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Abstract

Temporal reasoning has always been a major test case for
knowledge representation formalisms. In this paper, we de-
velop an inductive variant of the situation calculus using the
Logic for Non-Monotone Inductive Definitions (NMID). This
logic has been proposed recently and is an extension of clas-
sical logic. It allows for a uniform represention of various
forms of definitions, including monotone inductive defini-
tions and non-monotone forms of inductive definitions such
as iterated induction and induction over well-founded posets.
In the NMID-axiomatisation of the situation calculus, fluents
and causality predicates are defined by simultaneous induc-
tion on the well-founded poset of situations. The inductive
approach allows us to solve the ramification problem for the
situation calculus in a uniform and modular way. Our solu-
tion is among the most general solutions for the ramification
problem in the situation calculus. Using previously devel-
oped modularity techniques, we show that the basic variant
of the inductive situation calculuswithout ramification rules
is equivalent to Reiter-style situation calculus.

Introduction and Preliminaries
The recently developed Logic for Non-Monotone Inductive
Definitions (NMID) is an extension of classical logic that
allows for uniform representation of various forms of defi-
nitions, including monotone inductive definitions and non-
monotone forms of inductive definitions such as iterated in-
duction and induction over well-founded posets (Denecker
& Ternovska 2004).

Here, we demonstrate an application of NMID-logic. The
aim is two-fold. First, we illustrate the role of NMID-logic
and non-monotone inductive definitions for knowledge rep-
resentation by presenting a variant of the situation calculus
which we call inductive situation calculus. We show that
ramification rules can be naturally modeled through a non-
monotone iterated inductive definition. Second, we illustrate
the use of our recently developed modularity techniques for
NMID-logic in order to translate a theory of the inductive
situation calculus into a classical logic theory of Reiter’s sit-
uation calculus (Reiter 2001).

There are several points of interest in this experiment. The
first one is our observation that complex non-monotone in-
ductive definitions not only occur in mathematics, but also
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in common sense reasoning. In particular, we believe that
the original Reiter-style situation calculus contains hidden
forms of definitions which we explicitate in the inductive
situation calculus. The second point is the fact that different
forms of inductive definitions, which have a uniform rep-
resentation in NMID-logic, can be formalised in classical
(first- or second-order) logic as well, but not in a uniform
way: different sorts of definitions require different formali-
sation. As a consequence, our formalisation is simpler, more
uniform and more modular than Reiter-style situation cal-
culus. The third point is that NMID-logic is closely con-
nected to logic programming. In particular, it formally ex-
tends logic programming (LP) and abductive logic program-
ming (ALP) under the well-founded semantics. The strong
connection with LP and ALP can be exploited to build im-
plementations of NMID-logic and of inductive situation cal-
culus theories. Moreover, NMID-logic has an important ad-
vantage as a knowledge representation language — contrary
to logic programming, it does not automatically impose the
domain closure assumption (although the domain closure
axiom can be expressed if needed).

In the remaining part of this section we briefly describe
NMID-logic, the modularity theorem, and some techniques
for translating NMID-logic theories into classical logic.We
also review the more traditional variant of the situation cal-
culus similar to (Reiter 2001). In the rest of the paper, we
present the formalism of the inductive situation calculus,ad-
dress the ramification problem and consider a detailed exam-
ple.

NMID-Logic
First, we present an extension of classical logic with non-
monotone inductive definitions. This work extends previous
work of (Denecker 2000). A more detailed exposition can
be found in (Denecker & Ternovska 2004). A new binary
connective← is called thedefinitional implication. A defi-
nition ∆ is a set of rules of the form∀x̄ (X(t̄)← ϕ), where
x̄ is a tuple of object variables,X is a predicate symbol (i.e.,
a predicate constant or variable) of some arityr, t̄ is a tuple
of terms of lengthr of the vocabularyτ , ϕ is an arbitrary
first-order formula ofτ . The definitional implication←
must be distinguished from material implication.

Note that in front of rules, we allow only universal quan-
tifiers. In the rule∀x̄ (X(t̄) ← ϕ), X(t̄) is called thehead
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andϕ is thebodyof the rule. Adefined symbolof ∆ is a
relation symbol that occurs in the head of at least one rule
of ∆; other relation, object and function symbols are called
open. We use notationφ(x1, . . . xn) to emphasize that sym-
bols x1, . . . xn are distinct and are free inφ. Let τ be a
vocabulary including all free symbols of∆. The subset of
defined symbols of definition∆ is denotedτd

∆. The set of
open symbols of∆ in τ is denotedτo

∆. The setsτd
∆ andτo

∆

form a partition ofτ , i.e.,τd
∆ ∪ τ

o
∆ = τ , andτd

∆ ∩ τ
o
∆ = ∅ .

A well-formed formulaof the Logic for Non-Monotone
Inductive Definitions, briefly a NMID-formula, is defined
by the following (monotone) induction:

1. If X is an n-ary predicate symbol, andt1, . . . , tn are
terms thenX(t1, . . . , tn) is a formula.

2. If ∆ is a definition then∆ is a formula.

3. If φ, ψ are formulas, then so is(φ ∧ ψ).

4. If φ is a formula, then so is(¬φ).

5. If φ is a formula, then∃σ φ is a formula (σ can be either
a first- or second-order symbol).

A formula φ is anNMID-formula over vocabularyτ if the
set of free symbols ofφ is a subset ofτ .

As an example, in the language of the natural numbes,
the following formula expresses that there is a set which is
the least set containing 0 and closed under taking succes-
sor numbers, and which contains all domain elements. It
is equivalent to the standard induction axiom and with the
domain closure axiom:

∃N

[{

∀x(N(x)← x = 0),
∀x(N(s(x))← N(x))

}

∧ ∀x N(x)

]

.

Note that this formula contains an existential quantification
over the second-order variableN . This can be avoided by
skolemisingN and using a new predicate constant instead.
In fact, all examples of second-order quantification that ap-
pear in this paper, are of the same kind as in this example
and can be eliminated in the same way, by skolemisation of
the existentially quantified second-order variable.

The semantics of the NMID-logic is an extension of
classical logic semantics with the well-founded semantics
from logic programming (Van Gelder 1993; Fitting 2003;
Denecker, Bruynooghe, & Marek 2001). We now briefly
describe this semantics. We assume familiarity of the reader
with the semantics of classical logic. For more detail, we
refer to (Denecker & Ternovska 2004). A structureI of a
vocabularyτ consists of a domaindom(I), and for each
symbolσ ∈ τ a valueσI in dom(I), i.e., a domain ele-
ment for an object symbol, a function for a function symbol
and a relation for a predicate symbol of the corresponding
arity. The valuetI of a termt in I is defined by the standard
recursion.

We first define the well-founded model of a definition∆
extending aτo

∆-structureIo. For each defined symbolX of
∆, we define

ϕX(x̄) := ∃ȳ1 (x̄ = t̄1 ∧ϕ1)∨ · · · ∨ ∃ȳm (x̄ = t̄m ∧ϕm),

wherex̄ is a tuple of new variables, and∀ȳ1 (X(t̄1)← ϕ1),
. . . , ∀ȳm (X(t̄m) ← ϕm) are the rules of∆ with X in the

head. For every defined symbolY , we introduce a new rela-
tion symbolY ′ of the same arity. We obtainϕ′

X fromϕX(x̄)
by substitutingY ′ for each negative occurrence of each de-
fined symbolY .

For any pair ofτ -structuresI, J extendingIo, defineIJ
as the extension ofIo which interprets each defined symbol
X of ∆ asXI , the value ofX in I, and each new symbol
X ′ asXJ , the value ofX in J . The basis of the construc-
tion of the well-founded model extendingIo is the operator
T∆ which maps pairsI, J of extensions ofIo to a structure
I ′, also extendingIo, such that for each defined symbolX,
XI′

:= {ā | IJ |= ϕ′
X [ā]}. Thus, the operatorT∆ evalu-

ates positive occurrences of defined symbols in rule bodies
by I, and negative occurrences of defined symbols byJ .

In the lattice ofτ -structures extendingIo, the operator
T∆ is monotone in its first argument and anti-monotone in
its second argument. Define thestable1 operatorST∆ as
follows: ST∆(J) := lfp(T∆(·, J)). This stable operator
is anti-monotone, hence its square is monotone and has a
least and largest fixpoint. We defineIo

∆↓ := lfp(ST 2
∆), and

Io
∆↑ := gfp(ST 2

∆).
For an intuitive explanation of the well-founded seman-

tics and an argument why it formalises different forms of
inductive definitions, we refer to (Denecker, Bruynooghe, &
Marek 2001).

Definition 1. Definition ∆ is total in τo
∆-structure Io if

Io
∆↓ = Io

∆↑. When this is the case,Io
∆↓ (or Io

∆↑) is called
the∆-extension ofIo and is abbreviated asIo

∆. More gen-
erally, ∆ is total in a structureKo interpreting a subset of
τo
∆ if ∆ is total in eachτo

∆-structure extendingKo.

The aim of an inductive definition is todefineits defined
symbols. Therefore, a natural quality requirement for a def-
inition is that it is total.

Below, I[σ : v] denotes the structure obtained fromI by
assigning the valuev to the symbolσ.

Definition 2 (φ true in structure I). Let φ be a NMID-
formula andI any structure interpreting all free symbols of
φ. We defineI |= φ (in words,φ is true inI, or I satisfiesφ,
or I is amodelof φ) by the following induction:

1. I |= X(t1, .., tn) if (tI1, .., t
I
n) ∈ XI ;

2. I |= ∆ if I = Io
∆↓ = Io

∆↑, whereIo is the restriction of
I to τo

∆;
3. I |= ψ1 ∧ ψ2 if I |= ψ1 andI |= ψ2;
4. I |= ¬ψ if I 6|= ψ;
5. I |= ∃σ ψ if for some valuev of σ in the domaindom(I)

of I, I[σ : v] |= ψ.

Given an NMID-theoryT overτ , a τ -structureI satisfiesT
(is a model ofT ) if I satisfies eachφ ∈ T . This is denoted
by I |= T .

The above inductive definition is a prototypcial example
of a non-monotone inductive definition, more specifically
a definition over a well-founded poset, namely the set of

1This operator is often called the Gelfond-Lifschitz operator
and was introduced in (Gelfond & Lifschitz 1991).
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NMID-formulas ordered by the subformula relation. It con-
tains non-monotone recursion in rule 4. This is an example
of a definition which can be represented using definitions in
NMID-logic.

As mentioned before, the definitional implication
should be distinguished from material implication. Rule
∀x̄ (X(t̄) ← ϕ) in a definition does not correspond to the
disjunction∀x̄ (X(t̄) ∨ ¬ϕ), although it implies it. Intu-
itively, definitional implication should be understood as the
“if” found in rules in inductive definitions (e.g. Definition2
consists of 5 such rules).

Modularity Results
Definition 3 (partition of definitions). A partition of def-
inition ∆ is a set{∆1, . . . ,∆n}, 1 < n, such that∆ =
∆1 ∪ · · · ∪∆n, and if defined symbolP appears in the head
of a rule of∆i, 1 ≤ i ≤ n, then all rules of∆ with P in the
head belong to∆i and only to∆i.

Notice that∆i has some “new” open symbols. For in-
stance, ifP is defined in∆, but not in∆i, then it is a new
open symbol of∆i. Of course, it holds thatτ = τo

∆ ∪ τ
d
∆ =

τo
∆i
∪ τd

∆i
, 1 ≤ i ≤ n. Also,∪iτ

d
∆i

= τd
∆ andτd

∆i
∩ τd

∆j
= ∅

wheneveri 6= j.
A domain atomover vocabularyτ in domainA is any

atomP [a1, . . . , an] (orP [ā]), whereP is relation symbol of
τ anda1, . . . , an are elements ofA. LetAtτA be the set of
domain atoms overτ in A. Let≺ be any binary relation on
AtτA. If Q[b̄] ≺ P [ā], we will say thatP [ā] depends onQ[b̄]
(according to≺). We useQ[b̄] ≺≺ P [ā] as an abbreviation
for Q[b̄] ≺ P [ā] ∧ P [ā] 6≺ Q[b̄]. For any domain atomP [ā]
and any pairI, J of τ -structures with domainA, we define
I ∼=≺P [ā] J if for each atomQ[b̄] ≺ P [ā], I |= Q[b̄] iff
J |= Q[b̄]. We extend this to pairs by defining(I, J) ∼=≺P [ā]

(I ′, J ′) if I ∼=≺P [ā] I
′ andJ ∼=≺P [ā] J

′.
LetKo be a structure with domainA interpreting at least

all object and function symbols ofτ and no defined predi-
cates of∆.

Definition 4 (reduction relation). A binary relation≺ on
AtτA is a reduction relation(or briefly, a reduction) of∆
in Ko if for each domain atomP [ā] with P a defined
symbol, for all τ -structuresI, J, I ′, J ′ extendingKo, if
(I, J) ∼=≺P [ā] (I ′, J ′) thenIJ |= ϕP [ā] iff I ′J ′ |= ϕP [ā].

Intuitively, the definition expresses that≺ is a reduction re-
lation if the truth of the formulasϕP [ā] depends only on the
truth of the atoms on whichP [ā] depends according to≺.

Recall that a pre-well-founded order is a reflexive and
transitive relation such that every non-empty subset contains
a minimal element. The following definition is crucial for
the Modularity theorem.

Definition 5 (reduction partition). Call partition
{∆1, . . . ,∆n} of definition ∆ a reduction partitionof
∆ in τo

∆-structureIo if there is a reduction pre-well-founded
order ≺ of ∆ in Io and if for each pair of atomsP [ā],
Q[b̄] which are not defined in the same∆i and such that
Q[b̄] ≺ P [ā], it holds thatQ[b̄] ≺≺ P [ā] (i.e.,P [ā] 6≺ Q[b̄]).

The intuition underlying this definition is that in a reduction
partition, if an atom defined in one module depends on an

atom defined in another module, then the latter atom does
not depend on the first atom and hence is strictly less in the
reduction ordering.

A partition {∆1, . . . ,∆n} of ∆ is called total inKo if
each∆i is total inKo.

Theorem 1 (modularity). If {∆1, . . . ,∆n} is a total re-
duction partition of∆ in τo

∆-structureIo, then for anyτ -
structureM extendingIo,M |= ∆1∧· · ·∧∆n iff M |= ∆.

Corollary 1. Let To be a theory overτo
∆ such that for any

τo
∆-modelMo of To, {∆1, . . . ,∆n} is a total reduction par-

tition of ∆ in Mo. ThenTo ∧∆ andTo ∧∆1 ∧ · · · ∧∆n are
logically equivalent.

Now we consider for two special cases of definitions how
to translate them in classical logic. Let∆ be a positive def-
inition, i.e., with only positive occurrences of defined sym-
bols in rule bodies, defining the symbols̄P . LetXi andPi

have the same arity. Define

PID(∆) :=
∧

∆ ∧ ∀X̄(
∧

∆[P̄ /X̄]→ P̄ ⊆ X̄).

Here,
∧

∆ is the conjunction of formulas obtained by
replacing definitional with material implications in∆,
∆[P̄ /X̄] is the definition obtained by substitutingXi for
each defined symbolPi andP̄ ⊆ X̄ is a shorthand for the
formula

∀x̄ (P1(x̄)→ X1(x̄)) ∧ · · · ∧ ∀x̄ (Pn(x̄)→ Xn(x̄)).

The formulaPID(∆) is the standard second-order formula
to express that predicates̄P satisfy the positive inductive
definition∆.

Theorem 2. If ∆ is positive (i.e., contains no negative oc-
currences of defined symbols) then it is total in eachτo

∆-
structure, and for any structureI, I |= ∆ iff I |= PID(∆).

The theoryPID(∆) expresses that the defined relations
are the least relations closed under the rules of∆ in a τo

∆-
structure. Because the rules of∆ are positive, such least
relations are guaranteed to exist. Since these relations are
the unique minimal relations closed under the rules of∆,
the well-known knowledge representation principle of cir-
cumscription could also be used to formalise∆.

Another result is concerned with (possibly non-
monotone) definitions over well-founded posets. First, we
propose a formalisation for this informal concept in NMID-
logic.

Definition 6 (strict reduction relation). A reduction rela-
tion≺ of∆ onAtτA is strict inKo if it is a strict well-founded
order (i.e., an antisymmetric, transitive binary relationwith-
out infinite descending chains).

Thus, ifP [ā] ≺ Q[b̄] holds, then the bodies of rules defin-
ingQ[b̄] may depend on the truth value ofP [ā], but not vice
versa.

Definition 7 (definition by well-founded induction). Let
∆ be a definition with a strict reduction relation≺ in Ko.
We call∆ a definition by well-founded induction (over≺) in
Ko.
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Being a definition by well-founded induction is not a uni-
versal property. A definition may have a strict reduction in
one structure and not in other structures.

There is a well-known concept in knowledge representa-
tion that can be used to formalise this type of definitions
in first-order logic. Define thecompletion of∆, denoted
comp(∆), as the conjunction, for each defined symbolX of
∆, of formulas∀x̄(X(x̄)↔ ϕX(x̄)).

Theorem 3 (completion). Suppose∆ is a definition by
well-founded induction inτo

∆-structureIo. Then (a) defi-
nition ∆ is total in Io, and (b) the modelIo

∆ of ∆ is the
unique model ofcomp(∆) extendingIo.

Corollary 2. Let To be a theory overτo
∆ such that for any

τo
∆-modelMo ofTo, ∆ is a definition by well-founded induc-

tion in Mo. ThenTo ∧ ∆ andTo ∧ comp(∆) are logically
equivalent.

Notice that positive inductive definitions and inductive
definitions with strict reduction relation have different (and,
in general, non-equivalent) formalisations in classical logic.

Reiter-style Situation Calculus
The vocabularyτsc of the situation calculus is a many-sorted
vocabulary with equality and with sorts for actions (Act),
situations (Sit), and possibly a finite number of domain-
specific sorts called object sorts (Ob1,. . . ,Obk). The vocab-
ulary contains a potentially infinite set of domain-dependent
function symbols of the sortAct. The sort of each argument
of such a function is an object sort. For example, in the
block world domain, we may have actionspick up(x) and
put on(x, y) ranging over the sortBlock.

The vocabulary contains a binary relation⊑ with argu-
ments of sortSit and denoting precedence of situations. The
constantS0 of sortSit denotes the initial situation. Function
do of sortSit maps actions and situations to situations, i.e.,
givena ands, termdo(a, s) denotes the successor situation
which is obtained from situations by performing actiona.
The predicate constantsF1, F2, . . . are calledfluentsand de-
note properties of the world (both in the initial situation and
in other situations). Fluents always have exactly one argu-
ment of sortSit, while the sort of each other argument is an
object sort. For example,On(x, y, s) of arity 3 denotes that
objectx is on objecty in situations.
Definition 8 (Duna(S)). The theory ofunique name axioms
for sort S, Duna(S), is the set of axioms in the following ax-
iom schema: For distinct function symbolsf and g of sort
S

∀x̄ ∀ȳ ¬(f(x̄) = g(ȳ)). (1)
∀x̄ ∀ȳ (f(x1, . . . , xn) = f(y1, . . . , yn)

→ x1 = y1 ∧ · · · ∧ xn = yn).
(2)

The axioms (2) hold for every function symbolf with arity
greater than zero.

Definition 9 (Df ). Thefoundational axioms of the situation
calculus, Df , are the set of axioms consisting of the unique
name axioms for situationsDuna(Sit), the domain closure
axiom for situations

∀P (P (S0) ∧ ∀s
′ ∀a (P (s′)→ P (do(a, s′)))
→ ∀s P (s))

(3)

and the precedence axioms for situations

∀s ¬(s ⊏ S0), (4)

∀s ∀s′ ∀a (s ⊏ do(a, s′)↔ s ⊑ s′) (5)

wheres ⊏ s′ is an abbreviation fors ⊑ s′ ∧ ¬(s′ ⊑ s).

The role of axiom (3) is to guarantee that the domain of sit-
uationsSit is the smallest set closed under applications of
the function symboldo, which satisfies the unique name ax-
ioms for situations. Every two models ofDf with identical
domains of sortAct will have identical domains of sortSit
(modulo isomorphism).

Definition 10 (Dss). Thesuccessor state axioms,Dss, are of
the form:

∀x̄ ∀a ∀s (F (x̄, do(a, s))↔
(γ+

F (x̄, a, s) ∨ F (x̄, s) ∧ ¬γ−F (x̄, a, s))).
(6)

Formulaγ+
F (x̄, a, s) (respectively,γ−F (x̄, a, s)) denotes a

first-order formula specifying the conditions under which
actiona causes fluentF to become true (respectively, false)
in the situations (Reiter 1991). The only free variables of
these formulas are amonḡx, a, s and the only symbol of sort
Sit is the free variables. An example of a successor axiom
is

∀sw ∀a ∀ s (On(sw, do(a, s))↔
a = toggle(sw) ∧ ¬On(sw, s)∨
On(sw, s) ∧ a 6= toggle(sw)).

This axiom says that a switch is on in situationdo(a, s) if
and only if this situation was obtained by performing action
toggle(sw) in situations where this switch was off, or the
switch was already on and an action other thantoggle(sw)
was performed.

Definition 11 (DS0
). A description of the initial situation,

DS0
, is a set of first order sentences that are uniform inS0,

that is, it contains no situation term other thanS0.

A basic action theoryconsists ofDf ∪Duna(Act)∪DS0
∪

Dss.

Inductive Situation Calculus
Here we define a variant of Reiter-style situation calculus,
which we call the inductive situation calculus. All flu-
ents will be defined by simultaneous induction on the well-
founded set of situations. Ramifications describing propa-
gation of effects of actions are modeled as monotone induc-
tions at the level of situations. The result is an iterated induc-
tive definition with alternating phases of monotone and non-
monotone induction. Below we describe the components of
the inductive situation calculus.

The vocabularyτisc of the inductive situation calculus ex-
tendsτsc by two types of symbols. SymbolsIF1

, IF2
, . . .

are used to describe the initial situation and correspond to
the fluentsF1, F2, . . . , Fn but have no situation argument.
They are open symbols of the inductive situation calculus.
The other type of symbols denote causality relations. These
symbols will be introduced a bit later. Theopen vocabulary
τo
isc of the inductive situation calculus consists of all symbols

of τisc except for all fluents and causality predicates.
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The foundational axioms of the inductive situation calcu-
lus,Dif , are the unique name axiomsDuna(Sit) for situations,
the following domain closure axiom for situations

∃P

[{

∀s (P (s)← s = S0),
∀a∀s (P (do(a, s))← P (s))

}

∧ ∀sP (s)

]

(7)

and the following definition of the precedence relation

∆⊑ :=

{

∀s∀s′ (s ⊑ s′ ← s = s′),
∀s∀s′∀a (s ⊑ do(a, s′)← s ⊑ s′)

}

. (8)

The role of axiom (7) is to guarantee that the domain of situ-
ationsSit is the smallest set closed under applications of the
function symboldo, which satisfies the unique name axioms
for situations. It is equivalent to Reiter’s induction axiom for
situations.

In place ofDS0
, the description of the initial situation in

terms of fluents which hold inS0, in the inductive situation
calculus we describe the initial situation in terms of symbols
IFi

. The corresponding collection of axioms isDinit.
An initial structureAI of the inductive situation calculus

is a multi-sorted structure with a non-empty domain for each
sort of the language, which interprets all symbols ofτo

isc and
which satisfies the foundational axiomsDif and the unique
name axioms for actionsDuna(Act).

Proposition 1. Let A be a τo
isc-structure, which satisfies

Dif and the definition∆⊑ (8). In every such structure,
〈SitA,⊑A〉 is a well-founded poset (and, thus a pre-well-
founded set).

The following proposition demonstrates that the remain-
ing two foundational axioms of the situation calculus as pre-
sented in (Reiter 2001), are implied by the definition above.

Proposition 2. The sentences (4) and (5) are logically
implied by the unique name assumptions for situations
Duna(Sit), the domain closure axiom for situations (7), and
by the sentence (8).

Proof. The definition∆⊑ logically implies its completion
comp(∆⊑). This theory gives us∀s ∀s′ (s ⊑ s′ ↔ s =
s′ ∨ ∃a ∃s′′ s′ = do(a, s′′) ∧ s ⊑ s′′). To prove (4),
we instantiate the completion withs′ = S0, taking into
account the unique name assumptions for situations. We
obtain: ∀s (s ⊑ S0 ↔ s = S0). This sentence implies
∀s (s ⊑ S0 → s = S0), which entails∀s ¬(s ⊏ S0).

To prove (5), we use a model theoretic argument. In each
structure satisfying the foundational axioms, there is a bijec-
tion (one to one and onto) from the set of finite sequences of
elements of the action sort to the situation sort. By a simple
inductive argument on the definition of⊑, one can show that
for two situationss, s′, s ⊑ s′ if and only if the sequence of
actions ofs is an initial segment of the sequence of actions
of s′. Whens ⊏ do(a, s′) holds, then the action sequence in
s is a strictly smaller initial segment of the action sequence
of do(a, s′) and hence an initial segment of the action se-
quence ofs′. Consequently,s ⊆ s′. Vice versa, ifs ⊑ s′,
then the action sequence ofs will be a strictly smaller initial
segment of the action sequence ofs′ appended with action
a, and hences ⊏ do(a, s′) holds.

A basic action theory of the inductive situation calculus
will be a collection of axioms of the form:

Dif ∪ Duna(Act) ∪ Dinit ∪ {∆sc}, (9)

where∆sc is an inductive definition of the fluents. In the
next sections, we present two variants of∆sc.

Specifying Direct Effects of Actions For each fluentFi,
we introduce two additional auxiliary relations,CFi

and
C¬Fi

. These relations represent initiating and terminating
causes forFi, respectively. BothCFi

andC¬Fi
have the

same sort of arguments asFi plus one action argument. Let
Dinit axiomatize the initial situation usingIF1

, . . .IFm
.

We augmentDif ∪ Duna(Act) ∪ Dinit with the following
definition

∆sc =
⋃

i

∆i
fluent ∪

⋃

i

∆i
effect

where∆i
fluent :=











∀x̄i (F (x̄i, S0) ← IF (x̄i)),
∀x̄i (Fi(x̄i, do(a, s)) ← CFi

(x̄i, a, s)),
∀x̄i (Fi(x̄i, do(a, s)) ← Fi(x̄i, s)∧

¬C¬Fi
(x̄i, a, s))











,

and∆i
effect :=
{

∀x̄i (CFi
(x̄i, a, s) ← γ+

Fi
(x̄i, a, s)),

∀x̄i (C¬Fi
(x̄i, a, s) ← γ−Fi

(x̄i, a, s))

}

.

The intuitive meaning of this definition is as follows. The
first rule of ∆i

fluent defines the fluent in situationS0. The
second rule says that if an action causes a fluent in some sit-
uation, then the fluent holds in the successor situation. The
third rule deals with the case where a fluent is not affected
by an action and will be referred to as thelaw of inertia.
The rules in∆i

effect describe direct effects of actions on the
fluent Fi. Formulasγ+

Fi
(x̄i, a, s), γ

−
Fi

(x̄i, a, s) are analo-
gous to those found in Reiter-style situation calculus. The
only situation term appearing in them iss and they do not
contain causality or initiation predicates. From the formulas
γ+

Fi
(x̄i, a, s), γ

−
Fi

(x̄i, a, s), a successor state axiom for the
fluentFi can be constructed. These axioms will be called
the successor state axioms corresponding to∆sc.

Note that any fluent may appear in the rules of a causality
predicate. Hence, this definition is one large simultaneous
inductive definition. Moreover, since the inertia law contains
a negative occurrence ofC¬Fi

and this predicate may be de-
fined in terms of fluents, this is, in general, a non-monotone
inductive definition.

In what follows, we use our modularity results in order to
obtain the standard successor state axioms of the situation
calculus.

Proposition 3. SupposeAI is an initial structure of the in-
ductive situation calculus such thatAI |= Dinit. A struc-
ture I extendingAI is a model of∆sc iff I is a model of
comp(∆sc).

Proof. Let A be the domain ofAI. Define the following
relation≺ onAtAI

τisc
, the set of all domain atom, as the set of
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all tuples:

( IPi
[ū], Pi[ū, S

AI

0 ] ),
( C(¬)Pi

[ū, a, s], Pi[ū, do
AI(a, s)] ),

( Pi[ū, s], C(¬)Pj
[v̄, a, s] ),

for arbitrary tuples of objects̄u andv̄, for arbitrary elements
a of the action sort ands of the situation sort, for eachi, j.

It is easy to show that≺ is a reduction relation. Since
any superset of a reduction relation is also a reduction re-
lation, the transitive closure≺∗ of ≺ is a reduction rela-
tion. Moreover, it follows from the fact that〈SitAI ,⊑AI〉
is a pre-well-founded set (Proposition 1), that≺∗ is a strict
pre-well-founded order onAtAI

∆sc
. This means that we can

apply Theorem 3 and we obtain that∆sc is total inAI and
is equivalent to the completion.

Suppose thatτ1, τ2 are vocabularies extendingτ and let
T1, T2 be theories in respectivelyτ1, τ2. We callT1 equiva-
lent in τ to T2 if for eachτ1-modelM1 of T1, there exists a
τ2-modelM2 of T2 such thatM1|τ = M2|τ and vice versa.
HereMi|τ denotes the restriction ofMi to the symbols ofτ .
Proposition 4. Dif∪Duna(Act)∪Dinit∪{∆sc} is equivalent
in τsc to

Df ∪ Duna(Act) ∪ DS0
∪ Dss

whereDS0
is the theory obtained fromDinit by substitut-

ing Fi(t̄, S0) for each atomIFi
(t̄) andDss is the set of the

successor state axioms corresponding to∆sc.

Proof. Dif andDf are logically equivalent. By proposition
3,Df ∪Dinit ∪{∆sc} is logically equivalent toDf ∪Dinit ∪
comp(∆sc), wherecomp(∆sc) is

∧n
i ∀x̄i Fi(x̄i, s)↔ (s = S0 ∧ IPi

(x̄i)∨
∃a ∃s′ s = do(a, s′)∧

CFi
(x̄i, s) ∨ Fi(x̄i, s

′) ∧ ¬C¬Fi
(x̄i, s))

∧
∧n

i ∀x̄i∀s∀a CFi
(x̄i, a, s)↔ γ+

Fi
(x̄i, a, s

′)

∧
∧n

i ∀x̄i∀s∀a C¬Fi
(x̄i, a, s)↔ γ−Fi

(x̄i, a, s
′).

(10)
Since, by the domain closure axiom for situations,

∀s s = S0 ∨ ∃a ∃s
′ s = do(a, s′),

Df ∪ {(10)} is logically equivalent toDf ∪ {(11), (12)},
where

∧n

i ∀x̄i∀s∀a Fi(x̄i, do(a, s))↔
CFi

(x̄i, do(a, s))∨
Fi(x̄i, s) ∧ ¬C¬Fi

(x̄i, do(a, s))
(11)

and
∧n

i ∀x̄i Fi(x̄i, S0)↔ IPi
(x̄i)

∧
∧n

i ∀x̄i∀s∀a CFi
(x̄i, a, s)↔ γ+

Fi
(x̄i, a, s)

∧
∧n

i ∀x̄i∀s∀a C¬Fi
(x̄i, a, s)↔ γ−Fi

(x̄i, a, s).
(12)

Given the equivalences in (12), it is clear thatDif ∪
Duna(Act) ∪ Dinit ∪ {(11), (12)} is logically equivalent to
Df ∪ Duna(Act) ∪ DS0

∪ Dss ∪ {(12)}.
Finally, observe that in the latter theory, the predicate

symbols IPi
, CFi

and C¬Fi
occur only at the lefthand-

side of the explicit definitions in (12). It follows that
Df ∪Duna(Act) ∪DS0

∪Dss ∪ {(12)} is equivalent inτsc to
Df ∪ Duna(Act) ∪ DS0

∪ Dss.

Note that our definition∆i
fluent does not contain rules of

the form

∀x̄i∀a∀s (¬Pi(x̄i, a, s) ← C¬Pi
(x̄i, a, s)). (13)

However, under a natural requirement, we can derive nega-
tive effect axioms of actions, as we demonstrate below. The
requirement is that a fluent and its negation are not caused to
hold in the same situation. Formally, the requirement is that
the basic action theory should entail the following sentence
:

n
∧

i

∀x̄i∀a∀s ¬(γ+
Fi

(x̄i, a, s) ∧ γ
−
Fi

(x̄i, a, s)).

It is easy to show now that if this requirement is satisfied,
then the negative effect axiom is implied. Observe that each
successor state axiom entails

∀x̄i∀a∀s ¬γ
+
Fi

(x̄i, do(a, s)) ∧ γ
−
Fi

(x̄i, do(a, s))
→ ¬Fi(x̄i, do(a, s)).

Under the requirement, the first literal in the condition is
entailed by the second, so we can drop it and we obtain the
negative effect rule

∀x̄i∀a∀s (γ−Fi
(x̄i, do(a, s)) → ¬Fi(x̄i, do(a, s))).

Therefore, in the context of Inductive Situation Calculus,
rule (13) is not necessary. This observation illustrates a gen-
eral principle of inductive definitions. In an inductive defi-
nition, one defines a concept by enumerating positive cases.
Given such an enumeration, the closure mechanism under-
lying inductive definitions yields the negative cases.

Indirect Effects The ramification problem arises in the
context of knowledge representation, when one wants to
capture indirect effects of actions in a logic-based formal-
ism. It has been shown (e.g., (Lin 1995)) that state con-
straints are generally inadequate for deriving indirect effects
of actions, and that some notion of causation is needed. Un-
like material implication, causal implications are not con-
trapositive which makes them similar to the rules of induc-
tive definitions. This property is the foundation of our so-
lution to the ramification problem. The semantic correspon-
dence between causality rules and rules in an inductive defi-
nition was independently pointed out in (Ternovskaia 1998a;
1998b) and in (Denecker, Theseider Duprè, & Van Bel-
leghem 1998).

Let, as before,CFi
and C¬Fi

represent initiating and
terminating causes forFi, respectively. We extend the
use of the causality predicates to specify indirect effects
of actions. For example, according to the causal rule
∀a∀s (CF2

(a, s) ← C¬F1
(a, s)), when an actiona causes

termination ofF1, then the same action, indirectly, causes
the initiation ofF2. We relax the conditions on∆i

effect, so
that any number of rules of the following form can appear in
it:

∀a∀s (CFi
(x̄i, a, s) ← Ψ+

Fi
(x̄i, a, s)),

∀a∀s (C¬Fi
(x̄i, a, s) ← Ψ−

Fi
(x̄i, a, s))

, (14)

whereΨ+ andΨ− are formulas in whichs is the only sit-
uation term. Note that in the direct effect case, causality
predicates were excluded from bodies of rules of∆i

effect.
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The basic action theory (9), where∆sc is as above, en-
codes ourmost general solution to the ramification problem
in the inductive situation calculus.

Consider the following partition of∆sc

{∆1
effect ∪ · · · ∪∆n

effect, ∆1
fluent, . . . ,∆

n
fluent } (15)

Proposition 5. SupposeAI is any initial structure of the
inductive situation calculus and causality predicates have
only positive occurrences in∆sc. Partition (15) is a total
reduction partition of∆sc in AI.

Proof. Let A be the domain ofAI. Define the following
relation≺ onAtAI

τisc
, the set of all domain atoms, as the set

of all tuples:

( IPi
[ū], Pj [ū, S

AI

0 ] ),
( C(¬)Pi

[ū, a, s], Pj [ū, do
AI(a, s)] ),

( Pi[ū, s], C(¬)Pj
[v̄, a, s] ),

( C(¬)Pi
[ū, a, s], C(¬)Pj

[v̄, a, s] ),

for arbitrary tuples of objects̄u andv̄, for arbitary elements
a of the action sort ands of the situation sort and for eachi,
j.

It is easy to show that≺ is a reduction relation. Since
any superset of a reduction relation is also a reduction rela-
tion, the reflexive, transitive closure≺∗ is a reduction rela-
tion. Moreover, it follows from the fact that〈SitAI ,⊑AI〉
is a pre-well-founded set (Proposition 1), that≺∗ is a pre-
well-founded order onAtAI

∆sc
. It is easy to see that for atoms

P [ā], Q[b̄] from AtAI

∆sc
, if Q[b̄] ≺∗ P [ā] andP [ā], Q[b̄] are

not defined in the same∆i thenQ[b̄] ≺≺∗ P [ā]. Therefore,
partition (15) is a reduction partition of∆sc.

Observe that each definition in partition (15) is positive,
and, therefore total in each structure. Consequently, parti-
tion (15) is a total reduction partition inAI.

Theorem 4. If causality predicates have only positive
occurrences in∆sc then the basic action theory (9)
is equivalent to the theoryDf ∪ Duna(Act) ∪ DS0

∪

{
∧

i comp(∆
i
fluent) ∧ PID(

⋃

i ∆i
effect).

Proof. By proposition 5, we have a total reduction partition.
By the modularity theorem 1, we can split the definition.
The definition

⋃

i ∆i
effect is a positive definition which, by

theorem 2, can be translated intoPID(
∧

i ∆i
effect). The def-

initions∆i
fluent have strict reduction relations, so they can be

transformed into completions by theorem 3.

Example: N Gear Wheels Let us describe a simple ide-
alized mechanical system consisting of a number of gear
wheelsw1, . . . , wn, each pair of which may or may not
be mechanically connected. For each of these wheels, we
consider two states:turning or stopped. For each of these
wheels, we consider two actionsstart(wi) and stop(wi).
The first action gives an impulse to the wheel which propa-
gates over the system to all connected gearwheels; the sec-
ond action brakes the wheel and all connected wheels. We
assume that once a wheel turns, it continues to turn (there

is no friction; this system behaves as a perpetuum mobile)
until there is a stop action.

We are faced here with a ramification problem — the
problem of how to describe the propagation of effects
through the system of connected gear wheels. The goal is
to develop amodulartemporal theory describing the effects
of the basic actions and the propagation of effects. As a
correctness criterion, we should be able to prove the state
constraint that in all situations, a gear wheelw is turning if
and only if all reachable wheels (those connected tow in
the transitive closure of the connection graph) are turningas
well.

We could represent this example in Reiter’s basic situation
calculus (Reiter 2001). To do this we could pre-compute for
each wheel the set of reachable wheels in the connection
graph; it suffices then to express that the action of starting
(resp. stopping) a wheelw has the immediate effect to ini-
tiate (resp. terminate) the turning state of wheelw and each
wheel reachable fromw. This representation would have an
important drawback due to the fact that it contains an ex-
plicit representation of the transitive closure of the physical
connections between gear wheels. This relation is an exam-
ple of aglobal propertyof the system which emerges as an
interaction oflocal properties, namely the physical connec-
tions between gear wheels. If we explicitly represent such
global properties then a small change of a local property
(e.g. adding a new connection or deleting an existing con-
nection between two gear wheels) may have a strong im-
pact on the global properties and hence on the theory (e.g.
disconnecting one pair of gear wheels may split a large in-
terconnected set of connected wheels and would affect the
representation of the effect of all actions on all wheels in this
set). In amodularrepresentation, only local properties of the
components should be represented explicitly; global proper-
ties should be derivable from a generic part of the theory
which does not explicitly depend on the actual configuration
of the system. This is an aspect ofelaboration tolerance
(McCarthy 1998).

To obtain a modular representation in the gear wheel ex-
ample, we need to be able to express the reachability from
a specific wheel in an arbitrary graph. It is wel-known that
this concept cannot be expressed in first order logic. Be-
low we present a formalisation through an iterated inductive
definition.

In the gear wheel example, there is one domain dependent
sort, denotedGearwheel. Action symbols arestart and
stop and have sort〈Gearwheel〉. The unique fluentTurns
has sort〈Gearwheel, Sit〉.

Basic components of the inductive situation calculus for
the Gearwheel example are the foundational axiomsDif of
situations and the unique name axiomsDuna(Act) for ac-
tions. The main axiom of our theory is the simultaneous
iterated inductive definition∆sc of the fluentTurns and its
causality predicatesCTurns andC¬Turns. The effect prop-
agation process caused by start or stop actions in one situa-
tion will be modeled by a monotone induction. To define the
fluentTurns for all states, the monotone induction is then
iterated over the well-founded structure of situations.

The definition∆sc can be split up in two subdefinitions.
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The first part of the definition consists of the rules for
Turns: ∆Turns :=



















∀s∀g Turns(g, S0)← ITurns(g)
∀a∀s∀g Turns(g, do(a, s))← CTurns(g, a, s)
∀a∀s∀g Turns(g, do(a, s))←

Turns(g, s)∧
¬C¬Turns(g, a, s)



















Notice that the third rule, the law of inertia, contains re-
cursion over negation.

The second part of the definition∆effect describes the
causation predicatesCTurns andC¬Turns. The following
set of rules∆effect specify direct and indirect effects of ac-
tions:







































∀a∀s∀g CTurns(g, a, s)← a = Start(g),
∀a∀s∀g C¬Turns(g, a, s)← a = Stop(g)),
∀a∀s∀g CTurns(g, a, s)←

∃g′ Connected(g, g′)∧
CTurns(g

′, a, s),
∀a∀s∀g C¬Turns(g, a, s)←

∃g′ Connected(g, g′)∧
C¬Turns(g

′, a, s)







































These rules contain positive recursion. To represent the
physical connections between the gear wheels, we used the
binary relation symbol predicateConnected. This is a sym-
metric relation, as is expressed by the theoryDConn consist-
ing of the axiom:

∀g∀g′ Connected(g, g′)→ Connected(g′, g).

Define∆sc := ∆Turns ∪ ∆effect. This definition defines
the predicatesTurns, CTurns andC¬Turns by simultane-
ously non-monotone induction in terms of the open predi-
catesITurns andConnected.

We assume that in the initial state, all gear wheels are in
rest. This is expressed by the theoryDinit which contains
one axiom

∀g ¬ITurns(g).

The full axiomatisation of the domain consists of

Dwheels := Dif ∪ Duna(Act) ∪ DConn ∪ Dinit ∪ {∆sc}.

Notice that the configuration of the gear wheels is left un-
specified both in the statement of the problem and in its ax-
iomatisationDwheels.

Below we analyse the theoryDwheels. Since∆effect is
a positive definition, the basic action theoryDwheels satis-
fies the conditions of theorem 4. Consequently, we have the
following proposition.
Proposition 6. The theoryDwheels is equivalent to

Dif ∪ Duna(Act) ∪ DConn ∪ Dinit∪
PID(∆Effect)} ∪ comp(∆Turns)

Proposition 7. In each situation, all connected gear wheels
are turning or they are all in rest. The theoryDwheels logi-
cally entails:

∃X











{

∀g∀g′ X(g, g′)← Connected(g, g′),
∀g∀g′ X(g, g′)← ∃g′′ X(g, g′′)∧

X(g′′, g′)

}

∧∀s∀g∀g′ (X(g, g′)→
(Turns(g, s)↔ Turns(g′, s)))











Proof. The proof is model theoretic. LetI be a model of
Dwheels.

The proof is by induction on the length of the situations.
Since all gear wheels are in rest in the initial situation, the
property is trivially satisfied in this situation. Assume that
the property is satisfied for situations. We prove that it holds
for the successor situationdoI(a, s), for arbitrary actiona.

Assume that there is a path from gearwheelg to gear-
wheel g′ through the graphConnectedI . By definition
∆effect, if CTurn(g′, a, s) is true then so isCTurn(g, a, s).
Because the graphConnectedI is symmetric, it follows
thatCTurn(g, a, s) andCTurn(g′, a, s) have the same truth
value. The same holds forC¬Turn. The induction hypoth-
esis states that in situations all connected wheels are in the
same state. By the above observation, the actiona has the
same effects on all connected wheels. Consequently, the in-
duction hypothesis is preserved in situationdoI(a, s).

Related work For an overview of different approaches for
temporal reasoning and the ramification problem we refer
to (Thielscher 1997) (McIlraith 2000) (Denecker, Theseider
Dupr̀e, & Van Belleghem 1998). Here we limit our discus-
sion to approaches based on situation calculus using induc-
tive definitions and classical logic.

The idea of using inductive definitions for modeling
temporal reasoning using inductive definitions was pointed
out independently in (Ternovskaia 1998a; 1998b) and (De-
necker, Theseider Duprè, & Van Belleghem 1998). In both
cases, the motivation for using inductive definitions was the
similarity between the process of effect propagation in a dy-
namic system and inductive definitions. Basically, the pro-
cess of effect propagation is aconstructiveprocess: basic
actions cause changes and effects which propagate through
the dynamic system; changes do not appear without an ex-
ternal cause. The same constructive intuition is found in
inductive definitions. This explains why inductive defini-
tions can correctly model recursive effect propagations. In
this respect, the inductive situation calculus is more general
than two other well-known classical logic formalisations of
the situation calculus with ramifications, namely Lin’s ap-
proach (Lin 1995) and McIlraith’s solitary stratified theories
(McIlraith 2000). Both approaches impose acyclicity con-
straints on ramification rules which preclude recursive ram-
ifications. A strong constraint in solitary stratified theories
is that no fluent symbol is allowed to appear both as an ef-
fect and in the precondition of the same action. On the other
hand, McIlraith addresses the qualification problem, which
we don’t.

Conclusion
This paper explains the inductive nature of situation calcu-
lus. We have shown that — unsuspected by its creators —
the original Reiter-style situation calculus and its extension
for representing ramification, makes hidden use of inductive
definitions. We made these definitions explicit and found
monotone and non-monotone induction. In the Reiter-style
situation calculus, these different forms of induction arefor-
malised in different ways. In our representation in NMID-
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logic, they can be represented in a uniform way. In this sense
our representation is simpler and may lead to a more mod-
ular representation. We presented a translation to classical
logic to show that our formalisation of situation calculus is
indeed equivalent to the standard formalisation. Finally,our
experiment also demonstrates that the use of different forms
of inductive definitions is not limited to mathematics, but
may have applications in a much wider area of knowledge
representation, including commonsense reasoning.
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