
Discovering State Invariants

Fangzhen Lin
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

flin@cs.ust.hk

Abstract

We continue to advocate a methodology that we used
earlier for pattern discovery through exhaustive search
in selected small domains. This time we apply it to the
problem of discovering state invariants in planning do-
mains. State invariants are formulas that if true in a
state, will be true in all successor states. In this paper,
we consider the following four types of state invariants
commonly found in AI planning domains: functional
dependency constraints, constraints on mutual exclu-
siveness of categories, type information constraints, and
domain closure axioms. As it turned out, for a class
of action theories that include many planning bench-
marks, for the first three types of constraints, whether
they are state invariants can be verified by considering
models whose domains are bounded by a small finite
number. This forms the basis for a procedure that tries
to discover state invariants by exhaustive search in small
finite domains. An implementation of the procedure
yields encouraging results in the blocks world and the
logistics domain.

Introduction
In this paper we advocate a methodology for pattern dis-
covery through exhaustive search in selected small domains.
There are many problems with instances or parameters that
have unbounded sizes. For example, the SAT problem can
have instances with any numbers of variables and clauses,
the blocks world can have problems with any number of
blocks, and a sorting algorithm can accept any finite set of
integers. For these problems, finding properties that are true
for all instances can sometimes be done by exhaustive search
in a selected few instances of small sizes. For example, to
know that a block cannot be on top of itself, one only has to
look at the case where there is just one block. Indeed, this
is the strategy that we use (Lin 2003) for computing first-
order successor state axioms (Reiter 2001) and STRIPS-like
systems (Fikes & Nilsson 1971) from causal theories (Lin
1995). In this paper, we apply it to the problem of discover-
ing state invariants in planning domains.

State invariants are formulas that if true in a state, will
be true in every successor state. They are related to state

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

constraints, but not the same. The latter are constraints that
are true in all “legal” states.

We argued elsewhere (Lin 1995; 2003) that state con-
straints should be encoded as causal rules and given directly
by the user as part of the domain specification. So instead
of saying that they are sentences true in all “legal” states,
one can define legal states as those that satisfy all state con-
straints.

State constraints are useful for a variety of reasons. They
provide a more principled way of specifying the logical ef-
fects of actions. For instance, given a large C program, it
is hard to figure out the effects of changing the value of a
pointer on the values of all other pointers in the program.
However, the underlying principle is very simple: when the
value of a pointer changes, the values of all other pointers
that point to the same memory location change as well. Put
another way, the direct effect of the action of changing the
value of a pointer to x is that the value of the pointer will be
x. The indirect or side effects of this action are those derived
from the constraint which says that if two pointers point to a
common location, then their values must be the same. For a
concrete proposal of how this will work out, see (Lin 2003).

Domain constraints can also be used to speed up certain
domain independent planners (see, e.g. (Gerevini & Schu-
bert 2000)). The basic idea is that if a state violates a do-
main constraint, then this state can be cut off from the search
space.

However, if for whatever reason, the domain constraints
are not directly given by the user, then one can try to learn it
from dynamic laws such as those in the forms of successor
state axioms or STRIPS-like systems. But without the com-
plete information about what the legal initial states are, one
can never be certain that what are learned are indeed state
constraints. In this case, all that can be deduced are state
invariants, and one can only hope that these state invariants
will coincide with state constraints. This is the reason why
we are concerning ourselves with discovering state invari-
ants, rather than state constraints, here.

This paper is organized as follows. In section 2, we prove
some simple theorems in many-sorted first-order logic. They
will be used to show that some state invariants discovered
by our procedure are provably correct in the general case. In
section 3 we define formally action theories and their state
invariants. In section 4 we give out four types of state invari-

536 KR 2004

ants commonly found in planning domains, and in section 5,
we describe our procedure for discovering them. In section
6, we give some experimental results in the blocks world and
the logistics domain. In section 7 we discuss some related
work and conclude this paper.

Some simple theorems in first-order logic
Before we proceed to discuss state invariant discovery in
planning domains, some results from first-order logic will
be essential.

In first-order logic, it is well-known that if a prenex for-
mula of the form (∃x1, ..., xn)Q, whereQ has no quantifiers
and functions, is satisfiable, then it is satisfiable in a structure
whose domain has n elements. More generally, the follow-
ing is true:

Proposition 1 Suppose that B is a formula that does not
have quantifiers and functions of positive arity, and that
it mentions k constants. Suppose �x is a tuple of n vari-
ables, and �y another tuple of variables. If the prenex for-
mula ∃�x∀�y.B is satisfiable, then it is satisfiable in a struc-
ture whose domain has at most k + n elements, provided
k + n > 0. When k + n = 0, the formula is satisfiable iff it
is satisfiable in a structure whose domain has one element.

Proof: SupposeM is a model of ∃�x∀�y.B. Construct a struc-
ture M ′ as follows:

• Let D be the set of those elements in the domain of M
that either interpret the constants in B or are witnesses
for variables in �x for the truth of ∃�x∀�y.B. Clearly, the
size of D is less than or equal to k + n.

• Let M ′ be the substructure of M induced by D.

Then M ′ is also a model of ∃�x∀�y.B.

The dual of this proposition is the following:

Proposition 2 Let B, �x, �y, k, and n be as in Proposition 1.
If the prenex formula ∀�x∃�y.B is true in every structure
whose domain has at most k + n elements, then it is valid,
provided k + n > 0. When k + n = 0, if the formula is true
in every structure whose domain has one element, then it is
valid.

Frequently, we will be dealing with domains that have
multiple sorts. We now extend these two results to a sorted
first-order language with equality. In a sorted first-order lan-
guage, the arity of a predicate is a tuple of sorts. For in-
stance, in the logistics domain (Bacchus Fall 2001), the ar-
ity of at is phyobj∗place, meaning that it is a predicate with
two arguments, the first one is of sort phyobj and the second
place. When a variable is quantified, the sort over which the
variable is ranged needs to be made explicit. For instance,
to say that no object can be at more than two places (at the
same time), we write

∀(x, phyobj)(y, place)(z, place).
at(x, y) ∧ at(x, z) ⊃ y = z.

In the following, a pair of a variable and a sort such as
(x, place) is called a variable-sort pair.

Sorts are not required to be primitive. One sort may be
a subsort of another. For instance, in the logistics domain,
sort phyobj contains package and vehicle, and the latter
contains airplane and truck. In the following, we say that
a term may be of sort g if it is declared to be of sort g′, and g
and g′ intersect. For instance, a variable of sort phyobj may
be of sort package.

A rank τ of a language is a set of pairs such that for every
primitive sort g in the language there is exactly one pair of
the form (g, n) in it, where n > 0 is an ordinal. We say that
τ is a finite rank if for all (g, n) ∈ τ , n is finite.

A first-order structure is said to be a τ -structure if for each
(g, n) ∈ τ , the domain of sort g in the structure has at most
n elements. Similarly, a τ -model of a sentence (theory) is a
τ -structure that satisfies the sentence (theory).

As an example, the language for the logistics domain
has the following primitive sorts: package, city, airport,
truck, location, and airplane. So a rank in this language
could be

{(package, 3), (city, 2), (airport, 2), (truck, 3),

(airplane, 1), (location, 3)},
and a structure of this rank has at most three packages, two

cities, etc.

Definition 1 A formula ϕ is said to have rank τ if whenever
ϕ has a model, it has a τ -model. In this case, we also call it
a τ -formula.

Notice that If both ϕ and ψ are τ -formulas, so is ϕ ∨ ψ,
but not necessarily ϕ ∧ ψ.

The following proposition extends Proposition 1 to the
many sorted case:

Proposition 3 Let B be a formula that does not have any
quantifiers and functions of positive arity, and �x and �y tuples
of variable-sort pairs. Then the prenex formula (∃�x)(∀�y).B
is a τ -formula, where the rank τ is defined as follows: For
each primitive sort g, if kg +ng > 0, then (g, kg +ng) ∈ τ ,
otherwise, (g, 1) ∈ τ , where kg is the number of constants
that may be of sort g in B, and ng the number of variables
that may be of sort g in �x.

Proof: Similar to the proof of Proposition 1, noting that
given any model M of (∃�x)(∀�y).B, for each primitive sort
g, the number of constants that are mapped to objects of sort
g cannot be greater than kg , and the number of objects of
sort g that are witnesses for variables in �x cannot be greater
than ng .

The dual of τ -formulas are τ -valid formulas.

Definition 2 A formula ϕ is said to be τ -valid if whenever
it is true in all τ -structures, it is true in all structures.

Symmetrically, if both ϕ and ψ are τ -valid, so is ϕ ∧ ψ,
but not necessarily ϕ ∨ ψ. In fact, the following proposition
is immediate.

Proposition 4 For any rank τ , a formula ϕ is τ -valid iff ¬ϕ
is of rank τ .

From Propositions 3 and 4, we have:

KR 2004 537

Proposition 5 Let B be a formula that does not have any
quantifiers and functions of positive arity, and �x and �y tuples
of variable-sort pairs. The prenex formula

(∀�x)(∃�y).B
is τ -valid, where the rank τ is defined as follows: For each
sort g, if kg + ng > 0, then (g, kg + ng) ∈ τ , otherwise,
(g, 1) ∈ τ , where kg is the number of constants that may be
of sort g in B, and ng the number of variables that may be
of sort g in �x.

Action domains and state invariants
We now define formally what we mean by state invariants
in an action domain. An action domain is described in a
many-sorted first-order language called domain language
that includes a set of predicates, which are used to describe
states, and a set of functions. There is a special sort called
“action”. Functions whose range is of sort action denote
actions, and will be called action types below.

To specify the effects of actions in first-order logic, we
extend the domain language by a new predicate Poss of ar-
ity action, and for each predicate of arity s1∗· · ·∗sk a new
predicate of the same name but with arity s1∗· · ·∗sk∗action.
To distinguish between domain predicates and the new pred-
icates with the same name, in the following we call the latter
successor state predicates. For instance, in the blocks world,
the domain predicate on(x, y) means that block x is on top
of block y in the current situation, and the successor state
predicate on(x, y, stack(u, v)) means that x is on y in the
successor situation of performing action stack(u, v) in the
current one.

The effects of actions can be specified in a number of
ways. The standard way in classical AI planning is to use
a STRIPS-like notation (Fikes & Nilsson 1971). The emerg-
ing standard PDDL (McDermott et al. 1998) is in this for-
mat. One can also use a specialized first-order logic like the
situation calculus (McCarthy & Hayes 1969; Reiter 2001)
and successor state axioms (Reiter 2001). However the ac-
tions are specified, for our purpose here, we assume that an
action theory is a family of first-order theories, one for each
action type as defined below.

Definition 3 An action theory is a family of first-order the-
ories {TA | A is an action type}, where for each action type
A, TA consists of the following axioms:

• An action precondition axiom of the form

∀�x.Poss(A(�x)) ≡ Ψ, (1)

where Ψ is a formula in the domain language whose free
variables are in �x. (Thus Ψ cannot mention Poss and any
successor state predicates.)

• For each domain predicate F an axiom of the following
form:

(∀�x, �y).F (�x,A(�y)) ≡ ΦF (�x, �y), (2)

where �x and �y do not share common variables, and ΦF

is a formula in the domain language whose free variables
are from �x and �y.

Example 1 In the blocks world, for the action type stack,
we have the following axioms (all free variables below are
universally quantified from outside):

Poss(stack(x, y)) ≡ holding(x) ∧ clear(y),
on(x, y, stack(u, v)) ≡ (x = u ∧ y = v) ∨ on(x, y),
ontable(x, stack(u, v)) ≡ ontable(x),
handempty(stack(u, v)) ≡ true,

holding(x, stack(u, v)) ≡ false,

clear(x, stack(u, v)) ≡ clear(x) ∧ x 	= v.

The following definition captures the intuition that a state
invariant is a formula that if true initially, will continue to be
true after the successful completion of every possible action.

Definition 4 Given an action theory {TA | A is an action
type}, a formulaW in the domain language is a state invari-
ant if for each action type A,

TA |= ∀�y.W ∧ Poss(A(�y)) ⊃W (A(�y)), (3)

where W (A(�y)) is the result of replacing each atom F (�t) in
W by F (�t, A(�y)), and |= is the logical entailment in first-
order logic.

The following propositions are immediate.

Proposition 6 Let W ′ be a state invariant. For any formula
W in the domain language, W ∧W ′ is a state invariant iff

TA |= (∀�y).W ′ ∧W ∧ Poss(A(�y)) ⊃W (A(�y))

for every action type A.

Proposition 7 If W ∧W1 and W ∧W2 are both state in-
variants, then W ∧W1 ∧W2 is also a state invariant.

The following will be our main theorem for proving that
a formula is a state invariant.

Theorem 1 Let W ′ be a state invariant. For any formula
W in the domain language, W ∧W ′ is a state invariant iff
for each action type A, the sentence

∀�y.W ∧W ′ ∧ Ψ(�y) ⊃ R(W,A(�y)) (4)

is valid, where Ψ is the action precondition of A as in the
right side of (1), and R(W,A(�y)), the regression of W over
A(�y), is the result of replacing each atom F (�t) in W by
ΦF (�t, �y) in the right of the axiom (2).

Proof: (Sketched) By Proposition 6, we show that

(∀�y).W ′ ∧W ∧ Poss(A(�y)) ⊃W (A(�y)) (5)

follows from TA iff the sentence (4) is valid. From right to
left is obvious. To prove from left to right, suppose (4) is
not valid, and that M is a structure that satisfies its negation.
Since (4) is a sentence in the domain language, it does not
mention Poss and any successor state predicates. So M
can be extended to become a model of TA in the extended
language. The extended model is then a model of TA that
does not satisfy the sentence (5).

In the following, we shall call formula (4) the state invari-
ant condition of W on A under W ′. When W ′ is true, we

538 KR 2004

simply call it the state invariant condition of W on A. Thus
Theorem 1 says that if W ′ is a state invariant and W a for-
mula, then W ∧ W ′ is a state invariant iff for each action
type A, the state invariant condition of W on A under W ′ is
valid.

We shall now define a class of action domains and a class
of formulas such that in these domains, the state invariant
conditions of these formulas are always τ -valid for some fi-
nite τ .

Actions in many planning domains have only simple ef-
fects in the sense that if action A(�x) causes F (�y) to be true
(or false), then �y is a subset of �x. This compares to actions
with, say universal effects. An example of the latter is the
action of exploding a bomb, which will kill all those that are
within a certain range of the bomb.

Definition 5 An action theory is said to be simple if for each
action type A:

• The formula Ψ in its action precondition axiom (1) has no
quantifiers.

• The formula ΦF in the axiom (2) for each F has no quan-
tifiers, and (2) entails the following formula:

(∀�x, �y).¬subset(�x, �y) ⊃ F (�x,A(�y)) ≡ F (�x),

where subset(�x, �y), meaning �x is a subset of �y, is the
following formula:

∧

(x,g)∈�x

∨

(y,g′)∈�y

x = y.

Notice that for context-free action domains such as the
blocks world and the logistics domain, successor state ax-
ioms (2) have the form:

F (�x,A(�y)) ≡ E1∨· · ·∨En∨(F (�x)∧¬En+1∧· · ·∧¬Em),

where Ei’s are conjunctions of equality atoms between vari-
ables in �x and �y. For instance, in the blocks world, we have:

clear(x, unstack(y, z)) ≡
(x = z) ∨ (clear(x) ∧ y 	= x),

on(x1, x2, unstack(y, z)) ≡
on(x1, x2) ∧ ¬(x1 = y ∧ x2 = z).

Thus context-free action domains are simple according to
our definition as long as action preconditions do not mention
any quantifiers.

In the following, for two ranks τ1 and τ2, we say that τ1 ≤
τ2 if for each sort g, if (g, n1) ∈ τ1 and (g, n2) ∈ τ2, then
n1 ≤ n2.

Theorem 2 Suppose the given action theory is simple, and
W is a conjunction of prenex formulas (∀ �x1)B1 ∧ · · · ∧
(∀ �xk)Bk, where Bi, 1 ≤ i ≤ k, does not mention any quan-
tifiers and functions of positive arity. Suppose the atoms
in Bi are Fi1(�ti1), ..., Fini

(�tini
), and the actions in the do-

mains are A1(�y1), ..., Am(�ym). For 1 ≤ i ≤ k, 1 ≤ j ≤ ni,
and 1 ≤ w ≤ m, let τijw be the rank defined as follows:
for each primitive sort g, (g, v) ∈ τijw for v defined to be
the following number if it is greater than one, and v = 1
otherwise:

(the number of constants that may be of sort g in W and
ΨAw) +
(the number of variables that may be of sort g in �xi) +
(the number of variables that may be of sort g in �yw) -
(the number of variables and constants that may be of sort g
in �tij),

where ΨAw
is the precondition of Aw(�yw). Now let τ be the

smallest rank such that τijw ≤ τ for all such i, j, w. Then
the state invariant condition ofW is τ -valid for every action
type.

Proof: (Sketched) The state invariant condition of W on
action Aw(�yw) is:

∀ �yw.W ∧ ΨAw
⊃ R(W,A(�yw)),

which is equivalent to

∀ �yw.[(∀ �x1)B1 ∧ · · · ∧ (∀ �xk)Bk ∧ ΨAw
] ⊃

[(∀ �x1)R(B1(�x1), A(�yw)) ∧ · · · ∧
(∀ �xk)R(Bk(�x1), A(�yw))]

which is equivalent to the conjunction of the following for-
mulas for 1 ≤ i ≤ k:

(∀ �yw, �xi)(∃ �x′1, ..., �x′k).¬B1(�x′1) ∨ · · · ∨ ¬Bk(�x′k) ∨
¬ΨAw

∨R(Bi(�xi), A(�yw)),

where �x′i, 1 ≤ i ≤ k, is a fresh new tuple of variable-sort

pairs like �xi and Bi(�x′i) is the result of replacing variables

in �xi by the corresponding ones in �x′i in Bi. This formula is
equivalent to the conjunction of the following formulas:

(∀ �yw, �xi)(∃ �x′1, ..., �x′k).subset(�ti1, �yw) ⊃
¬B1(�x′1) ∨ · · · ∨ ¬Bk(�x′k) ∨ ¬ΨAw

∨
R(Bi(�xi), A(�yw)),

· · ·
(∀ �yw, �xi)(∃ �x′1, ..., �x′k).subset(�tini

, �yw) ⊃
¬B1(�x′1) ∨ · · · ∨ ¬Bk(�x′k) ∨ ¬ΨAw

∨
R(Bi(�xi), A(�yw)),

(∀ �yw, �xi)(∃ �x′1, ..., �x′k).

¬[subset(�ti1, �yw) ∨ · · · ∨ subset(�tini
, �yw)] ⊃

¬B1(�x′1) ∨ · · · ∨ ¬Bk(�x′k) ∨ ¬ΨAw
∨

R(Bi(�xi), A(�yw)).
Since the action theory is simple, the last sentence is equiv-
alent to

(∀ �yw, �xi)(∃ �x′1, ..., �x′k).

¬[subset(�ti1, �yw) ∨ · · · ∨ subset(�tini
, �yw)] ⊃

¬B1(�x′1) ∨ · · · ∨ ¬Bk(�x′k) ∨ ¬ΨAw
∨Bi(�xi),

which is valid. Again since the action theory is simple, ΨAw

is equivalent to a formula without any quantifiers, thus by
Proposition 5, noting that by subset(�tij , �yw), the variables
and constants in tij that may be of sort g are subsumed by
the variables that may be of sort g in yw, the j-th formula
above is τijw-valid for 1 ≤ j ≤ in. So all of them, as well
as their conjunction, are τ -valid.

KR 2004 539

Example 2 Consider the following functional constraint in
the logistics domain:

∀(x1, phyobj)(x2, place)(x3, place).
at(x1, x2) ∧ at(x1, x3) ⊃ x2 = x3. (6)

First of all, notice that the sorts in this domain are as follows:
primitive sorts: package, city, airport, truck, location,
and airplane; composite sorts: vehicle which contains
airplane and truck, phyobj which contains vehicle and
package, and place which contains location and airport.

There are two atoms in this sentence: F1 =
at(x1, x2) and F2 = at(x1, x3). There are six
action types in the logistics domain (see (Bacchus
Fall 2001)) loadTruck, unloadTruck, loadAirplane,
unloadAirplane, driveTruck, and flyAirplane. For
instance, the arity of loadTruck(y1, y2, y3) is package ∗
truck∗place), so for F1 and loadTruck, the number v for
sort package in Theorem 2 is

(the number of constants that may be of sort package in W and
ΨA1) +
(the number of variables that may be of sort package in
(x1, phyobj)(x2, place)(x3, place)) +
(the number of variables that may be of sort package in
(y1, package)(y2, truck)(y3, place)) -
(the number of variables that may be of sort package in
(x1, phyobj)(x2, place))

which is equal to 0 + 1 + 1 − 1 = 1. By similar calculation
for other action types, we can use Theorem 2 to determine
that the state invariant condition of (6) is
{(package, 1), (city, 1), (airport, 1), (truck, 1),
(airplane, 1), (location, 3)}-valid.

The calculation for constraints in the blocks world are
simpler because there is only one sort. For instance, the state
invariant conditions of the following functional dependency
constraint

(∀x, y, z).on(x, y) ∧ on(x, z) ⊃ y = z

are 3-valid for all action types.

Some typical types of state invariants in
planning domains

To motivate, consider the following state constraints in the
blocks world (all free variables in the formulas below are
universally quantified from outside):

on(x, y) ∧ on(x, z) ⊃ y = z,

on(y, x) ∧ on(z, x) ⊃ y = z,

ontable(x) ⊃ ¬on(x, y),
holding(x) ∨ ontable(x) ∨ (∃y)on(x, y).

The first two formulas can be called functional dependency
constraints because they make certain parameters of a rela-
tion functional on others. The third formula can be called
a mutual exclusiveness constraint on categories or proper-
ties because it says that if an object belongs to a class, then
it cannot belong to another class (if a block is on the table,
then it cannot be on another block). The last formula can be

called a domain closure axiom because it says that an object
must belong to one of the given classes (a block is either
held by the robot, on the table, or on another block).

We claim that state constraints in planning domains typi-
cally are either these functional dependency constraints, mu-
tual exclusiveness constraints on categories, constraints on
type information (for domains with multiple sorts), or do-
main closure axioms.

In this section, we formally define these four types of con-
straints. As we shall see, if the given action theory is simple,
then the state invariant conditions for the constraints of the
first three types are τ -valid for some finite τ . This means
that whether they are state invariants can be checked in fi-
nite domains.

Functional dependency constraints. For each n-ary predi-
cate p, these are sentences of the following form:

(∀ξ, ξ1, ξ2).p(ξ · ξ1) ∧ p(ξ · ξ2) ⊃ ξ1 = ξ2,

here ξ, ξ1, ξ2 are tuples of distinct variable-sort pairs such
that |ξ1| = |ξ2| = n− |ξ|, and ξ · ξ1 and ξ · ξ2 are unions of
ξ and ξ1, ξ and ξ2, respectively, such that the variables in ξ
occur in the same positions in ξ · ξ1 and ξ · ξ2. In the blocks
world, for predicate holding(x), we have (there is only one
sort in the blocks world, so we do not mention it explicitly):

(∀x, y).holding(x) ∧ holding(y) ⊃ x = y.

For predicate on(x, y), we have

(∀x, y, z, t).on(x, y) ∧ on(z, t) ⊃ (x = z ∧ y = t), (7)

(∀x, y, z).on(x, y) ∧ on(x, z) ⊃ y = z, (8)

(∀x, y, z).on(y, x) ∧ on(z, x) ⊃ y = z. (9)

In logistics domain, for predicate atwith arity phyobj∗place,
all of the following are functional dependency constraints:

∀(x, phyobj)(y, place)(z, place).
at(x, y) ∧ at(x, z) ⊃ y = z,

∀(x, truck)(y, place)(z, place).
at(x, y) ∧ at(x, z) ⊃ y = z,

∀(x, truck)(y, location)(z, place).
at(x, y) ∧ at(x, z) ⊃ y = z.

In general, one can restrict the first argument of at to any
subsort of phyobj, and the second argument to any subsort
of place.

By Thm 2, for simple action theories, the state invariant
conditions of any conjunction of functional dependency con-
straints are τ -valid for some finite τ .

Mutual exclusiveness constraints of categories. An object
can have certain attributes. For instance, in the blocks world,
a block can be on the table, being held by the robot, or on top
of some other blocks. Each of these attributes determines a
category, and they may be mutually exclusive. For instance,
a block cannot be both on the table and being held by the
robot. In principle, any formula with exactly one free vari-
able defines a category. But in planning domains, the ones
that we are interested in normally have the following form:
(∃ξ)p(ν), where ν is a tuple of variables, and ξ is a subset

540 KR 2004

of ν such that |ξ| = |ν| − 1. In the blocks world, for block,
we have the following categories:

ontable(x), holding(x), clear(x),
(∃y)on(x, y), (∃y)on(y, x).

In the logistics domain, each package can be at some
place or inside a vehicle, so it has just two cat-
egories: ∃(y, place)at(x, y) and ∃(y, vehicle)in(x, y).
For vehicle, syntactically there are two categories,
∃(y, package)in(y, x) and ∃(y, place)at(x, y). But only
the latter one is meaningful.

Generally, if C1(x), ..., Cn(x) are categories for objects
of sort g, then mutual exclusiveness constraints have the
form:

∀(x, g).Ci1(x) ∧ · · · ∧ Cik−1(x) ⊃ ¬Cik
(x),

or equivalently in clausal form:

∀(x, g).¬Ci1(x) ∨ · · · ∨ ¬Cik
(x).

For n categories, this would generate 2n sentences. But n is
normally quite small.

Sometimes we may also want to talk about categories
about objects which are not explicitly represented in the do-
main. For instance, in the blocks world, the robot (or the
agent) who is manipulating the blocks, is implicit. Nonethe-
less, we can still talk about its properties such as whether
its hand is empty. In this case, the “categories” for it are
sentences like handempty and ∃x.holding(x).

Notice that whether a constraint is a functional depen-
dency one or a mutual exclusiveness one depends on the
representation. For instance, if we have a predicate at(x, y)
in the blocks world to denote that the block x is at place y,
which could be the robot’s hand, the table, or the top of an-
other block, then constraints like “if a block is on the table,
then it is not held by the robot” becomes consequences of
some functional dependency constraints.

If each category is a prenex formula of the form (∃�x).B,
then mutual exclusiveness constraints of categories will be
prenex sentences of the form ∀�x.B. Thus by Theorem 2,
for simple action theories, the state invariant conditions of
any conjunction of these formulas are τ -valid for some finite
rank τ .

Type information In the logistics domain, the arity of at is
phyobj∗place. However, we know that an airplane can only
be at an airport. So we expect the following constraint to be
true:

∀(x, phyobj)(y, place).at(x, y)∧airplane(x) ⊃ airport(y).

In general, let F be a predicate that has at least two ar-
guments of composite sorts. Then a type information con-
straint is a sentence of the form:

∀�x.F (�x) ∧ g1(x1) ∧ · · · ∧ gk(xk) ⊃ gk+1(xk+1),

where x1, ..., xk, xk+1 are variables in �x, and for each 1 ≤
i ≤ k + 1, if (xi, g) ∈ �x, then gi is a subsort of g.

By Theorem 2, state invariant conditions for these con-
straints are again τ -valid for some finite τ for simple action

theories.

Domain closure axioms for objects. These axioms say that
an object must belong to one of the pre-defined categories.
They are sentences of the following form:

∀(x, g).C1(x) ∨ · · · ∨ Cn(x),

where Ci(x)’s are categories for objects of sort g. Since
Ci(x) is often a prenex formula of the form ∃y.B, state in-
variant conditions of domain closure axioms are in general
not τ -valid for any finite τ . Thus checking whether they are
state invariants cannot be reduced to propositional logic in
general.

Discovering state invariants in finite domains
We now describe our state invariant discovery procedure. It
requires two inputs: a set of sentences and a small set of
small models, which are like first-order structures. In a nut-
shell, the procedure simply goes through the set of sentences
looking for those that are state invariants in the given set of
models.

Formally, given an action domain, a model of this domain
is a pair (O, I), whereO is a finite set of sorted objects called
the domain of the model, and I a finite set of atoms in O
called the initial state of the model, where an atomic formula
p(a1, ..., an) is an atom inO if p is a predicate of arity sort1∗
· · ·∗sortn, and ai ∈ O is of type sorti, for 1 ≤ i ≤ n.

We make the closed-world assumption about the initial
state I . If an atom is not in I , then it is assumed to be false.
We assume that there are no constants and functions other
than actions in the domain. Otherwise, a model will also
need to specify their “meanings”. All results in this paper
can be extended straightforwardly to languages with con-
stants, but not proper functions.

Given a model M = (O, I), the state space S of the
model is defined inductively to be the following set: (1)
I ∈ S, and (2) if S ∈ S, and A is an action in O whose
precondition is satisfied in S, then the resulting state of do-
ing A in S is also in S. Here an action in O is one whose
arguments are objects in O.

Now given a set H of formulas, and a set of models,
our algorithm for generating state invariants is very simple.
First, it removes from H all formulas that are false in one of
the states of the state space of one of the models, as we only
want to consider state invariants that are at least true in the
known legal states of the action domain. For the remaining
ones, it checks whether they are state invariants in all of the
given models. Here, informally, a formula is a state invari-
ant in a model if the state invariant condition of the formula
on every action type is true in all first-order structures with
the same domain as the model. Notice that it does not hold
that if a formula is true in the state space of a model, then it
is a state invariant in this model. It may happen that if we
change the initial state of the model, the formula may still
be true in the initial state, but false in one of its successor
states.

There are, however, some complications. Sometimes,
none of the formulas in a set are state invariants on their own,
but their conjunction is. For instance, in the blocks world,

KR 2004 541

Input M – a set of models; H – a set of sentences.

Output A sequence of state invariant sets in M.

1. Let H0 be the set of sentences in H that are true in
the state space of every model in M

2. Let ∆ = ∅
3. Let I be the set of sentences in H0 that are state

invariants in M under ∆
4. Let i = 1 and H = H0.

5. While I 	= ∅ do

• Ii = I , and i = i+ 1
• ∆ = ∆ ∪ I
• H = H \ I
• Let I be the set of sentences in H that are state

invariants in M under ∆
6. Let W be the conjunction of sentences in H .

7. If W is a state invariant in M under ∆, then return
with I1, · · · , Ii−1, {W}

8. Let D1, ...,Dk be the maximal subsets of H such
that

∧
Di, 1 ≤ i ≤ k, is a state invariant in M

under ∆.

9. Return with the following sequence
I1, ..., Ii−1, {

∧
D1, ...,

∧
Dk}

Figure 1: Procedure Discovering State Invariants

the constraint (∀x, y, z).on(x, y) ∧ on(x, z) ⊃ y = z is not
a state invariant. The conjunction of it and some other sim-
ilar constraints turns out to be. This means that we not only
have to check whether an individual sentence in H is a state
invariant, but also try all possible conjunctions. This greatly
increases the complexity of our algorithm in the worst case.

What we do then is to generate state invariants in stages.
In the first pass the procedure generates all formulas that
are state invariants by themselves. Then the procedure is
applied to the remaining formulas again, this time tries to
see if any of them is a state invariant by assuming that the
state invariants discovered earlier are true. This process is
repeated until no more state invariants can be found, and
then the conjunction of the remaining formulas is checked
to see if it is a state invariant. Finally, as a last resort, all
subsets of the remaining formulas are tried.

So the output of the procedure is really a sequence
(S1, S2, ..., Sn) of sets of formulas such that for each 1 ≤
i ≤ n, and each sentence ψ ∈ Si, the conjunction ψ ∧∧

ϕ∈Sj ,1≤j<i ϕ is a state invariant. In other words, each
member of Si is a state invariant when all sentences in
S1 ∪ · · · ∪ Si−1 are assumed to be true.

Figure 1 contains a sketch of our state invariant discovery
procedure. In the procedure, a sentence W is said to be a
state invariant in a set M of models under a set ∆ of sen-
tences if the conjunction of all the sentences in ∆ ∪ {W} is
a state invariant in every model of M.

Some experimental results

We have implemented the procedure outlined above in SWI-
Prolog version 3.2.91. In the following, we report some ex-
perimental results on the blocks world and the logistics do-
main.

As mentioned, the user needs to specify a set of sentences
as potential state invariants. In our experiments, we run the
procedure twice. On the first run, it is given the set consist-
ing of functional dependency constraints, mutual exclusive-
ness constraints of categories, and constraints about types.
Because these constraints are all τ -valid for some finite τ ,
when the set of models given to the procedure has a model
of size τ ′ for every τ ′ ≤ τ , the state invariants returned by
the procedure are provably correct in the general case.

Then on second run, the procedure is given the set of all
possible domain closure axioms, the same set of models, but
with the set ∆ in the procedure initialized to be the union of
the sets of constraints in the sequence returned by the first
run of the procedure (in Figure 1, ∆ is initialized to be the
empty set), as the conjunction of the sentences in the union
is already shown to be a state invariant. The output on this
run by the procedure is not guaranteed to be a sequence of
state invariant sets in the general case. But in the blocks
world and the logistics domain, they happen to be.

As for the set of models given as input to the procedure.
There are two ways to do that. One can use Theorem 2 to
find the smallest τ such that the state invariant conditions of
all constraints except for the domain closure axioms are τ -
valid, and select a model set that has a model of the size τ ′
for every τ ′ ≤ τ . Or one can start with a small τ and models
of sizes less than τ , and gradually increase τ and the set of
models until one gets what one is looking for.

The blocks world

This domain has one sort, five predicates: on(x, y),
ontable(x), clear(x), handempty, and holding(x), and
four actions: stack(x, y), unstack(x, y), pickup(x), and
putdown(x). This is a familiar action domain, so we omit
its action theory here. The models given as input to the pro-
gram are as follows:

([1], [ontable(1), clear(1), handempty]),
([1, 2], [ontable(1), ontable(2), clear(1), clear(2),

handempty]),
([1, 2, 3], [ontable(1), ontable(2), ontable(3), clear(1),

clear(2), clear(3), handempty]).

As mentioned, our program calls the procedure in Figure 1
twice.2 The union of the state invariant sets returned by
the first run of the procedure is as follows (we break a con-
junction W1 ∧ · · · ∧Wk into its k conjuncts, and eliminate
∀�x�y.C ∨D when ∀�x.C is also in the union):

1SWI-Prolog is developed by Jan Wielemaker at University of
Amsterdam

2The total running time was 25 seconds on a PIII notebook run-
ning Windows XP with 256MB of RAM.

542 KR 2004

{¬handempty ∨ ¬(∃x)holding(x),
∀x.¬clear(x) ∨ ¬(∃z)on(z, x),
∀x.¬holding(x) ∨ ¬clear(x),
∀x.¬holding(x) ∨ ¬(∃y)on(x, y),
∀x.¬holding(x) ∨ ¬(∃z)on(z, x),
∀x.¬ontable(x) ∨ ¬holding(x),
∀x.¬ontable(x) ∨ ¬(∃y)on(x, y),
∀x1, x2.holding(x1) ∧ holding(x2) ⊃ x1 = x2,

∀x1, x2, x3.on(x1, x2) ∧ on(x1, x3) ⊃ x2 = x3,

∀x1, x2, x3.on(x2, x1) ∧ on(x3, x1) ⊃ x2 = x3}.
These sentences are functional dependency and mutual ex-
clusiveness constraints. By Theorem 2, the state invariant
condition of the conjunction of these sentences is 3-valid.
Since there is a model whose domain size is k for each
1 ≤ k ≤ 3, and this conjunction is a state invariant in all
these models, so this conjunction is also a state invariant in
the general case.

The union of the state invariant sets in the sequence re-
turned by the second run of the procedure is as follows:

{∀x.holding(x) ∨ clear(x) ∨ (∃z)on(z, x),
∀x.ontable(x) ∨ holding(x) ∨ (∃y)on(x, y),
handempty ∨ (∃x)holding(x)}.

These sentences are domain closure axioms. They turned
out to be state invariants in the general case as well.

While the state invariants returned by our program include
many familiar state constraints in the blocks world, they are
not complete in the sense that there are some illegal states
that satisfy all of them. For instance, if B is the only block
in the domain, then the state {on(B,B), handempty} is ap-
parently illegal but satisfies all the sentences in the above
two sets. However, if we add the following sentences:

(∀x, y).above(x, y) ≡ (on(x, y) ∨
(∃z)(on(x, z) ∧ above(z, y))),

(∀x, y).above(x, y) ⊃ ¬on(y, x),

then we get a complete set of state invariants. It is not clear
how sentences like these can be discovered as they involve
new predicates, and are essentially second-order.

Finally, we want to point out that for the blocks world,
the output is not sensitive to the particular initial states of
the models provided to the program. As long as they are
legal, the same output will be returned.

The logistics domain
This again is a familiar domain (see (Bacchus Fall 2001) for
a description). The models given as the input to the program
have the following ranks:

{(city, 1), (location, 1), (truck, 1), (airplane, 1),
(airport, 1), (package, 1)},

{(city, 1), (location, 2), (truck, 1), (airplane, 1),
(airport, 1), (package, 1)}

{(city, 1), (location, 3), (truck, 1), (airplane, 1),

(airport, 1), (package, 1)}
{(city, 2), (location, 1), (truck, 1), (airplane, 1),

(airport, 1), (package, 1)}
{(city, 1), (location, 1), (truck, 1), (airplane, 1),

(airport, 2), (package, 1)}
{(city, 1), (location, 1), (truck, 1), (airplane, 1),

(airport, 1), (package, 2)}.
These models are chosen to ensure the correctness of the
following set of state invariants returned by the first run of
the procedure in Figure 1:3

{∀(x1, place)(x2, city)(x3, city).
inCity(x1, x2) ∧ inCity(x1, x3) ⊃ x2 = x3,

∀(x2, phyobj)(x1, place).
at(x2, x1) ∧ airplane(x2) ⊃ airport(x1),

∀(x, package).¬∃(y, vehicle)in(x, y) ∨
¬∃(y, place)at(x, y),

∀(x1, package)(x2, vehicle)(x3, vehicle).
in(x1, x2) ∧ in(x1, x3) ⊃ x2 = x3,

∀(x1, phyobj)(x2, place)(x3, place).
at(x1, x2) ∧ at(x1, x3) ⊃ x2 = x3}.

The set of state invariants returned by the second run of the
procedure is as follows:

{∀(x, package).∃(y, vehicle)in(x, y) ∨ ∃(y, place)at(x, y),
∀(x, vehicle)∃(y, place)at(x, y),
∀(x, place)∃(y, city)inCity(x, y)}.

The union of these two sets of constraints turns out to be
complete in the sense that a state is “legal” if it satisfies all
the constraints in it.

Related work
In terms of discovering state invariants and state con-
straints in STRIPS-like action domains, previous work in-
cludes Zhang and Foo (1997), Gerevini and Schubert (1998;
2000), and Fox and Long (1998). However, some of the
previous work concerns only with domain constraints in a
particular model, i.e. constraints that are true in every state
of the state space of the model. Besides using a uniformed
method for discovering state invariants of various varieties,
our system was also able to discover more constraints than
the others. To the best of our knowledge, our system is the
only one that can discover a complete set of state invariants
in the logistics domain.

In terms of using small finite domains to discover general
patterns, Lin (2003) considered how STRIPS-like systems
compiled from a causal theory in some small domains can be
provably correctly generalized to other domains. This work
can be considered a continuation of (Lin 2003) in advocating
pattern discovery using small domains.

3Again our program calls the procedure twice. The total run-
ning time was 62 seconds.

KR 2004 543

Conclusions
We have proposed a simple procedure for discovering state
invariants in action domains. The procedure performs ex-
haustive search in the models given by the user as input.
Many state invariants discovered this way are provably cor-
rect, provided the models given are general enough. Our
experimental results showed that this procedure is effective
even for discovering domain closure axioms, which are not
τ -valid for any finite τ , in the blocks world and the logistics
domain.

For future work, we are working on applying the method-
ology advocated in this paper to problems in other areas.

Acknowledgments
I would like to thank the anonymous reviewers of this paper
for KR’04 for their comments. This work was supported in
part by the Research Grants Council of Hong Kong under
Competitive Earmarked Research Grant HKUST6182/01E.

References
Bacchus, F. Fall 2001. AIPS’00 planning com-
petition. AI Magazine 22(3):47–56. See also
http://www.cs.toronto.edu/aips2000.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to theorem proving in problem solving. Artificial
Intelligence 2:189–208.

Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.

Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Proceedings
of the 15th National Conference on Artificial Intelligence
(AAAI–98), AAAI Press, Menlo Park, CA., 905–912.

Gerevini, A., and Schubert, L. 2000. Discovering state con-
straints in DISCOPLAN: Some new results. In Proceed-
ings of the 17th National Conference on Artificial Intelli-
gence (AAAI–2000), AAAI Press, Menlo Park, CA., 761–
767.

Lin, F. 1995. Embracing causality in specifying the indi-
rect effects of actions. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence
(IJCAI–95), IJCAI Inc. Distributed by Morgan Kaufmann,
San Mateo, CA., 1985–1993.

Lin, F. 2003. Compiling causal theories to successor state
axioms and STRIPS-like systems. Journal of Artificial In-
telligence Research 19:279–314.

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh: Edinburgh University Press. 463–502.

McDermott, D. et al. 1998. PDDL – the planning domain
definition language. Technical Report TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol.

Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
The MIT Press.
Zhang, Y., and Foo, N. 1997. Deriving invariants and
constraints from action theories. Fundamenta Informati-
cae 30(1):109–123.

544 KR 2004

