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Abstract

Temporal reasoning has always been a major test case for
knowledge representation formalisms. In this paper, we de-
velop an inductive variant of the situation calculus using the
Logic for Non-Monotone Inductive Definitions (NMID). This
logic has been proposed recently and is an extension of clas-
sical logic. It allows for a uniform represention of various
forms of definitions, including monotone inductive defini-
tions and non-monotone forms of inductive definitions such
as iterated induction and induction over well-founded posets.
In the NMID-axiomatisation of the situation calculus, fluents
and causality predicates are defined by simultaneous induc-
tion on the well-founded poset of situations. The inductive
approach allows us to solve the ramification problem for the
situation calculus in a uniform and modular way. Our solu-
tion is among the most general solutions for the ramification
problem in the situation calculus. Using previously devel-
oped modularity techniques, we show that the basic variant
of the inductive situation calculusithout ramification rules

is equivalent to Reiter-style situation calculus.

Introduction and Preliminaries

The recently developed Logic for Non-Monotone Inductive
Definitions (NMID) is an extension of classical logic that
allows for uniform representation of various forms of defi-
nitions, including monotone inductive definitions and non-
monotone forms of inductive definitions such as iterated in-
duction and induction over well-founded posets (Denecker
& Ternovska 2004).

Here, we demonstrate an application of NMID-logic. The
aim is two-fold. First, we illustrate the role of NMID-logic
and non-monotone inductive definitions for knowledge rep-
resentation by presenting a variant of the situation cakul
which we callinductive situation calculus We show that
ramification rules can be naturally modeled through a non-
monotone iterated inductive definition. Second, we illastr
the use of our recently developed modularity techniques for
NMID-logic in order to translate a theory of the inductive
situation calculus into a classical logic theory of Re#esit-
uation calculus (Reiter 2001).

There are several points of interest in this experiment. The
first one is our observation that complex non-monotone in-
ductive definitions not only occur in mathematics, but also
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in common sense reasoning. In particular, we believe that
the original Reiter-style situation calculus containsdeid
forms of definitions which we explicitate in the inductive
situation calculus. The second point is the fact that diffier
forms of inductive definitions, which have a uniform rep-
resentation in NMID-logic, can be formalised in classical
(first- or second-order) logic as well, but not in a uniform
way: different sorts of definitions require different forlina
sation. As a consequence, our formalisation is simpleremor
uniform and more modular than Reiter-style situation cal-
culus. The third point is that NMID-logic is closely con-
nected to logic programming. In particular, it formally ex-
tends logic programming (LP) and abductive logic program-
ming (ALP) under the well-founded semantics. The strong
connection with LP and ALP can be exploited to build im-
plementations of NMID-logic and of inductive situationcal
culus theories. Moreover, NMID-logic has an important ad-
vantage as a knowledge representation language — contrary
to logic programming, it does not automatically impose the
domain closure assumption (although the domain closure
axiom can be expressed if needed).

In the remaining part of this section we briefly describe
NMID-logic, the modularity theorem, and some techniques
for translating NMID-logic theories into classical logid/e
also review the more traditional variant of the situatiof ca
culus similar to (Reiter 2001). In the rest of the paper, we
present the formalism of the inductive situation calcuds,
dress the ramification problem and consider a detailed exam-
ple.

NMID-Logic
First, we present an extension of classical logic with non-
monotone inductive definitions. This work extends previous
work of (Denecker 2000). A more detailed exposition can
be found in (Denecker & Ternovska 2004). A new binary
connective— is called thedefinitional implication A defi-
nition A is a set of rules of the forvz (X () < ¢), where
Z is a tuple of object variablesy is a predicate symbol (i.e.,
a predicate constant or variable) of some arity is a tuple
of terms of length- of the vocabularyr, ¢ is an arbitrary
first-order formula ofr.  The definitional implication—
must be distinguished from material implication.

Note that in front of rules, we allow only universal quan-
tifiers. In the rulevz (X (¢) < ), X(¢) is called thehead

KR 2004 545



and ¢ is thebodyof the rule. Adefined symbabf A is a head. For every defined symbd| we introduce a new rela-
relation symbol that occurs in the head of at least one rule tion symbolY” of the same arity. We obtaipy from ¢ x (Z)
of A; other relation, object and function symbols are called by substitutingY”’ for each negative occurrence of each de-
open We use notatio(x, . . . z,,) to emphasize that sym-  fined symbolY".
bols x4, ...z, are distinct and are free in. Let r be a For any pair ofr-structuresl, J extendingl,,, definel;
vocabulary including all free symbols df. The subset of as the extension af, which interprets each defined symbol
defined symbols of definition\ is denotedri. The set of X of A asX?, the value ofX in I, and each new symbol
open symbols of\ in 7 is denotedry . The setsd andrg X’ asX”, the value ofX in J. The basis of the construc-
form a partition ofr, i.e.,74 U7 = 7, and7rd N 78 =0 . tion of the well-founded model extending is the operator

A well-formed formuleof the Logic for Non-Monotone ~ Ta Which maps paird, J of extensions of,, to a structure
Inductive Definitions, briefly a NMID-formula, is defined ~ I', also extending,,, such that for each defined symb|
by the following (monotone) induction: X' = {a| I, E ¢'v[a]}. Thus, the operatof 5 evalu-

; } ; ates positive occurrences of defined symbols in rule bodies

1.1t X is an n-ary predicate symbol, and,....t, are by I, and negative occurrences of defined symbold by

terms thenX (¢, ..., t,) is a formula. : :
) L ) In the lattice ofr-structures extendingd,, the operator
- If A'is a definition them\ is a formula. T is monotone in its first argument and anti-monotone in
. If ¢, are formulas, then so (g A ). its second argument. Define tistablé operator ST as

follows: STA(J) := ifp(Ta(-,J)). This stable operator
If ¢ is a formula, thero ¢ is a formula & can be either is anti-monotone, hence its square is monotone and has a
. y [oa : H 7 L. 2
a first- or second-order symbol). Ileis}t and}azgeTs;)ﬁxpomt. We defitig”! := Ifp(ST3), and
o = gjp A

A formula ¢ is anNMID-formula over vocabulary- if the For an intuitive explanation of the well-founded seman-

set of free symbols of is a subset of. tics and an argument why it formalises different forms of

As an example, in the language of the natural numbes, jnq,ctive definitions, we réfer to (Denecker, Bruynooghe, &
the following formula expresses that there is a set which is \15rek 2001).

the least set containing O and closed under taking succes- . ) L .
sor numbers, and which contains all domain elements. It Definition 1. Definition A is total in 7X-structure I, if
is equivalent to the standard induction axiom and with the I,°! = I,*T. When this is the casé,*! (or I,*") is called

. If ¢ is aformula, then so i&-¢).

o~ WD

domain closure axiom: the A-extension ofl, and is abbreviated ag > . More gen-
Va(N(z) — z = 0) era!ly, A is tota_tl in a structurek, interpret_ing a subset of
aN H Va(N(s(z)) — N(z)) } AV N( )} . 7R if A'is total in eachrR -structure extendingy,.

The aim of an inductive definition is tefineits defined
symbols. Therefore, a natural quality requirement for a def
inition is that it is total.

Below, I[o : v] denotes the structure obtained frdnby
assigning the value to the symbob.

Note that this formula contains an existential quantifaati

over the second-order variahlé. This can be avoided by

skolemisingN and using a new predicate constant instead.

In fact, all examples of second-order quantification that ap

pear in this paper, are of the same kind as in this example s )

and can be eliminated in the same way, by skolemisation of Definition 2 (¢ true in structure I). Let ¢ be a NMID-

the existentially quantified second-order variable. formula and! any structure interpreting all free symbols of
The semantics of the NMID-logic is an extension of ¢. We defind |= ¢ (in words,¢ is true in/, or I satisfiesp,

classical logic semantics with the well-founded semantics Or I is amodelof ¢) by the following induction:

from logic programming (Van Gelder 1993; Fitting 2003; 1 1 = x(t,...t,)if (],..,t]) € XI;

Denecker, Bruynooghe, & Marek 2001). We now briefly ) Al Al ) .

describe this semantics. We assume familiarity of the reade 2- L = AO if I =1,=" = I,™", wherel, is the restriction of

with the semantics of classical logic. For more detail, we £ 107;

refer to (Denecker & Ternovska 2004). A structuref a . I =1 AN if I =y and I = ho;

vocabularyr consists ofla domaidom(I), and for each 4. = —apif I o

symbolo € 7 avalueo” in dom(l), i.e., @ domain ele- g 3. if for some value of o in the domaindom (1)

ment for an object symbol, a function for a function symbol of I, I[o : o] = o

and a relation for a predicate symbol of the corresponding ' ) '

arity. The valuet’ of a termt in I is defined by the standard =~ Given an NMID-theoryl” overr, a 7-structure satisfiesl’

recursion. (is a model ofT") if I satisfies eacly € T'. This is denoted
We first define the well-founded model of a definitidn byl =T.

extending arg -structurel,,. For each defined symbal of The above inductive definition is a prototypcial example

A, we define of a non-monotone inductive definition, more specifically

ox(Z) =3I E =t A@)V -V I (T = Aom), a definition over a well-founded poset, namely the set of

wherez is a tuple of new variables, anty; (X (1) < ¢1), This operator is often called the Gelfond-Lifschitz operator

o s Vi (X (tm) < ¢m) are the rules ofA with X in the and was introduced in (Gelfond & Lifschitz 1991).
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NMID-formulas ordered by the subformula relation. It con-
tains non-monotone recursion in rule 4. This is an example
of a definition which can be represented using definitions in
NMID-logic.

As mentioned before, the definitional implication
should be distinguished from material implication. Rule
Vz (X (t) « ) in a definition does not correspond to the
disjunctionVz (X (f) V —¢), although it implies it. Intu-
itively, definitional implication should be understood hs t
“if” found in rules in inductive definitions (e.g. Definitioh
consists of 5 such rules).

Modularity Results

Definition 3 (partition of definitions). A partition of def-
inition A is a set{A;,...,A,}, 1 < n, such thatA =
A;U---UA,, and if defined symbdP appears in the head
of arule ofA;, 1 < ¢ < n, then all rules ofA with P in the
head belong tad\; and only toA;.

Notice thatA; has some “new” open symbols. For in-
stance, ifP is defined inA, but not inA;, then it is a new
open symbol of\;. Of course, it holds that = 73 U7 =
TR, UTdi, 1<i<n. AlSO,UiT(Aii = T(Ai andrgi 07'2], =0
whenevetr # j.

A domain atomover vocabularyr in domain A is any
atomPlay, ..., a,) (or P[a]), whereP is relation symbol of
T anday,...,a, are elements ofl. Let At be the set of
domain atoms over in A. Let < be any binary relation on
Aty If Q[b] < Pla], we will say thatP[a] depends o1i)[b]
(according to<). We useQ[b] < Pla] as an abbreviation
for Q[b] < Pla] A Pla] 4 Q[b]. For any domain aton®[a]
and any pait, J of 7-structures with domaini, we define
I =_pg J if for each atomQ[b] < Plal, I = Q[b] iff
J = Q[b]. We extend this to pairs by definirg, J) =_ p(5
(I/, J’) if I §_<p[a] I'andJ %_<P[a] J'.

Let K, be a structure with domaid interpreting at least
all object and function symbols of and no defined predi-
cates ofA.

Definition 4 (reduction relation). A binary relation< on
At", is a reduction relation(or briefly, a reduction) ofA
in K, if for each domain atomP[a] with P a defined
symbol, for all r-structures, J, I', J’ extending K, if
(I, J) g_<P[a] (I/, J/) thenIl; }: g@p[(—l] iff 1’ 7/ ): g@p[(—l].
Intuitively, the definition expresses thatis a reduction re-
lation if the truth of the formulag p[a] depends only on the
truth of the atoms on whic#[a] depends according te.
Recall that a pre-well-founded order is a reflexive and
transitive relation such that every non-empty subset cosita
a minimal element. The following definition is crucial for
the Modularity theorem.

Definition 5 (reduction partition). Call partition
{Ay,...,A,} of definition A a reduction partitionof

A in 73 -structurel, if there is a reduction pre-well-founded
order < of A in I, and if for each pair of atomsP[a],
QI[b] which are not defined in the sanzg; and such that
QI[b] < Plal, it holds thatQ[b] < Pia] (i.e., P[a] A Q[b]).

The intuition underlying this definition is that in a redwti
partition, if an atom defined in one module depends on an

atom defined in another module, then the latter atom does
not depend on the first atom and hence is strictly less in the
reduction ordering.
A partition {Aq, ..
eachA; is total in K.

Theorem 1 (modularity). If {A4,...,A,} is a total re-
duction partition ofA in 7% -structure I, then for anyr-
structureM extendingl,, M = A1 A---AA, iff M = A.

Corollary 1. LetT, be a theory overy such that for any
7R-modelM, of T, {A4,...,A,} is atotal reduction par-
titionof Ain M,. ThenT, AAandT, AA1 A---ANA,, are
logically equivalent.

., AL} of Ais called total inK,, if

Now we consider for two special cases of definitions how
to translate them in classical logic. LAtbe a positive def-
inition, i.e., with only positive occurrences of defined sym
bols in rule bodies, defining the symbdk Let X; and P;
have the same arity. Define

PID(A) := NAAVX(\ A[P/X] — P C X).

Here, A A is the conjunction of formulas obtained by
replacing definitional with material implications id\,
A[P/X] is the definition obtained by substituting, for
each defined symbdP;, and P C X is a shorthand for the
formula

vz (PL(z) = X1(2)) A+ AVE (Po(Z) — Xn(T)).

The formulaPID(A) is the standard second-order formula
to express that predicatd3 satisfy the positive inductive
definition A.

Theorem 2. If A is positive (i.e., contains no negative oc-
currences of defined symbols) then it is total in eagh
structure, and for any structurg I = Aiff I = PID(A).

The theoryPID(A) expresses that the defined relations
are the least relations closed under the rulegadh a 73 -
structure. Because the rules Af are positive, such least
relations are guaranteed to exist. Since these relati@ns ar
the unique minimal relations closed under the ruleg\of
the well-known knowledge representation principle of cir-
cumscription could also be used to formalise

Another result is concerned with (possibly non-
monotone) definitions over well-founded posets. First, we
propose a formalisation for this informal concept in NMID-
logic.

Definition 6 (strict reduction relation). A reduction rela-
tion < of A on At7, is strictin K ifitis a strict well-founded
order (i.e., an antisymmetric, transitive binary relatiath-
out infinite descending chains).

Thus, if P[a] < Q[b] holds, then the bodies of rules defin-
ing Q[b] may depend on the truth value Bfa], but not vice
versa.

Definition 7 (definition by well-founded induction). Let
A be a definition with a strict reduction relatior in K.
We callA a definition by well-founded induction (ove) in
K.
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Being a definition by well-founded induction is not a uni-
versal property. A definition may have a strict reduction in
one structure and not in other structures.

There is a well-known concept in knowledge representa-

tion that can be used to formalise this type of definitions
in first-order logic. Define theompletion ofA, denoted
comp(A), as the conjunction, for each defined symi§obf
A, of formulasvVz (X (z) <« px (Z)).
Theorem 3 (completion). SupposeA is a definition by
well-founded induction iR -structure I,. Then (a) defi-
nition A is total in I, and (b) the model,> of A is the
unique model ofornp(A) extendingl,.

Corollary 2. LetT, be a theory overy such that for any
TR -model), of T,, A is a definition by well-founded induc-
tion in M,. ThenT, A A andT, A comp(A) are logically
equivalent.

Notice that positive inductive definitions and inductive
definitions with strict reduction relation have differean(,
in general, non-equivalent) formalisations in classiogid.

Reiter-style Situation Calculus

The vocabulary. of the situation calculus is a many-sorted
vocabulary with equality and with sorts for actiondcf),
situations fit), and possibly a finite number of domain-
specific sorts called object sor84;,. . .,Ob;). The vocab-
ulary contains a potentially infinite set of domain-deparide
function symbols of the sortct. The sort of each argument
of such a function is an object sort. For example, in the
block world domain, we may have actiopg&k _up(x) and
put_on(x,y) ranging over the soBlock.

The vocabulary contains a binary relationwith argu-
ments of sortSit and denoting precedence of situations. The
constantS, of sort.Sit denotes the initial situation. Function
do of sort Sit maps actions and situations to situations, i.e.,
givena ands, termdo(a, s) denotes the successor situation
which is obtained from situation by performing actioru.
The predicate constanig, F», . .. are calledluentsand de-
note properties of the world (both in the initial situatiamda
in other situations). Fluents always have exactly one argu-
ment of sortSit, while the sort of each other argument is an
object sort. For exampl&n(z, y, s) of arity 3 denotes that
objectz is on objecty in situations.

Definition 8 (Dyy,a(s)). The theory ofinique name axioms
for sort § Dyna(s), is the set of axioms in the following ax-
iom schema: For distinct function symbgisand g of sort

S
vz VY =(f(Z) = 9(9))- )
Vjv@ (f(xlaaxn) f(ylvayn) (2)
— X1 =Y A ATy = Yn).
The axioms (2) hold for every function symtfolvith arity
greater than zero.

Definition 9 (D¢). Thefoundational axioms of the situation
calculus Dy, are the set of axioms consisting of the unique
name axioms for situation®,,,,,(sit), the domain closure
axiom for situations
VP (P(Sy) AVs' Va (P(s") — P(do(a,s")))
— Vs P(s))

®3)
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and the precedence axioms for situations
Vs = (s C So),

Vs Vs' Va (s C do(a,s’) < sCs')
wheres C s’ is an abbreviation fos C s’ A =(s' C s).

The role of axiom (3) is to guarantee that the domain of sit-
uationsSit is the smallest set closed under applications of
the function symboflo, which satisfies the unique name ax-
ioms for situations. Every two models @f; with identical
domains of sortdct will have identical domains of sofit
(modulo isomorphism).

Definition 10 (D). Thesuccessor state axionBy,, are of
the form:
Vz Va Vs (F(z,do(a,s)) <
(7;5(3’0, a,s)V F(z,s) N —yp(Z,a,s))).

(4)
®)

(6)

Formulay}:(Z, a, s) (respectively;y (z,a, s)) denotes a
first-order formula specifying the conditions under which
actiona causes fluenf’ to become true (respectively, false)
in the situations (Reiter 1991). The only free variables of
these formulas are amonga, s and the only symbol of sort
Sit is the free variable. An example of a successor axiom
is

VswVa ¥ s (On(sw,do(a, s)) <
a = toggle(sw) A =On(sw, s)V
On(sw,s) A a # toggle(sw)).

This axiom says that a switch is on in situatién(a, s) if
and only if this situation was obtained by performing action
toggle(sw) in situations where this switch was off, or the
switch was already on and an action other thayyle(sw)
was performed.

Definition 11 (Dg,). A description of the initial situatign
Dg,, is a set of first order sentences that are unifornbi
that is, it contains no situation term other th&f.

A basic action theoryconsists ofDs UD,a(act) U DPs, U
Dgs.

Inductive Situation Calculus

Here we define a variant of Reiter-style situation calculus,
which we call the inductive situation calculus. All flu-
ents will be defined by simultaneous induction on the well-
founded set of situations. Ramifications describing propa-
gation of effects of actions are modeled as monotone induc-
tions at the level of situations. The resultis an iteratedia
tive definition with alternating phases of monotone and non-
monotone induction. Below we describe the components of
the inductive situation calculus.

The vocabularys. of the inductive situation calculus ex-
tendsr,. by two types of symbols. Symbols:,, Ig,,...
are used to describe the initial situation and correspond to
the fluentsFy, Fs, ..., F, but have no situation argument.
They are open symbols of the inductive situation calculus.
The other type of symbols denote causality relations. These
symbols will be introduced a bit later. Ttopen vocabulary
2. of the inductive situation calculus consists of all symbols

of 15 except for all fluents and causality predicates.



Thefoundational axioms of the inductive situation calcu-
lus, Dj¢, are the unique name axiomy,,,s;t) for situations,
the following domain closure axiom for situations

P H Ty ((182(;(2,28)?”); P(s)) }Avsp(s)} 7

and the following definition of the precedence relation

| K

The role of axiom (7) is to guarantee that the domain of situ-
ationsSit is the smallest set closed under applications of the
function symbokllo, which satisfies the unique name axioms
for situations. Itis equivalent to Reiter’s induction axidor
situations.

In place ofDg,, the description of the initial situation in
terms of fluents which hold i, in the inductive situation
calculus we describe the initial situation in terms of syfabo
Ir,. The corresponding collection of axioms¥,;; .

An initial structure A; of the inductive situation calculus
is a multi-sorted structure with a non-empty domain for each
sort of the language, which interprets all symbols;pf and
which satisfies the foundational axio; and the unique
name axioms for actior®,,,,,(act)-

Proposmon 1. Let A be ar -structure, which satisfies
Dis and the definitionAc (8). In every such structure,
(SitA,C4) is a well-founded poset (and, thus a pre-well-

founded set).

The following proposition demonstrates that the remain-
ing two foundational axioms of the situation calculus as pre
sented in (Reiter 2001), are implied by the definition above.

Proposition 2. The sentences (4) and (5) are logically
implied by the unique name assumptions for situations
Dinasit), the domain closure axiom for situations (7), and
by the sentence (8).

VsVs' (sC s’ «—s=45),

AC =1 Vevs'Va (s Cdo(a,s’) — sC )

Proof. The definitionAc logically implies its completion
comp(AE). This theory gives u§'s Vs’ (s C s < s =
§'V 3a 38" ¢ = do(a,s") Ns T s”). To prove (4),
we instantiate the completion witfl = S, taking into

A basic action theory of the inductive situation calculus
will be a collection of axioms of the form:

Dif U Duna(Act) U Dinit U {Asc}7 (9)

where A4 is an inductive definition of the fluents. In the

next sections, we present two variantsaf..

Specifying Direct Effects of Actions For each fluent’,
we introduce two additional auxiliary relationsr, and
C_r,. These relations represent initiating and terminating
causes for;, respectively. BothCr, and C-p, have the
same sort of arguments &3 plus one action argument. Let
Dinit @xiomatize the initial situation usinge,, ...Ig, .

We augmen®Dis U Dypa(act) U Dinit With the following

definition '
ASC = U Allcluent U U Aelcfec‘r

whereA?

fluent -

vjl( (ilaSO)
i (Zi,do(a, 8))
+(Zi,do(a, s))

IF(‘(EZ'));
CFi (jh a, S))7
Fi(a_?,‘,S)/\ ’

_‘C_‘Fi (i'iv a, S))
andAéﬁect =
{ Yz (Cr,(Ti,a,5)  — F (T, 0,5)), }
— ’Y;l (-fza a, 8)) '

Vz; (C-p,(Zs,a, )
The intuitive meaning of this definition is as follows. The
first rule of A} ... defines the fluent in situatiof,. The
second rule says that if an action causes a fluent in some sit-
uation, then the fluent holds in the successor situation. The
third rule deals with the case where a fluent is not affected
by an action and will be referred to as tlav of inertia
The rules inAl, ., describe direct effects of actions on the
fluent F;. Formulast (T, a,8), g, (T, a,s) are analo-
gous to those found in Reiter- style situation calculus. The
only situation term appearing in them 4sand they do not
contain causality or initiation predicates. From the folaisu
WF (Zi,a,5), Vg, (Zi,a,8), a successor state axiom for the

vz, (F,
vz; (F,

account the unique name assumptions for situations. We fluent F; can be constructed. These axioms will be called

obtain: Vs (s C Sy < s So). This sentence implies
Vs (s E Sy — s = Sp), which entailsvs —(s C Sp).

To prove (5), we use a model theoretic argument. In each
structure satisfying the foundational axioms, there igechi
tion (one to one and onto) from the set of finite sequences of
elements of the action sort to the situation sort. By a simple
inductive argument on the definition &f, one can show that
for two situationss, s, s C ¢’ if and only if the sequence of
actions ofs is an initial segment of the sequence of actions
of . Whens C do(a, ") holds, then the action sequence in
s is a strictly smaller initial segment of the action sequence
of do(a, s’) and hence an initial segment of the action se-
qguence ofs’. Consequentlys C s’. Vice versa, ifs C s/,
then the action sequenceoWvill be a strictly smaller initial
segment of the action sequencesbfippended with action
a, and hence T do(a, s") holds.

O

the successor state axioms correspondinfy4o

Note that any fluent may appear in the rules of a causality
predicate. Hence, this definition is one large simultaneous
inductive definition. Moreover, since the inertia law conga
a negative occurrence 6f. , and this predicate may be de-
fined in terms of fluents, this is, in general, a non-monotone
inductive definition.

In what follows, we use our modularity results in order to
obtain the standard successor state axioms of the situation
calculus.

Proposition 3. Suppose4; is an initial structure of the in-
ductive situation calculus such that; = Dj,i;. A struc-
ture I extendingA4; is a model ofAg. iff 7 is a model of
comp(Asc)'

Proof. Let A be the domain of4;. Define the following
relation—< on At

7!, the set of all domain atom, as the set of
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all tuples:

( IPi [ﬂ], Pi[a’ ‘9641] )7

(Cyp,lu,a, s8], P;[u, do*(a, 5)] ),

( P[u, s], C-yp,[v,a,s]),
for arbitrary tuples of objects andw, for arbitrary elements
a of the action sort and of the situation sort, for each .

It is easy to show thak is a reduction relation. Since
any superset of a reduction relation is also a reduction re-
lation, the transitive closures* of < is a reduction rela-
tion. Moreover, it follows from the fact thatSit4r, CAr)
is a pre-well-founded set (Proposition 1), that is a strict
pre-well-founded order orlt’ . This means that we can
apply Theorem 3 and we obtain thAt, is total in.4; and
is equivalent to the completion. O

Suppose that;, 7 are vocabularies extendingand let
Ty, T be theories in respectively, ». We callT; equiva-
lent in T to Ty if for eachr-model M, of T1, there exists a
T9-model M5 of T; such thatdM, |, = Ms|, and vice versa.
HereM;|, denotes the restriction df/; to the symbols of.
Proposition 4. Dis UD ya(Act) UDinit U{Asc } IS €quivalent
in 7. to

Df V) Duna(Act) ) DSU ) Dss
whereDg, is the theory obtained fror®;,;; by substitut-
ing F;(t, Sp) for each atom/p, (f) and D is the set of the
successor state axioms corresponding\tQ.

Proof. Dy andDs are logically equivalent. By proposition
3, D U Dy U {Agc } is logically equivalent tds U Dy U
comp(QAsg.), wherecomp(Asg.) is
N; Yz Fy(%;,8) < (s = So A Lp,(Z;)V
Jda 38" s =do(a,s)A
CFi, (fi, S) V Fl(ju S/) A _\CﬁF% (:Z‘,;, S))
AN VENYa Cp,(Zi,a,5) < ~f (Zi,a,5')
AN VENsVa Cop,(Zi, a,8) < g (Tis a,8).
(10)
Since, by the domain closure axiom for situations,
Vs s =SV 3aIs's=do(a,s),
Dy U {(10)} is logically equivalent taD; U {(11), (12)},
where
N; Vz;VsVa F;(z;,do(a, s)) <

Cr,(Z;,do(a, s))V (11)
Fi(Zi,s) N —C-p,(Z;,do(a, s))
and
N Vi Fi(zi, S0) < Ip, ()
AN} VEVsYa Cp,(Zi,a,5) < v, (Zi,a,5) 12)

ANNIVENSYa Copy (T, a,8) < Ve (%, a, 5).
Given the equivalences in (12), it is clear that; U
Duna(Act) U Dinit U {(11), (12) } is logically equivalent to
Dy U Duna(Act) UDg, UDgs U {(12)}.

Finally, observe that in the latter theory, the predicate
symbolsIp,, Cr, and C_p, occur only at the lefthand-
side of the explicit definitions in (12). It follows that
Dt U Dyna(act) U Ds, UDss U{(12)} is equivalent inr,. to
Dr U Duna(Act) U DSO uD

SS

O
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Note that our definitiom\? does not contain rules of

fluent
the form
vz, VaVs (- Pi(Z;,a,8) — C_p,(Ti,a,s)). (13)

However, under a natural requirement, we can derive nega-
tive effect axioms of actions, as we demonstrate below. The
requirement is that a fluent and its negation are not caused to
hold in the same situation. Formally, the requirement i tha
the basic action theory should entail the following senéenc

n
/\ Vz,;Vavs —\('y;Zi (Ziya,8) Nvg, (T4, a,8)).
7
It is easy to show now that if this requirement is satisfied,
then the negative effect axiom is implied. Observe that each
successor state axiom entails

vz, VaVs ﬁ’yzfi (Z4,do(a, 8)) Ny, (Zi, do(a, 5))
— = F;(Z;,do(a, s)).

Under the requirement, the first literal in the condition is
entailed by the second, so we can drop it and we obtain the
negative effect rule

Vz;Va¥s (g (Zi,do(a, s)) — =Fi(T;,do(a, s))).

Therefore, in the context of Inductive Situation Calculus,
rule (13) is not necessary. This observation illustratesra g
eral principle of inductive definitions. In an inductive defi
nition, one defines a concept by enumerating positive cases.
Given such an enumeration, the closure mechanism under-
lying inductive definitions yields the negative cases.

Indirect Effects The ramification problem arises in the
context of knowledge representation, when one wants to
capture indirect effects of actions in a logic-based formal
ism. It has been shown (e.g., (Lin 1995)) that state con-
straints are generally inadequate for deriving indirefeict§

of actions, and that some notion of causation is needed. Un-
like material implication, causal implications are not €on
trapositive which makes them similar to the rules of induc-
tive definitions. This property is the foundation of our so-
lution to the ramification problem. The semantic correspon-
dence between causality rules and rules in an inductive defi-
nition was independently pointed out in (Ternovskaia 1998a
1998b) and in (Denecker, Theseider Dajp& Van Bel-
leghem 1998).

Let, as before,Cr, and C_.p, represent initiating and
terminating causes foF;, respectively. We extend the
use of the causality predicates to specify indirect effects
of actions. For example, according to the causal rule
VYaV¥s (Cp,(a,s) «— C.r (a,s)), when an actiom causes
termination of 1, then the same action, indirectly, causes
the initiation of F». We relax the conditions o\l ., SO
that any number of rules of the following form can appear in
it:

VaVs (Cr, (T4, a, s)
VaVs (C.p, (Zi,a,s)
whereUt and ¥~ are formulas in whichs is the only sit-

uation term. Note that in the direct effect case, causality
predicates were excluded from bodies of rulea\gf;

— \I!J},C (Z4,a,5)),

Ui (mnas) 0
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The basic action theory (9), wherk,, is as above, en-
codes oumost general solution to the ramification problem
in the inductive situation calculus.

Consider the following partition af .

{ Aéffect U---u Agﬂect? A%luentv s (15)

Proposition 5. SupposeA; is any initial structure of the
inductive situation calculus and causality predicates énav
only positive occurrences in,.. Partition (15) is a total
reduction partition ofAg. in Aj.

) guent }

Proof. Let A be the domain of4;. Define the following
relation< on At;‘gc, the set of all domain atoms, as the set
of all tuples:

( IPi [ﬂ], Pj[av 5(341} )’

(Cyplu,a,s], Pila,doi(a, 5)] ),

( P; [ﬁ, S]a C(—\)P, [@7 a, S] )a

( C(—\)Pi [ﬂ7 a, 3}7 C(ﬁ)Pj [177 a, S] )7
for arbitrary tuples of objectg andwv, for arbitary elements
a of the action sort and of the situation sort and for ea¢h
J-

It is easy to show thak is a reduction relation. Since

any superset of a reduction relation is also a reduction rela
tion, the reflexive, transitive closure* is a reduction rela-
tion. Moreover, it follows from the fact thatSit4r, CAr)
is a pre-well-founded set (Proposition 1), that is a pre-
well-founded order omﬁltﬁ;. It is easy to see that for atoms
Pla), Q[p] from A4 , if Q[b] <* P[a] and Pa], Q[b] are
not defined in the samA,; thenQ[b] <* P[a]. Therefore,
partition (15) is a reduction partition &f..

Observe that each definition in partition (15) is positive,
and, therefore total in each structure. Consequentlyj-part
tion (15) is a total reduction partition id;.

d

Theorem 4. If causality predicates have only positive
occurrences inAg. then the basic action theory (9)
is equivalent to the theoryDr U Dypacact)y U Ds, U

N comp(A%uent) N PID(; Aéﬂect)'

Proof. By proposition 5, we have a total reduction partition.
By the modularity theorem 1, we can split the definition.
The definitionJ; Alg... is @ positive definition which, by
theorem 2, can be translated ifdd D(A\; Alg...). The def-

initions A ..., have strict reduction relations, so they can be

transformed into completions by theorem 3.
O

Example: N Gear Wheels Let us describe a simple ide-
alized mechanical system consisting of a number of gear
wheelswy, ..., w,, each pair of which may or may not

is no friction; this system behaves as a perpetuum mobile)
until there is a stop action.

We are faced here with a ramification problem — the
problem of how to describe the propagation of effects
through the system of connected gear wheels. The goal is
to develop anodulartemporal theory describing the effects
of the basic actions and the propagation of effects. As a
correctness criterion, we should be able to prove the state
constraint that in all situations, a gear wheels turning if
and only if all reachable wheels (those connectedstm
the transitive closure of the connection graph) are turaig
well.

We could represent this example in Reiter’s basic situation
calculus (Reiter 2001). To do this we could pre-compute for
each wheel the set of reachable wheels in the connection
graph; it suffices then to express that the action of starting
(resp. stopping) a wheet has the immediate effect to ini-
tiate (resp. terminate) the turning state of wheednd each
wheel reachable fromy. This representation would have an
important drawback due to the fact that it contains an ex-
plicit representation of the transitive closure of the pbgks
connections between gear wheels. This relation is an exam-
ple of aglobal propertyof the system which emerges as an
interaction oflocal properties namely the physical connec-
tions between gear wheels. If we explicitly represent such
global properties then a small change of a local property
(e.g. adding a new connection or deleting an existing con-
nection between two gear wheels) may have a strong im-
pact on the global properties and hence on the theory (e.g.
disconnecting one pair of gear wheels may split a large in-
terconnected set of connected wheels and would affect the
representation of the effect of all actions on all wheelsig t
set). In amodularrepresentation, only local properties of the
components should be represented explicitly; global grope
ties should be derivable from a generic part of the theory
which does not explicitly depend on the actual configuration
of the system. This is an aspect @fboration tolerance
(McCarthy 1998).

To obtain a modular representation in the gear wheel ex-
ample, we need to be able to express the reachability from
a specific wheel in an arbitrary graph. It is wel-known that
this concept cannot be expressed in first order logic. Be-
low we present a formalisation through an iterated indectiv
definition.

In the gear wheel example, there is one domain dependent
sort, denoted7earwheel. Action symbols arestart and
stop and have sortGearwheel). The unique fluenf"urns
has sor{Gearwheel, Sit).

Basic components of the inductive situation calculus for
the Gearwheel example are the foundational axi@mof
situations and the unique name axio§,, ) for ac-
tions. The main axiom of our theory is the simultaneous

be mechanically connected. For each of these wheels, we iterated inductive definitiod\,. of the fluentl'urns and its

consider two statesturning or stopped For each of these
wheels, we consider two actiongart(w;) and stop(w;).
The first action gives an impulse to the wheel which propa-

causality predicateS'r, s andC_r,,s. The effect prop-
agation process caused by start or stop actions in one situa-
tion will be modeled by a monotone induction. To define the

gates over the system to all connected gearwheels; the secfluentTurns for all states, the monotone induction is then
ond action brakes the wheel and all connected wheels. We iterated over the well-founded structure of situations.

assume that once a wheel turns, it continues to turn (there

The definitionAy. can be split up in two subdefinitions.
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The first part of the definition consists of the rules for Proof. The proof is model theoretic. Ldt be a model of

Turns: ATurns = Duyheels-
VsVg Turns(g, So) — Irurms(g) _The proof is by induction on the length of the situations.
VaVsVg Turns(g, do(a, s)) — Crurns(9; a; ) Since all gear wheels are in rest in the initial situatior, th
VaVsVg Turns(g, do(a, s)) «— property is trivially satisfied in this situation. Assumeith
Turns(g, s)A the property is satisfied for situatienWe prove that it holds

for the successor situatiaiv’ (a, s), for arbitrary action.
Assume that there is a path from gearwhedb gear-
wheel ¢’ through the grapfConnected’. By definition
Actiects If Crurn (g, a, s) is true then so i€, (g, a, s).
Because the grapBonnected! is symmetric, it follows
thatCryrn (9, a, s) andCry,n (¢, a, s) have the same truth
value. The same holds f@¥_r,,,. The induction hypoth-

W -Turns (g» a, S)
Notice that the third rule, the law of inertia, contains re-
cursion over negation.
The second part of the definitiofA. s ... describes the
causation predicateSry,»s and C_r,»s. The following
set of rulesA.g..; specify direct and indirect effects of ac-

tions: esis states that in situationall connected wheels are in the
VavsVg Crurns(9, a, s) < a = Start(g), same state. By the above observation, the actibas the
VavsVg Crurns(9; a, s) < a = Stop(g)), same effects on all connected wheels. Consequently, the in-
VavsVg Crurns(9, a, s) < duction hypothesis is preserved in situatitr (a, s).
g’ Connected(g, g')A\
CTuTns(g/7 a, 3)7
YaVsVg Corurns(g,a, s) «— Related work For an overview of different approaches for
g’ Connected(g, g')A\ temporal reasoning and the ramification problem we refer
Corurns(g'5 a, 8) to (Thielscher 1997) (Mcllraith 2000) (Denecker, Theseide

These rules contain positive recursion. To represent the PUP™®, & Van Belleghem 1998). Here we limit our discus-

physical connections between the gear wheels, we used theSion 0 approaches based on situation calculus using induc-
binary relation symbol predicatéonnected. This is a sym- tive definitions and classical logic.

metric relation, as is expressed by the theBgy,,,,, consist- The idea of using inductive definitions for modeling
ing of the axiom: temporal reasoning using mductyve definitions was pointed
, , , out independently in (Ternovskaia 1998a; 1998b) and (De-
Vg¥yg' Connected(g, g') — Connected(g', g). necker, Theseider Du@r & Van Belleghem 1998). In both
Define Agc := Apyrns U Aesrect- This definition defines cases, the motivation for using inductive definitions was th
the predicate§ urns, Cryrns aNdC_rymns DY Simultane- similarity between the process of effect propagation in-a dy
ously non-monotone induction in terms of the open predi- namic system and inductive definitions. Basically, the pro-
cateslt,,ns andConnected. cess of effect propagation isanstructiveprocess: basic

We assume that in the initial state, all gear wheels are in actions cause changes and effects which propagate through
rest. This is expressed by the thedpy,;; which contains the dynamic system; changes do not appear without an ex-

one axiom ternal cause. The same constructive intuition is found in
Vg = Irurns(g)- inductive definitions. This explains why inductive defini-
The full axiomatisation of the domain consists of tions can correctly model recursive effect propagatioms. |

. this respect, the inductive situation calculus is more gane
Df”h“ls =D U D_u“ﬂ(AC_t) U Dconn U Dinit U {A_SC}' than two other well-known classical logic formalisatiorfs o

Notice that the_ configuration of the gear wheels IS_Ie_ft un- the situation calculus with ramifications, namely Lin’s ap-

specified both in the statement of the problem and in its ax- proach (Lin 1995) and Mcllraith’s solitary stratified thees

iomatisationDypeeis- (Mcllraith 2000). Both approaches impose acyclicity con-
Below we analyse the theo®,nceis. SINCEA ¢ fect IS straints on ramification rules which preclude recursive-ram
a positive definition, the basic action thedby,;..;s satis- ifications. A strong constraint in solitary stratified thiesr
fies the conditions of theorem 4. Consequently, we have the is that no fluent symbol is allowed to appear both as an ef-
following proposition. fect and in the precondition of the same action. On the other
Proposition 6. The theoryD,,j,c.;, is equivalent to hand, Mcllraith addresses the qualification problem, which
we don't.

Dif ) Duna(Act) U DConn ) DinitU
PID(AEffect)} U Comp(ATurns)
Proposition 7. In each situation, all connected gear wheels

are turning or they are all in rest. The theo®,,,c;s 10gi-
cally entails:

Conclusion

This paper explains the inductive nature of situation calcu
lus. We have shown that — unsuspected by its creators —
, , , the original Reiter-style situation calculus and its esten
V9¥g' X(g,9') « Connected(g, 9'), for representing ramification, makes hidden use of indectiv
Vgvg' X(g.9') < Jg X(g;/g /)/\ definitions. We made these definitions explicit and found
JX , , X(g",9") monotone and non-monotone induction. In the Reiter-style
NYsVgVg' (X(9,9') — / situation calculus, these different forms of induction fare
(Turns(g, s) < Turns(g', s))) malised in different ways. In our representation in NMID-
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logic, they can be represented in a uniform way. Inthis sense Thielscher, M. 1997. Ramification and causality. of
our representation is simpler and may lead to a more mod- Artificial Intelligence89:317—-364.
ular representation. We presented a translation to clssic  van Gelder, A. 1993. An alternating fixpoint of logic pro-

|OgiC to ShOW that our formalisation Of Situation Ca|CU|BS | grams with negationjourna| of Computer and System SCi-
indeed equivalent to the standard formalisation. Finally, ences7:185-221.

experiment also demonstrates that the use of differentform
of inductive definitions is not limited to mathematics, but
may have applications in a much wider area of knowledge
representation, including commonsense reasoning.
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