (*) as the following causal rule:

a, d,¬b⇒
∨

c

We will call this causal interpretation a supported inter-
pretationof program rules. Let us denote by su(Π) the set of
causal rules corresponding by this interpretation to the rules
of a program Π. As we already mentioned, however, a full
meaning of a logic program presupposes also the principle
of Default Negation. Accordingly, let us denote by SU(Π) a
causal theory which is the union of su(Π) and the set DN of
default negation rules. Then we obtain our first basic result:

Theorem 5. The nonmonotonic semantics ofSU(Π) coin-
cides with the set of supported models ofΠ.

The above result shows that the supported causal interpre-
tation of program rules provides an adequate description of
logic programs under the supported (or completion) seman-
tics. Moreover, we will show later that by choosing a max-
imal causal logic adequate for such a semantics, any causal
theory is also representable by some logic program.

The stable interpretation
To begin with, supported and stable semantics of logic pro-
grams are based on a different understanding of program
rules. Thus, the program rule p ← p can change the set of
supported models (so it has a non-trivial meaning for the lat-
ter), but it is trivial with respect to the stable semantics. This
indicates that program rules should have a different causal
interpretation under the stable semantics.

An interpretation that will be shown to be adequate for the
stable semantics amounts to interpreting a program rule (*)
as the following causal rule:

d,¬b⇒
∧

a→
∨

c

This interpretation of program rules will be called a sta-
ble causal interpretation. The only difference with the sup-
ported interpretation, described earlier, amounts to treating
positive premises in a not as assumptions (causal explana-
tions), but as part of what is explained, or caused. It is
important to observe, however, that the two interpretations
coincide for program rules without positive atoms in bodies.

The above causal rule describes the net causal information
embodied in the corresponding program rule. However, by
the properties of a global and ht-negation, this rule is equiv-
alent to each of the following causal rules

t⇒
∧

(a ∪Nb)→
∨

(c ∪Nd)

t⇒
∧

(a ∪ ∼b)→
∨

(c ∪ ∼d)

The latter rules give a fully transparent and modular rep-
resentation of program rules. Note, in particular, that, apart
from the overall causal framework, the non-classicality of

program rules is reduced in this representation to the in-
terpretation of not. On the other hand, the source stable
causal interpretation gives a classical understanding to not,
but makes the resulting literals explanatory assumptions. As
a result, the non-classicality of this representation amounts
solely to the non-classicality of⇒.

We will denote by st(Π) the set of causal rules obtained
by the stable interpretation of a program Π, while ST (Π)
will denote st(Π) ∪DN . Then we have

Theorem 6. The nonmonotonic semantics ofST (Π) coin-
cides with the stable semantics ofΠ.

The above result1 shows that the stable causal interpre-
tation of program rules provides an adequate description of
logic programs under the stable semantics. Moreover, later
it will be shown that by choosing an adequate causal logic
for such a semantics (which will be different from the sup-
ported case), any causal theory is also representable by some
logic program.

A connection between the stable and supported interpre-
tation can be established using the inverse shiftconstruction
from (Inoue & Sakama 1998) that transforms a logic pro-
gram Π into the following program invshift(Π):

{not a,not d, c← not b | not d, c← a,not b ∈ Π}
As can be seen, invshift(Π) contains only program rules

without positive premises in bodies. Moreover, it is easy to
see that the supported interpretation of Π coincides with the
stable interpretation of invshift(Π), that is,

su(Π) = su(invshift(Π)) = st(invshift(Π))

As a result, we immediately obtain the following

Corollary 7. (Inoue & Sakama 1998) Supported seman-
tics of a programΠ coincides with the stable semantics of
invshift(Π).

Causal Logics of Logic Programs
In this section we will describe two particular kinds of causal
inference relations that will be shown to be adequate (and
maximal) for reasoning with logic programs under the two
semantic interpretations described above. For logical rea-
sons, we will begin this time with the stable interpretation.

Negatively closed causal relations
A causal relation will be called negatively closed, if it sat-
isfies the Default Negation postulate. As we already men-
tioned, this postulate reflects the main distinctive feature of
logical reasoning behind logic programs.

It is important to observe that Default Negation is not a
structural postulate, since propositional atoms p in it cannot
be replaced by arbitrary formulas. Still, it can be shown to
be equivalent to each of the following rules, for any atom p
and arbitrary propositions A and B:

Positive Deduction If A ∧ p⇒B, then A⇒ p→ B;

Negative Import If A⇒B ∨ p, then A ∧ ¬p⇒B.

1For disjunctive programs, this result has actually been proved
in (Giunchiglia et al. 2003).
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For a world α, we will denote by At(α) the set of its
propositional atoms. The next definition provides a seman-
tics for negatively closed causal relations.

Definition 7. A possible worlds semantics W = (W, R, V )
will be called inclusive, if, for any worlds α, β ∈ W , αRβ
holds only if At(β) ⊆ At(α).

Then the following result can be obtained as a conse-
quence of the general completeness theorem.

Corollary 8. A causal relation is negatively closed iff it has
an inclusive quasi-reflexive possible worlds semantics.

The next proposition establishes, in effect, a connection
between the nonmonotonic semantics of negatively closed
causal relations and stable semantics of logic programs.

Lemma 9. A world α is an exact world of a negatively
closed causal relation if and only ifC(α) ⊆ α and, for
any worldβ such thatC(α) ⊆ β, if At(β) ⊆ At(α), then
At(β) = At(α).

A world α is an exact world of a negatively closed causal
relation if it is causally consistent (that is, closed with re-
spect to the rules of⇒) and has a minimal number of posi-
tive atoms among the worlds consistent with C(α).

Now we are going to show that negatively closed causal
relations constitute a precise causal logic behind stable logic
programming.

To begin with, let ⇒c
∆ denote a least negatively closed

causal relation containing a causal theory ∆. Then by The-
orem 6 we immediately obtain

Corollary 10. The stable semantics of a programΠ coin-
cides with the nonmonotonic semantics of⇒c

st(Π).

Thus, negatively closed causal relations can be seen as a
causal logic of logic programs under the stable semantics.
Moreover, we are going to show that this is actually a maxi-
mal such logic.

By (Lifschitz, Pearce, & Valverde 2001), programs Π1

and Π2 are strongly equivalent, if, for any program Π, Π1∪Π
has the same stable models as Π2 ∪ Π. Let us say also that
causal theories ∆ and Γ are stably equivalentif they de-
termine the same negatively closed causal relation, that is
⇒c

∆ = ⇒c
Γ. In other words, each causal theory can be ob-

tained from the other using the postulates of causal relations
and Default Negation. Then we have

Theorem 11. ProgramsΠ1 andΠ2 are strongly equivalent
if and only ifst(Π1) andst(Π2) are stably equivalent.

The above result implies that negatively closed causal re-
lations are maximal causal relations that are adequate for
the stable semantics of the associated logic programs. This
result constitutes a causal counterpart of the corresponding
results about strong equivalence of logic programs (see (Lif-
schitz, Pearce, & Valverde 2001; Turner 2001)).

Note now that any causal rule is logically reducible to a set
of ‘clausal’ causal rules

∧
a⇒∨

b, where a and b are sets of
classical literals. Moreover, under the stable interpretation
of logic programs, each such causal rule can be identified
with some program rule. Accordingly, for a causal theory ∆,
we will denote by pr(∆) the set of program rules obtained
in this way from ∆. Then the following result can be shown:

Theorem 12. For any causal theory∆, the nonmonotonic
semantics of⇒c

∆ coincides with the stable semantics of the
programpr(∆).

The importance of the above result lies in the fact that,
under the stable causal interpretation, any causal theory is
reducible, in turn, to a logic program. Thus, for negatively
closed causal relations, the correspondence between logic
programs and causal theories turns out to be bidirectional.

Tight causal relations
A causal rule of the form A⇒∨

a, where a is a set of atoms,
will be called head-positive. The important role of such
rules for our study stems already from the fact that the sup-
ported interpretation of logic program rules produces only
head-positive causal rules. It turns out that the reasoning
with such rules admits a stronger causal logic described in
the next definition.

Definition 8. A causal relation is tight, if it satisfies

(Tightness) l ∧m⇒ l ∨m, for distinct literals l and m,

and positively tightif it is tight and negatively closed.

Tight causal relations are ‘highly explanatory’, since they
automatically explain disjunctions of any two distinct liter-
als that hold in a world. In practice, this means that only sin-
gle literals have to be explained in such causal systems. The
Tightness postulate is also not structural, since it does not
hold for arbitrary propositions. For negatively closed causal
relations, it is reducible to its positive instance, namely to

(Positive Tightness) p ∧ q⇒ p ∨ q, for distinct atoms p, q.

A semantic description of tight causal relations is given
below, where� denotes a symmetric set difference.

Definition 9. A possible world semantics will be called
tight, if, for any worlds α, β ∈ W , αRβ holds only if
At(β)�At(α) contains at most one propositional atom.

Then we have

Corollary 13. A causal relation is tight if and only if it has
a tight quasi-reflexive possible worlds semantics.

The next proposition describes the nonmonotonic seman-
tics of tight causal relations.

Lemma 14. A world α is an exact world of a tight causal
relation⇒ if and only if C(α) ⊆ α, and no worldβ that
differs fromα by one atom is such thatC(α) ⊆ β.

A world α is an exact world of a tight causal relation if
it is causally consistent, and there are no worlds consistent
with C(α) that differ from α by a single atom2.

For a causal theory ∆, we denote by ⇒t
∆ the least tight

causal relation containing ∆, while⇒ct
∆ will denote the least

such relation that is positively tight.
The relevance of tight causal relations for head-positive

causal theories is revealed by the following

Theorem 15. If ∆ is a head-positive causal theory, then the
nonmonotonic semantics of∆ coincides with the nonmono-
tonic semantics of⇒t

∆.

2Notice a similarity with models of pointwise circumscription
(Lifschitz 1987).
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Thus, Tightness preserves the nonmonotonic semantics of
head-positive causal theories, and hence tight causal rela-
tions constitute an adequate causal logic for the latter. As
a consequence of this result, we obtain that positively tight
causal relations constitute an adequate causal logic for logic
programs under the supported semantics.

Corollary 16. The supported semantics of a programΠ co-
incides with the nonmonotonic semantics of⇒ct

su(Π).

Moreover, positively tight causal relations constitute a
maximal causal logic for the supported semantics.

Definition 10. Programs Π1 and Π2 will be called strongly
sup-equivalentif, for any program Π, Π1 ∪ Π has the same
supported semantics as Π2 ∪Π.

Let us say also that two causal theories are tightly equiv-
alent, if they determine the same positively tight causal re-
lation (that is, each can be obtained from the other using the
postulates of causal relations, Default Negation and Tight-
ness). Then we have

Theorem 17. Programs Π1 and Π2 are strongly sup-
equivalent iffsu(Π1) andsu(Π2) are tightly equivalent.

The above result implies that positively tight causal rela-
tions are maximal causal relations that are adequate for the
supported semantics of the associated logic programs. Fur-
thermore, we are going to show now that any causal theory
is tightly equivalent, in a sense, to some logic program. This
fact is based on the following reduction property of such
causal relations.

Lemma 18. Let ⇒ be a positively tight causal relation.
Then, for any propositionA and any sets of propositional
atomsa, c such thata ∩ c = ∅ and c �= ∅, the causal rule
A⇒∨

(¬a ∪ c) is equivalent to the set of rules

{A, a,¬(c\{p})⇒ p | p ∈ c}
This result implies, in effect, that any causal theory is

tightly equivalent to some definitehead-positive causal the-
ory. Moreover, since any causal rule is reducible to a set of
corresponding clausal rules, we obtain that any causal theory
is actually reducible to a set of rules of the form a,¬b⇒ p̃,
where a and b are sets of atoms, while p̃ is either an atom p,
or the falsity constant f .

Notice now that, under the supported interpretation of
program rules, any causal rule a,¬b⇒ p corresponds to a
unique normal program rule p ← a,not b, while a causal
rule a,¬b⇒ f corresponds to a constraint ← a,not b. Let
us denote by npr(∆) the logic program obtained by this pro-
cedure from an arbitrary causal theory ∆. Then we obtain

Theorem 19. Any causal theory∆ is tightly equivalent to
su(npr(∆)).

As a ‘by-product’ of our construction, we obtain that any
program under the supported semantics is reducible to a nor-
mal program with constraints:

Corollary 20. Any logic program is strongly sup-equivalent
to a normal program with constraints.

Actually, Lemma 18 implies that the corresponding mod-
ular transformation of logic programs can be obtained by

replacing any program rule not d, c ← a,not b such that
c �= ∅ with the set

{p← a, d,not b,not(c\{p}) | p ∈ c}
while any ‘extended’ constraint not d ← a,not b is re-
duced to a ‘normal’ constraint← a, d,not b.

Partial Causation
As in other logical areas, three- and four-valued logics have
been used in logic programming in order to capture ‘partial’
generalizations of existing semantics. A suitable generaliza-
tion of causal relations, introduced below, will be shown to
provide a logical representation for such semantics.

At first glance, the idea of a partial generalization of
causal relations does not look promising since causal rela-
tions are already four-valued in some sense. Fortunately, an
elegant way out has been suggested in relevant logics (see
(Routley et al. 1982; Fagin, Halpern, & Vardi 1995)).

Definition 11. • An invariant possible worlds modelis a
quadruple W = (W, R, ∗, V ), where(W, R, V ) is a possi-
ble worlds model, while ∗ is a function on W such that,
for any α ∈W , α∗∗ = α.

• An invariant model will be called regular, if R is quasi-
reflexive, and for any α, β ∈W , if αRβ, then α∗Rβ∗.

By the intended understanding, pairs of worlds (α, α∗)
determine four-valued interpretations. Accordingly, the
global negation ∼ can now be interpreted as follows:

α |=∼A iff α∗ �|= A

This definition coincides with the definition of the rele-
vant negation in (Routley et al. 1982). As a result, we obtain
an extension of the language of causal logic with a negation
connective ∼ that has a new semantic interpretation. An ax-
iomatization of this causal logic can be obtained by adding
the following postulates for the new connective:

(de Morgan) t⇒∼(A ∧B)↔ (∼A ∨ ∼B);

(Commutativity) t⇒∼¬A↔ ¬∼A;

(Invariance) If ¬A⇒¬B, then ∼A⇒∼B.

Due to general properties of causal relations, a rule
t⇒A↔B implies that A and B can replace each other both
in heads and bodies of causal rules. In addition, the Invari-
ance rule implies, ultimately, that ¬A⇒¬B is equivalent to
∼A⇒∼B.

In what follows, we will use a derived unary connective
∗A defined as ¬∼A. This connective corresponds to the
conflationconnective in the bilattice theory (Fitting 1991).

For partial causal relations, we accept the same definition
of the nonmonotonic semantics, namely the set of all worlds
(i.e., maximal consistent sets of propositions in the language
{∧,¬,∼}) that are fixed points of C. It is important to keep
in mind, however, that this notion of a world is a syntac-
tic counterpart of a four-valued interpretation; it is uniquely
determined by the literals of the form p,¬p,∼p,¬∼p.
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The partial supported interpretation
A three-valued extension of Clark completion for normal
logic programs has been suggested in (Fitting 1985) as a
way of resolving some of the problems with the latter; in
later papers, however, Fitting has extended this construction
to a general four-valued setting. The semantic counterpart of
this generalized completion has been defined as fixed-points
of an ‘immediate consequence’ operator Φ on the set of four-
valued interpretations. We will call such interpretations par-
tial supported models. Below we will present a causal in-
terpretation of this semantics (generalized to arbitrary logic
programs).

A partial supported interpretationof logic programs is
obtained by interpreting each program rule (*) as the fol-
lowing causal rule:

a, ∗d,∼b⇒
∨

c

By Invariance, the above rule is equivalent to

∗a, d,¬b⇒
∨
∗c

As a matter of fact, the above two causal rules correspond
precisely to the split, or doubling, of program rules used in
(Drabent & Martelli 1991; Wallace 1993; Schlipf 1994) for
representing 3-completion.

Since the three-valued completion has been defined in the
literature only for normal logic programs, let PSU(Π) de-
note the causal theory containing the above translation of all
the rules of a normalprogram Π, plus the set DN of default
negation rules. Then we obtain

Theorem 21. The nonmonotonic semantics ofPSU(Π) co-
incides with the set of partial supported models ofΠ.

The above result implies that negatively closed partial
causal relations constitute an adequate causal logic for logic
programs under the four-valued supported semantics.

The partial stable interpretation
Just as in the main case, the distinction between the par-
tial supported and partial stable interpretations amounts to
treating positive premises in bodies of program rules not as
causal assumptions, but as conditions on conclusions. More
exactly, a partial stable interpretationinterprets a program
rule (*) as a causal rule

∗d,∼b⇒
∧

a→
∨

c

The above rule clearly shows that partial stable interpre-
tation is just a four-valued version of a stable interpretation,
and consequently the p-stable semantics below will be just
a four-valued version of the stable semantics. Again, due to
Invariance, the above causal rule is equivalent to

d,¬b⇒
∧
∗a→

∨
∗c

This immediately suggests that the partial stable inter-
pretation can be seen as a stable interpretation of a dou-
bled logic program (cf. (Wallace 1993)). An abstract,
argumentation-theoretic formulation of this construction can
be found in (Bochman 2003a).

PST (Π) will denote the causal theory containing the
above translations of all the program rules from Π, plus DN .
Then our main result will show that the nonmonotonic se-
mantics of this causal theory will determine precisely the
set of p-stable modelsof the source logic program. P-stable
models have been introduced in (Bochman 1998b) as a slight
modification of Przymusinski’s partial stable models for dis-
junctive programs (Przymusinski 1991); the reason for the
modification was that Przymusinski’s semantics violated the
principle of partial deduction (alias GPPE). The modifica-
tion has not changed, however, the correspondence with par-
tial stable models of normal logic programs.

Theorem 22. The nonmonotonic semantics ofPST (Π) co-
incides with the set of p-stable models ofΠ.

It turns out that the original partial stable semantics of
Przymusinski can also be obtained in this framework, but it
requires a further generalization of partial causation (namely
dropping the Invariance postulate). Due to lack of space,
however, we will leave it for another occasion.

On declarative meaning and informational
content of logic programs

By the causal interpretation suggested in this study, the
declarative meaning of a logic program can be defined as the
logical meaning of the corresponding causal theory. Thus,
the declarative meaning of a logic program Π under the sta-
ble semantics should be identified with that of st(Π), while
under the supported semantics it should be identified with
that of su(Π). This primary description can be refined, how-
ever, by choosing also the causal logic appropriate for each
interpretation. If we choose, for example, a maximal causal
logic in each case, then the declarative meaning of Π under
the stable semantics could be taken to be the least negatively
closed causal relation containing st(Π), while for the sup-
ported semantics it would be the least positively tight causal
relation containing su(Π). As a minimal reasonable choice,
however, we can choose in both cases only the least causal
relation containing the corresponding causal theory. At this
point, we still have no sufficient grounds for the best choice,
and hence we have to look for applications of this notion in
resolving practical problems.

A most immediate application of the above notion of
declarative meaning consists in using it for determining the
informational contentof a logic program.

In many reasoning tasks associated with logic programs,
it is important to have some notion of their informational
content. Given such a notion, the programs can be naturally
compared and systematically modified. Such a need is es-
pecially pressing in the theory of program updates, since an
update is normally required to produce a minimal change of
the informational content.

Intuitively, an informational content of a logic program
should contain all the information needed to determine the
properties and behavior of the program. Consequently, it is
natural to suppose that, if two programs have the same in-
formational content, they should be interchangeable in any
larger program without changing its properties. Moreover,
it seems natural to suppose also that adding new rules to
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a program should normally increase its informational con-
tent (unless the added rules are derivable somehow from the
source program). All these properties will hold if we would
identify the informational content with the declarative mean-
ing of a program, as defined above.

The information that is nonmonotonically derivable from
the program is, of course, part of its informational content.
However, as we already argued in the introduction, the non-
monotonic semantics is patently insufficient for capturing
the full content of the program. Indeed, it is nonmonotonic
precisely in the sense that adding new rules to a program
may result in removal of some of the previously derivable
information. Nevertheless, for a more fine-grained analysis
it it seems desirable to make the nonmonotonic part of the
informational content explicit.

It is a good moment to recall that causal rules serve, in
general, simultaneously two informational roles. One con-
sists in determining causally consistent worlds, while the
other in establishing explanatory relations between propo-
sitions. Fortunately, in causal logic these two roles can be
neatly separated by decomposing a causal rule into a con-
straint and an explanation (see Lemma 1). This suggests the
following definition.

Definition 12. • The set of constraints A⇒ f belonging to
a causal relation will be called its factual content.
• The explanatory contentof a causal relation is the set of

its explanatory rules, namely the rules A⇒B such that
A � B.

Constraints restrict the set of worlds that are admissible
(causally consistent) with respect to a causal theory. In
this sense they play the role of ordinary classical formulas,
namely they just express facts about the world. However,
they does not explain anything, and hence they can be seen
as devoid of explanatory content. The later is expressed,
however, by explanatory causal rules. Such rules are ‘factu-
ally trivial’, since they do not impose restrictions on admis-
sible worlds; their only role consists in determining what
explains what in admissible worlds. Consequently, the fac-
tual and explanatory contents are not only disjoint, but are
actually independent of each other. Moreover, the informa-
tional content of causal theories and logic programs can be
safely represented as a union of a factual and explanatory
contents.

The interplay of the factual and explanatory content de-
termines, eventually, the nonmonotonic semantics, and it is
responsible, in particular, for the nonmonotonic properties
of the latter. Such properties arise from the fact that the
two kinds of content have opposite impacts on derivability.
Thus, addition of constraints leads, as expected, to reduc-
tion of the set of admissible worlds (and hence to increase
of factual information). However, the addition of explana-
tory rules leads, in general, to increaseof exact worlds, and
hence to decrease in nonmonotonically derived information.

Let us say that two causal relations are factually equiva-
lent, if they have the same constraints. Then we have

Lemma 23. If ⇒1 and⇒2 are factually equivalent causal
relations such that⇒1 ⊆ ⇒2, then any exact world of⇒1

is an exact world of⇒2.

The above result shows, in effect, that if we add causal
rules that do not change the factual content, then we increase
the set of explained worlds. But in all cases, the net effect of
growth in informational content leads to a monotonic reduc-
tion of the set of non-exact (unexplained) worlds.

As a final observation, note that the additional postulates
of Default Negation and Tightness, used earlier for a more
precise description of the causal logics appropriate for par-
ticular logic programming semantics, produce only addi-
tional explanatory rules. In other words, they introduced
only new ways of explaining facts that do not change the
factual content of the program.

The above considerations show that the study of informa-
tional content of logic programs and causal theories is a very
interesting topic that is still far from being completed.

Conclusions
In this section we will briefly discuss some of the questions,
problems and opportunities that arise in connection with the
suggested causal interpretation of logic programs.

One of the main theoretical benefits of the causal inter-
pretation of logic programs is that it allows to analyze the
properties of such programs directly in the logical frame-
work of causal relations. For instance, since positively tight
causal relations are stronger then negatively closed ones, the
general properties of causal logic immediately imply that
any stable model is also a supported model, while the re-
verse inclusion holds only under some acyclicity conditions
(a lá Fages’ theorem (Fages 1994)). Actually, as far as we
can see, the main results about logic programs can be stated
more clearly and transparently in the logical formalism of
causal relations. In addition, the causal interpretation sug-
gests a more systematic view of the declarative meaning and
informational content of logic programs, and hence can pro-
vide, for instance, a firm theoretical basis for the theory of
program updates. But what is even more important, the for-
malism of causal inference has already shown its potential in
representing problems in various domains of AI. This sug-
gests that the causal interpretation of logic programs can
serve as a basis for a knowledge representation methodol-
ogy that allows a systematic translation of raw empirical in-
formation into logic programs.

The suggested causal interpretation of logic programs re-
quires, however, a reconsideration of the relationship be-
tween logic programs and nonmonotonic formalisms such
as default and autoepistemic logic. A distinctive feature of
the latter is that they are inherently epistemic, or intensional
formalisms. Namely, they are essentially based on such no-
tions as belief and knowledge, unlike the extensional clas-
sical logic that gives a direct representation of facts about
the world. In this respect, the fact that the correspondence
between logic programs and these nonmonotonic logics is
unidirectional (namely, an embedding) is not accidental; it
shows, in effect, that logic programming constitutes a more
specific formalism, and hence a formalism with a stronger
underlying logic. For example, while the causal logic allows
for reasoning by cases, the invalidity of such a reasoning in
default logic has long been considered a shortcoming of the
latter, witness numerous (unsuccessful) attempts to improve
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it on this score. But what is more important, the causal logic
can also be seen as an extensional formalism that provides a
direct description of factual and causal (explanatory) infor-
mation about the world. In this respect, causal logics con-
stitute an important conceptual shift in the development of
nonmonotonic reasoning, since they form a most immediate
generalization of classical logic that allow for such a reason-
ing.

The above considerations require us also to take a second
look on the role and use of the so-called second, classical
negation in logic programming. As was rightly mentioned
in (Gelfond & Lifschitz 1991), the formalism of extended
logic programs meets the default logic halfway. And indeed,
most of the examples used in (Gelfond & Lifschitz 1991) for
justifying the need for the second negation (such as legal or
administrative regulations) have a distinct epistemic flavor,
including extreme cases like

Interview(x)← notEligible(x),not¬Eligible(x),

or inference rules for actions like Cross← notTrain. All
such examples presuppose an epistemic reading of not p as
“p is not known to hold”. This reading is distinct from an ob-
jective interpretation of not as a classical negation in causal
assumptions. It seems that these examples actually delineate
a proper applicability area for such program rules, namely an
epistemic (modal) reasoning, or, more exactly, a representa-
tion of such a reasoning in logic programs. Moreover, as
has been argued in (Gelfond 1994), a comprehensive repre-
sentation of such a reasoning in logic programming requires
a further extension of the language with proper epistemic
operators as well. On the other hand, this delineation frees
room for an objective use of not as a classical negation in
causal assumptions. The relationship between the two pos-
sible uses of default negation, however, is far from being
trivial, and requires further study.
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