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Abstract

Reasoning about molecular interactions and signaling path-
ways is important from various perspectives such as predict-
ing side effects of drugs, explaining unusual cellular behav-
ior and drug and therapy design. Because of the vast size
of these interactions a typical biologist can only focus on a
very small part of the network. Thus there is a great need to
develop knowledge representation and reasoning formalisms
and their implementations for modelling and reasoning about
molecular interactions in cells of organisms. An important
component of these interactions is the action of one molecule
interacting with or binding to another, or one molecule sep-
arating into multiple other molecules. Thus, action theories
and action languages are good candidates to model these in-
teractions. One major lacking of most existing action lan-
guages is the notion of triggered actions, which is a common
phenomena in the cellular domain. In this paper, we introduce
a language for representing and reasoning about triggered ac-
tions, and show how to model reasoning about side effects,
explaining observations, and designing drugs in our language
through implementations using AnsProlog.

Keywords: action languages, reasoning about actions

Introduction and motivation
In the past action languages have been developed and ap-
plied to domains such as robots (Grosskreutz & Lake-
meyer 2000; Reiter 2001; Thielscher 2000; Shanahan 1998;
Baral et al. 1998), agents (Lapouchnian & Lesperance
2002), helicopters (Doherty et al. 2000), and space shut-
tles (Balduccini et al. 2001; 2002; Nogueira 2003). In this
paper our motivation is the domain of molecular interactions
in cells of organisms (AFCS ; STKE ). An example of the
kind of behavior we would like to model, is the happen-
ings that follow when a particular ligand (often a protein
molecule) comes in contact with a receptor molecule in the
membrane of a cell. The immediate effect is that the ligand
binds with the receptor; but such a binding in the presence of
certain other molecules inside the cell may trigger an action
(or another binding) which in turn may trigger other actions.
Sometimes the presence of particular molecules inhibits cer-
tain actions which would have been otherwise triggered.
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While modelling these behaviors of the cell, we are inter-
ested in formalizing and implementing several reasoning
abilities which include (i) predicting the impact of a par-
ticular action, (ii) explaining observations, (iii) planning to
make certain components of the cell behave in a particular
way. Each of the above has ultimate significance to cell bi-
ology and medical science. For example, one might want
to know if taking a drug has a side effect in terms of if it
can prevent a particular hormone from being produced thus
disrupting certain cellular and biological mechanisms. This
corresponds to prediction. Another example is that when a
cell is observed to behave in an abnormal way (eg. it keeps
proliferating instead of dying), one may want to find out why
that is the case. This corresponds to explanation or medical
diagnosis). One might then want to figure out a way, per-
haps by introducing particular drug elements to the cell or
cell membrane at particular time instances, to make the cell
behave in a particular way. This would correspond to drug
design and drug therapy.

With these somewhat lofty goals in mind, in this paper we
take a first step towards developing a formalism that will
allow us to represent various interactions (including gene-
gene, gene-protein, protein-protein, and other molecular in-
teractions), and perform the three kinds of reasoning men-
tioned above.

The above mentioned three kinds of reasoning are not new
to action theory research. The contribution of this paper
in that regard is that most of the action theories used in
the past do not account for triggers and inhibitions of trig-
gered and non-triggered actions. Researchers have tried to
use other formalisms such as Petri nets (Reddy, Liebman,
& Mavrovouniotis 1996; Peleg, Yeh, & Altman 2002), and
π-calculus (A. Regev & Shapiro 2001) for biological mod-
elling. But these approaches are less focussed on elaboration
tolerant representation and reasoning and more focussed on
modelling and simulation, and hence are not as adequate for
the kind of representation and reasoning tasks we consider
here.

Triggered interactions form the majority of interactions in
a cellular regulatory network. However, there has been lit-
tle research on action theories that can represent such inter-
actions, except in (Baral & Tran 2003) and in some active
database related papers. Our goal in this paper is to define
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an action language A0
T , which is inspired by A (Gelfond

& Lifschitz 1998). Our language has minimal new features
but is able to handle some basic reasonings about triggered
actions. We implement the language in AnsProlog (Baral
2003), and have built a prototype (Baral et al. 2004) with
JAVA GUI for molecular biologists (and others) to test the
system and provide feedback.
The rest of the paper is organized as follows. First we intro-
duce the syntax and semantics of A0

T . Then we formulate
several basic reasoning problems in A0

T . It is followed by
the translation of A0

T and of the reasoning problems into
AnsProlog. We illustrate the usefulness of our formalism
with a molecular interactions domain. Finally, we conclude
with a comparison with the language in (Baral & Tran 2003)
and with glimpses of our future plans.

Language A0

T

The alphabet of the languageA0
T consists of three nonempty

disjoint sets of symbols: a set Atrig of triggered actions, a
set Aexo of non-triggered actions and a set F of fluents. A
fluent expresses some property of the world. A fluent literal
is a fluent or a fluent preceded by ¬. A state is a set of
fluents that satisfies some conditions (to be mentioned later
when discussing semantics).
The action language A0

T is composed of three sub-
languages: a domain description language, an observation
language and a query language. We now present these com-
ponents in details.

The domain description language
Syntax A domain description in A0

T consists of proposi-
tions of the following form:

a causes f if f1, . . . , fn (1)

g1, . . . gm n triggers b (2)

h1, . . . , hl inhibits c (3)

where fi , gj , hk and f and g are fluent literals; a is
an action and b, c are triggered actions. (1) represents a
dynamic causal law, which states that f is guaranteed to
be true after the execution of a if f1, . . . , fn are true
when a occurs. (2) is a triggering rule, which states that
normally action b will happen (unless inhibited) whenever
g1, . . . , gm are all true. (3) is an inhibition rule, which
states that a triggered action c can not occur whenever
h1, . . . , hl are all true.
Given a domain description D, we write D〈Atrig,Aexo,F〉
to denote that Atrig , Aexo and F are respectively the set of
triggered actions, the set of non-triggered actions and the set
of fluents in D.
Intuitively, a domain description determines the possible tra-
jectories along which the world evolves. A trajectory is a
sequence of states and action occurrences. Propositions of
the form (1) define how the world changes from one state
to another state due to an action occurrence. Propositions
of the forms (2)-(3) define what (triggered) actions will be
triggered or inhibited in a state. We formalize the intuition
in the following.

Semantics - trajectory The propositions of the form (1)
define a transition function (Φ) from pairs of a set of actions
and a state to the set of states: given a set A of actions and
a state s, the transition function Φ defines the state Φ(A, s)
that may be reached after executing the set A of actions in
state s.

Let D be a domain description in A0
T . A fluent literal is a

fluent (eg. f ) or the negation of a fluent (eg. ¬f ). A set of
fluent literals is said to be consistent if it does not contain
both f and ¬f for some fluent f . For a set X of fluent
literals, let us write X+ = {f |f ∈ X} and X− = {f |¬f ∈
X}. Then X is consistent iff X+ ∩X− = ∅.

An interpretation I of the fluents in D is a maximal consis-
tent set of fluent literals of D. A fluent f is said to be true
(resp. false) in I if f ∈ I (resp. ¬f ∈ I). The truth value
of a fluent formula in I is defined recursively over the propo-
sitional connectives in the usual way. For example, f ∧ g
is true in I if f is true in I and g is true in I. We say that a
formula ϕ holds in I (or I satisfies ϕ), denoted by I |= ϕ, if
ϕ is true in I.

A state in D is an interpretation of the fluents in F.

The direct effect of an action a in a state s is the set
E(a, s) = { f | a causes f if f1, . . . fn ∈ D and

s |= f1 ∧ . . . ∧ fn }.

The direct effect of a set A of actions in a state s is the set

E(A, s) =
⋃

a∈A

E(a, s).

For a domain description D, the state Φ(A, s) that may be

reached by executing a in s is defined as follows.

1. Φ(∅, s) = s;

2. if A 6= ∅ and E(A, s) is consistent, then

Φ(A, s) = X ∪ {¬f | f ∈ F \X} ,

where X is the set (s+ ∪ E+(A, s)) \ E−(A, s);

3. otherwise Φ(A, s) is undefined.

The intuition behind the above formulation is as follows.
The direct effect of a set A of actions in a state s is deter-
mined by the dynamic causal laws and is given by E(A, s).
If E(A, s) is inconsistent, then the resulting state Φ(A, s)
is undefined. Otherwise, Φ(A, s) is computed from s by
removing the fluent literals changed by A then adding the
direct effect E(A, s).

Example 1. Let us consider a simple domain description D
as follow. Let a, b1, and b2 are actions; f , g, u and v are
fluents. The domain consists of the propositions:

a causes f f, u n triggers b1

b1 causes {g,¬f} f, v n triggers b2

b2 causes {¬g,¬f} g,¬v inhibits b1

Let s0, s1, s2 and s3 be states:

s0 = {¬f,¬g, u,¬v} s2 = {¬f, g, u,¬v}

s1 = {f,¬g, u,¬v} s3 = {f, g, u,¬v}
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Figure 1: A partial transition function

Then by definition, we have that (Figure 1)

Φ({a}, s0) = s1

Φ({b1}, s0) = s2

Φ({b2}, s0) = s0

Besides, we also note that Φ({a, b1}, s0), Φ({a, b2}, s0),
and Φ({b1, b2}, s0) are all undefined.

Definition 1. Let D be a domain description. Let s be some
state in D. A triggering rule r = f1, . . . , fm n triggers a
of D is said to be active in s, if all the fluents f1, . . . , fm

hold in s; otherwise, r is said to be passive in s.
A inhibition rule r′ = f ′1, . . . , f

′
k inhibits a′ of D is said to

be active in s, if all the fluents f ′1, . . . , f
′
k hold in s; other-

wise r′ is said to be passive in s. 2.

Definition 2 (Trajectory). Let D be a domain descrip-
tion. Let s0, s1, . . . sn, . . . be states and A1, . . . An, . . .
be sets of actions in D. The sequence τ =
s0, A1, s1, A2 . . . An, sn . . . is called a trajectory in D if the
following conditions are all satisfied.

• State sn is reached by executing An in state sn−1; that is,
sn = Φ(An, sn−1).

• If a triggering rule f1, . . . , fm n triggers a is active in a
state si, and all the inhibition rules with a as the inhibited
action are passive in si, then a ∈ Ai+1.

• If a triggered action a ∈ Ai+1, then there must exist an
active triggering rule in si with a as the triggered action;
and all the inhibition rules with a as the inhibited action
must be passive in si.

• If an inhibition rule f ′1, . . . , f
′
k inhibits a′ is active in a

state si, then a′ 6∈ Ai+1.
• If Aj = ∅, then Al = ∅, for all l ≥ j. 2

Example 2. Let us consider the domain description in Ex-
ample 1. There are trajectories such as:

τ1 = s0, ∅, s0, ∅, . . .

τ2 = s0, {a}, s1, {b1}, s2, ∅, s2, ∅ . . .

τ3 = s1, {b1}, s2, {b2}, s0, {a}, s1, {b1}, s2, {b2}, . . .

The following sequences are non-trajectories:

τ ′1 = s0, {a, b1}, s0, ∅, . . .

τ ′2 = s0, {a}, s1, {b2}, s0, ∅, s0, ∅ . . .

τ ′3 = s1, {b1}, s2, {a}, s3, {b1}, . . .

τ ′4 = s1, {b1}, s2, ∅, s2, {a}, . . . 2

A trajectory in a domain description D is said to be finite,
if there exists a time point at which no action occurs. The
length of a finite trajectory is defined to be the first time point
at which no action occurs.

Definition 3 (Trigger bounded domain). A domain de-
scription D is called trigger bounded, if all trajectories in
D with only triggered actions are finite. 2

Let D〈Atrig,Aexo,F〉 be a trigger bounded domain. By
definition, there exists an upper bound on the lengths of tra-
jectories in D which contain only triggered actions. De-
note the upper bound by tbound(D). Then this upper
bound is not more than the number of states in D; that is,
tbound(D) ≤ 2|F|.

The observation language
Syntax Let f , f1, . . . fn be fluent literals and A1, . . . , An

be sets of actions. Let t, t1, . . . , tn be time points, which are
nonnegative integers. Propositions in the observation lan-
guage take the following form:

• observation about a fluent at some time point:

f at t. (4)

• observation about a fluent at the initial time point:

f at 0, or equivalently, initially f. (5)

• observation about occurrences of actions:

A1 occurs at t1, . . . , An occurs at tn. (6)

The intuitive meaning of the proposition (4) is that fluent
literal f is true in the state at time point t. Similarly, (5)
means that fluent literal f is initially true (in the initial state).
The observation (6) says that the actions in A1 occur at time
point t1, ..., the actions in An occur at time point tn.

Note that we do not require that t1, . . . , tn must be different
in observation of the form (6). Thus the following two sets
of observations are equivalent:

O1 = { A occurs at t }

O2 = { a occurs at t | a ∈ A }

The set of observations O is called initial state complete,
if for every fluent f , O contains either initially f or
initially ¬f , but not both.

An initial state s0 is consistent with a set of observations O
if for every fluent f :

- if initially f ∈ O then f ∈ s0;

- if initially ¬f ∈ O then ¬f ∈ s0.
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We have the following simple result about the relation be-
tween a set of observations and a state.
Proposition 1. Let D be a domain description and O be an
initial state complete set of observations in D. Then there
exists a unique initial state that is consistent with O. 2

We use the domain description language and the observation
language to represent our knowledge about the world, which
are called action theories.
Definition 4 (Action theory). An action theory in A0

T is a
pair (D,O) where D is a domain description and O is a set
of observations in A0

T . An action theory (D,O) is called
initial state complete if O is initial state complete. 2

We follow (Baral & Tran 2003; Baral & Gelfond 2000) in
defining models of an action theory (D,O).

Semantics - trajectory model Intuitively, a domain de-
scription D specifies how the world can evolve. By incorpo-
rating observations, we can have a better understanding of
the world; that is, we have more constraints on the evolution
of the world.
Definition 5 (Trajectory interpretation). Let D be a do-
main description and O be a set of observations in D. A
trajectory τ = s0, A1, s1, A2 . . . An, sn . . . is an interpreta-
tion of (D,O) if the following conditions are all satisfied:
• if f at t ∈ O, then f ∈ st ; and
• if B1 occurs at t1, B2 occurs at t2, . . . Bj occurs at tj

belongs to O, then Bi ⊆ Ati
, for all 1 ≤ i ≤ j. 2

We define an ordering on trajectories and select the “best”
interpretations to be models. Intuitively, a model is such
an interpretation that at every time point, the set of action
occurrences is as minimal as possible. Thus if an action a is
in Aexo, there must be an observation about its occurrence;
if a is in Atrig then a must be triggered.
Definition 6 (Ordering of trajectories). Let τ and τ ′ be
trajectory such that τ = s0, A1, s1, . . . , An, sn, . . . and
τ ′ = s′0, A

′
1, s

′
1 . . . , A′m, s′m, . . . be trajectories, such that

s0 = s′0. We say that τ ≤ τ ′ if there exists a sequence
0 ≤ i1 < i2 < . . . < in < . . . such that for every 1 ≤ k,
Ak ⊆ A′ik

. Moreover, τ = τ ′ iff Ak = A′k, for all 1 ≤ k. 2

Definition 7 (Trajectory model). Let D be a domain de-
scription and O be a set of observations in A0

T . A trajectory
τ = s0, A1, s1, A2, . . . , An, sn . . . is said to be a trajectory
model of (D,O) if
• τ is a trajectory interpretation of (D,O), and
• there does not exist a trajectory interpretation τ ′ of (D,O)

such that τ ′ < τ . 2

Example 3. Consider the domain description from Example
1. Let O be the following set of observations

O = {initially ¬g} ∪ {b1 at 3t | t = 0, 1, 2, . . .}

Then the following trajectories are interpretations of the the-
ory (D,O):

s1, {b1}, s2, {b2}, s0, {a}, s1, {b1}, s2, {b2}, . . .

s0, {b1}, s2, {a}, s3, {b2}, s0, {b1}, s2, {a}, . . .

s0, {b1}, s2, {b2}, s0, {b2}, s0, {b1}, s2, {b2}, . . .

These interpretations are also models of the theory (D,O).
Let O′ = {initially ¬g, b1 at 0, b1 at 1}. Because O′ ⊂
O, every interpretation of (D,O) is also an interpretation
of (D,O′). However, because of the minimality property
of models, interpretations of (D,O) cannot be models of
(D,O′). Models of (D,O′) include:
s1, {b1}, s2, {b2}, s0, {a}, s1, {b1}, s2, ∅, s2, ∅, . . .

s0, {b1}, s2, {a}, s3, {b2}, s0, {b1}, s2, ∅, s2, ∅, . . .

s0, {b1}, s2, {b2}, s0, {b2}, s0, {b1}, s2, ∅, s2, ∅, . . . 2

An action theory (D,O) is said to be consistent if it has a
trajectory model. In this paper, we are concerned with a
specific class of action theories, which have the following
property.
Proposition 2. Let (D,O) be an action theory where O is
initial state complete. If (D,O) is consistent then it has a
unique trajectory model. 2

Semantics - entailment of observations Let (D,O) be
a consistent action theory. Let f be a fluent and
t be a time point. (D,O) entails the observation
{ f at t } if for all trajectory model τ of (D,O), τ =
s0, A1, s1, A2 . . . An, sn . . ., we have that f ∈ st. We then
write that (D,O) |= f at t .
Let A1, . . . , An be sets of actions and t1, . . . , tn be
time points. The theory (D,O) entails the observa-
tion {A1 occurs at t1, . . . , An occurs at tn }, if
for all trajectory model τ of (D,O), where τ =
s0, A

′
1, s1, A

′
2 . . . A′k, sk . . . , we have that Ai ⊆ A′ti

for
1 ≤ i ≤ n. We then write that

(D,O) |= A1 occurs at t1, . . . , An occurs at tn.

Given a set O′ of observations, we say (D,O) entails O′,
written as (D,O) |= O′, if (D,O) |= ω, for all ω ∈ O′.

The query language
A query in A0

T has the form
f after A1 at t1, . . . , An at tn;

where f is a fluent, A1, . . . , An are sets of actions and
t1, . . . , tn are time points.
Let (D,O) be a consistent action theory. Let Q be a query
f after A1 at t1, . . . , An at tn . Moreover, denote O′ be
the set O ∪ {A1 occurs at t1, . . . , An occurs at tn}. The
pair (D,O) entails Q, written as (D,O) |= Q, if (D,O′) is
consistent and for all trajectory model τ of (D,O′), where
τ = s0, A

′
1, s1, A

′
2 . . . A′m, sm . . . , there exists N ≥ tn

such that f is true in all the states sk, k > N .
Example 4. Let D be the domain description in Example 1.
Let O be a set of observations:
O = {initially ¬f, initially ¬g, initially u, initially ¬v}.

Then trajectory s0, ∅, s0, ∅, . . . is the unique trajectory
model of the theory (D,O).
Let Q = f after {a} at 0. O′ = O ∪ {{a} at 0}. Then tra-
jectory s0, {a}, s1, {b1}, s2, ∅, s2, ∅, . . . is the unique tra-
jectory model of (D,O′). We see that f ∈ s2, hence the
action theory (D,O) entails the query Q. 2

We now formulate several basic reasoning problems using
A0

T , including prediction, explanation and planning.
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Reasoning in A0

T
framework

Prediction
In this kind of reasoning, we want to know what would
be true in a state resulting from a course of actions. Let
D be a domain description and O be an initial state com-
plete set of observations, such that (D,O) is consistent. Let
Q = f after A1 at t1, . . . , An at tn. We say that (D,O)
predicts f after A1 occurs at t1, ..., An occurs at tn; or
(D,O) predicts Q for short, if (D,O) |= Q.
We denote by pred(D,O, Q) the problem of checking if
(D,O) predicts Q.

Explanation
Intuitively, given a set O of observations about fluents and
triggered actions, we want to find initial states and occur-
rences of non-triggered actions that can explain O.
Definition 8. Let D be a domain description and Oinit be
a set of observations (not necessarily complete) about the
initial state. Let O be a set of observations about fluents
and occurrences of triggered actions. Let Oexp be a set of
observations about the initial state and occurrences of non-
triggered actions. Then Oexp is an explanation1 of O with
respect to (D,Oinit) if Oinit ∪ Oexp is initial state com-
plete and (D,Oinit ∪ Oexp) |= O. 2

We also denote the problem of finding such an Oexp by
exp(D,Oinit,O) and Oexp is then called a solution of
exp(D,Oinit,O).
Example 5. Let D be the domain description in Example 1.
Let Oinit = {initially ¬f, initially ¬g, initially ¬v}. Let
O = {g at 3}. Then {initially u} is the explanation of O
w.r.t (D,Oinit).
Indeed, there are only two possible explanations that con-
tains only observations about the initial state, which are
O−exp = { initially ¬u } and O+

exp = { initially u }.
It is easy to verify that (D,Oinit ∪ O

−
exp) is inconsistent,

but (D,Oinit ∪ O
+
exp) has a unique trajectory model and

(D,Oinit ∪ O
+
exp) |= g at 3. 2

Planning
Let (D,O) be a consistent action theory, where O is ini-
tial state complete and contains only observations about
the initial state. Let G be some fluent literal and t1 <
t2 < . . . tn be time points. Let A1, A2, . . . , An be sets
of non-triggered actions. Then a sequence P such that
P = 〈A1 at t1, A2 at t2, . . . An at tn〉 is called a plan
for the goal G if and only if:

(D,O) |= G after A1 at t1, A2 at t2, . . . An at tn

We denote the problem of finding such a P by
plan(D,O, G). Then P is called a solution of
plan(D,O, G).

1In the literature (see for example (Baral, McIlraith, & Tran
2000; Balduccini & Gelfond 2003)) there are many different no-
tions of explanation and diagnosis. Here we give one such notion.
Other notions such as minimal explanation, preferred explanation
can be exported to our formalism. We will discuss these in the full
version of the paper.

A0

T
-based reasoning in AnsProlog framework

In this section, we present the general AnsProlog translation
of the language A0

T and of the reasoning problems. We will
show the usefulness of the translation by a biological exam-
ple in the next section.

When translating an action theory (D,O) to AnsProlog, we
have to set an upper bound tmax of time steps. The number
tmax depends on the reasoning problem to be solved and can
be determined as we will see in the theorems coming later.
Nevertheless, we can also make an educated guess of tmax,
based on background knowledge about the represented sys-
tem and its evolutions.

Translation of the domain description language

Recall that a domain description consists of propositions of
the form (1), (2) and (3). The AnsProlog translation π(D)
of a domain D includes inertial rules, interpretation con-
straints and the translations of all the propositions of D.

For conciseness, we introduce some notations as follows.
Given a fluent literal g and some fluent f , let us de-
note π(g, t) ≡ holds(f, t) if g ≡ f ; and let π(g, t) ≡
holds(neg(f), t) if g ≡ ¬f . Given an action a, let π(a, t) ≡
holds(occurs(a), t).

First, we describe the set of inertial rules. To capture the
semantics of transition functions, we need the following in-
ertial rules, for each fluent f and for all time points t in
[0, tmax):

π(f, t+ 1)← π(f, t), not π(¬f, t+ 1).

π(¬f, t+ 1)← π(¬f, t), not π(f, t+ 1).

Intuitively, the inertial rules mean that the truth values of flu-
ent literals remain constant unless being affected by actions.

For each fluent f , there are interpretation constraints of the
following form, for all time point t in [0, tmax].

⊥ ← holds(f, t), holds(neg(f), t).

Intuitively, the interpretation constraints guarantee that both
fluent literal f and ¬f cannot hold at the same time.

Finally, we show how the propositions of D are translated
into AnsProlog:

• A proposition of the form (1) is translated into the follow-
ing rules, ∀t ∈ [0, tmax)

π(f, t+ 1) ← π(a, t), π(f1, t), . . . , π(fn, t).

• A proposition of the form (2) is translated into the follow-
ing rules, ∀t ∈ [0, tmax)

π(b, t) ← π(g1, t), . . . , π(gm, t),

not holds(ab(occurs(b)), t).

• A propositions of the form (3) is translated to the follow-
ing rules, ∀t ∈ [0, tmax)

holds(ab(occurs(c)), t) ← π(h1, t), . . . , π(hl, t).
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Note that logical atoms of the form holds(ab(occurs(a), t)
carry a special meaning. Intuitively, if holds(ab(occurs(a))
is true then a is prevented from occurring; that is, some ab-
normality happens to the occurrence of a.

Example 6. We illustrate how the domain D in Example 1
can be translated into AnsProlog. Let us choose tmax = 10.

Because u, v, f and g are fluents, for all time points t in the
interval [0, 10], we add the constraints

⊥ ← holds(u, t), holds(neg(u), t).

⊥ ← holds(v, t), holds(neg(v), t).

. . . . . . . . .

The causal rules b1 causes {g,¬f} is translated into the
following rules, for all time points t in the interval [0, 10].

holds(g, t+ 1)← holds(occurs(b1), t).

holds(neg(f), t+ 1)← holds(occurs(b1), t).

Finally, for all t ∈ [0, 10], the triggering f, u n triggers b1

is translated into

holds(occurs(b1), t)← holds(f, t), holds(u, t),

not holds(ab(occurs(b1)), t).

and the inhibition g,¬v n triggers b1 is translated into

holds(ab(occurs(b1), t)← holds(g, t), holds(neg(v), t).

Translation of the observation language
Let O be a set of observations in a domain description D.
The AnsProlog translation π(O) of O consists of the trans-
lations of all the observations of O. The observations in O
are translated as follows.

• An observation of the form initially f is translated into
the fact holds(f, t)← .

• If t > 0, an observation of the form f at t is translated
into the constraint ⊥ ← not holds(f, t) .

• If a is a triggered action and t is a time point, then the
observation a occurs at t is translated into the constraint
⊥ ← not holds(occurs(a), t) .

• If a is a non-triggered action, and t is a time point then
the observation observation a occurs at t is translated
into the fact holds(occurs(a), t)← .

• The translation of an observation of the form

A1 occurs at t1, . . . , An occurs at tn

consists of all the translations of the observations
a occurs at ti, where a ∈ Ai, 1 ≤ i ≤ n.

Correctness of the translation
Given a domain description D, we write

π(D,O) = π(D) ∪ π(O) .

Corresponding to Proposition 2, we have the following re-
sult.

Proposition 3. Let (D,O) be a consistent action the-
ory, where O is initial state complete. Then the program
π(D,O) has a unique answer set. 2

Given an answer set S of some translated AnsProlog pro-
gram in a domain D〈Atrig,Aexo,F〉, we write that

Ωexo(S) = { a occurs at t | a ∈ Aexo, holds(a, t) ∈ S } ;

Ωinit(S) = { initially f | f ∈ F, holds(f, 0) ∈ S }
⋃

{ initially ¬f | f ∈ F, holds(neg(f), 0) ∈ S }.

We now present results showing the correctness of the
AnsProlog translation, with respect to doing prediction, ex-
planation and planning.

Prediction in AnsProlog Let D be a trigger bounded do-
main description. Let O be an initial state complete set of
observations. Let Q = f after A1 at t1, . . . , An at tn
where t1 < t2 . . . < tn. Because D is trigger bounded,
it is sufficient to model evolutions of the world up to time
tn + tbound(D). Let tmax = tn + tbound(D). In order to
verify the entailment (D,O) |= Q, we compute the unique
answer set S of the AnsProlog program

π(D,O) ∪ π({A1 occurs at t1, . . . , An occurs at tn }) .

The prediction is true if the answer set exists, and there exists
N ≥ tn such that hold(f, k) ∈ S for all k ∈ (N, tmax].

Proposition 4. Let pred(D,O, Q) be a prediction problem,
where the domain D is trigger bounded and Q is the query
f after A1 at t1, . . . An at tn , where t1 < t2 . . . < tn.
Let tmax = tn+tbound(D); and let πpred be the AnsProlog
translation

π(D,O) ∪ π({A1 occurs at t1, . . . An occurs at tn }).

Then the theory (D,O) predicts Q if and only if the pro-
gram πpred has at least one answer set; and for all the an-
swer set S of the program πpred, there exists N ≥ tn such
that holds(f, k) ∈ S for every time point k ∈ (N, tmax]. 2

Explanation in AnsProlog Let D be a domain descrip-
tion. For each fluent f , define enum(f) be the AnsProlog
program

holds(f, 0)← not holds(neg(f), 0).

holds(neg(f), 0)← not holds(f, 0).

For each non-triggered action a and time point t, define
enum(a, t) be the following AnsProlog program.

holds(occurs(a), t)← not holds(ab(occurs(a)), t),

not holds(neg(occurs(a)), t).

holds(neg(occurs(a)), t)← not holds(occurs(a), t).

For each non-triggered action a, we also define enum(a) as
follows.

enum(a) =

tmax−1
⋃

t=0

enum(a, t) .
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For each triggered action a, let us define enum(a) = ∅.
Finally, we define

enum(D) =





⋃

f∈F

enum(f)





⋃

(

⋃

a∈A

enum(a)

)

.

Intuitively, enum(D) enumerates all possible explanations
that can be found (for an explanation problem) in D.
Now letOinit be a set of observations about the initial state.
Let O be a set of observations about fluents and occur-
rences of triggered actions. To find an explanation ofO w.r.t
(D,Oinit), we compute an answer set S of the program

enum(D) ∪ π(D,Oinit) ∪ π(O) .

If such an S exists then we construct Oexp by:

Oexp = Ωexo(S) ∪ (Ωinit(S) \ Oinit) .

Intuitively, we get Oexp by translating facts in the answer
set S back to the observation language. The following result
states that it is a correct way to find an explanation.
Proposition 5. Let exp(D,Oinit,O) be an explanation
problem, where D is trigger bounded. Let tn be the max-
imal time point appearing in the observations. Let tmax be
tn + tbound(D); and let πexp be the AnsProlog translation

enum(D) ∪ π(D,Oinit) ∪ π(O).

Then the set Oexp of observations is a solution of
exp(D,Oinit,O) if and only if the program πexp has an an-
swer set S and Oexp = Ωexo(S) ∪ (Ωinit(S) \ Oinit). 2

Planning in AnsProlog Let us consider a problem
plan(D,O, G). To find a plan for G, we first translate the
goal G into an AnsProlog program, denoted by π(G), which
includes the following rules, for all the time points t in the
interval [0, tmax).

← not achieved.

achieved← achieved(t+ 1).

achieved(tmax)← holds(G, tmax).

achieved(t)← holds(G, t), achieved(t+ 1).

The intuitive meaning of achieved(t) is that the goal G is
true from time t to tmax.
We modify enum(a) to become the following program, for
all the time points t in the interval [0, tmax).

holds(occurs(a), t)← not holds(neg(occurs(a)), t),

not holds(ab(occurs(a)), t), not achieved(t).

holds(neg(occurs(a)), t)← not holds(occurs(a), t).

We then compute an answer set S of the program π(G) ∪
enum(D) ∪ π(D,O).
If S exists, we construct a plan P as: P = Ωexo(S).
Proposition 6. Let plan(D,O, G) be a planning prob-
lem, where D is trigger bounded. Let P be the plan
〈A1 at t1, A2 at t2, . . . An at tn〉, where t1 < . . . < tn.
Let tmax be tn + tbound(D); and let πplan be the AnsPro-
log translation π(G) ∪ enum(D) ∪ π(D,O). Then P is a
solution of plan(D,O, G) if and only if the program πplan

has an answer set S and P = Ωexo(S). 2

We now illustrate how to applyA0
T to reasoning problems in

molecular interactions domain. We will consider a domain
describing phosphorylation controls of pRb (Zarkowska &
Mittnacht 1997; Lundberg & Weinberg 1998). pRb is a
retinoblastoma protein, a protein of a devastating children’s
eye cancer.

Application to pRb controls domain
Before considering the biological example, let us go over the
following short glossary:

protein: the major macromolecular constituent of cells.

kinase: enzyme that attaches a phosphate chemical group
to some other molecule.

enzyme: a protein that speeds up a chemical reaction.

phosphorylate: to add phosphate to a protein to alter its
function.

cyclin: proteins active in regulating the cell cycle, typ-
ically synthesized and degraded during the cell cycle to
regulate the activity of a cyclin-dependent kinase.

site: a specific location on a protein where some chemical
reaction take places.

We now demonstrate the applicability of A0
T in represent-

ing and reasoning about a small regulatory network of pRb
protein (Figure 2).

Figure 2: Phosphorylation control of pRb

There are two cyclins in the pRb network: cyclin D (D-type
cyclin) and cyclin E (E-type cyclin). The two cyclins inter-
act with cyclin-dependent kinases cdk4 and cdk2 to regulate
the function of pRb - the ability of pRb to bind to the com-
plex of E2F1 and DP1 protein. In biological experiments to
study the network, protein functions are perturbed by differ-
ent means, such as the introduction of a dominant-negative
form of cdk2, termed cdk2DN. The dominant-negative form
can have different inhibitory effects on the functionality of
cdk2 as well as of the complex [cyclin E:cdk2].

We first present a domain description DpRb of the regulatory
network, which includes fluents, actions with their effects,
and triggering rules.

The fluents in the domain description and their encoded
properties are as follows.
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• bound(cycD, cdk4) means that cyclin D is bound to
cdk4. Similarly, bound(cycE, cdk2) means that cyclin
E is bound to cdk2.

• bound(pRb, complex(e2f1, dp1)) means that pRb pro-
tein is bound to the complex [E2F1:DP1] of E2F1 and
DP1 protein.

• phrylated(pRb, P (D)) and phrylated(pRb, P (E)) mean
pRb is respectively phosphorylated at subsets P (D) and
P (E) of sites.

• is present(cdk2DN) represents the effect of the
cdk2DN introduction.

The actions in the domain description can be divided into
three groups:

1. actions related to the functions of the cyclin, in-
cluding bind(cycD, cdk4), bind(cycE, cdk2),
phrylates(cycD, pRb), phrylates(cycE, pRb); and

2. an action related to the function of pRb, which is
dissociates(pRb, complex(e2f1, dp1)); and

3. an action related to performing experiments, namely
introduce(cdk2DN).

The meanings and effects of the actions are described as fol-
lows.

• bind(cycD, cdk4) encode the action that cyclin D binds
to cdk4, resulting in the complex [cyclin D: cdk4] of cy-
clin D and cdk4, in which cyclin D is bound to cdk4.

bind(cycD, cdk4) causes bound(cycD, cdk4).

• We encode the effect of bind(cycE, cdk2) similarly to the
case of action bind(cycD, cdk4).

bind(cycE, cdk2) causes bound(cycE, cdk2).

• phrylates(cycD, pRb) states that cyclin D phosphory-
lates pRb protein, which causes pRb being phosphory-
lated at the subset P (D) of sites.

phrylates(cycD, pRb) causes phrylated(pRb, P (D)).

If pRb is phosphorylated at sites P (D), it cannot be phos-
phorylated at the same sites. Hence, we have the follow-
ing inhibition rule:

phrylated(pRb, P (D)) inhibits phrylates(cycD, pRb).

• phrylates(cycE, pRb) denotes the action of cyclin E
phosphorylating pRb protein. This action causes pRb be-
ing phosphorylated at the subset P (E), provided pRb has
already been phosphorylated at P (D).

phrylates(cycE, pRb) causes phrylated(pRb, P (E))

if phrylated(pRb, P (D)).

Similarly to the case of phrylates(cycD, pRb), there is
the inhibitory rule

phrylated(pRb, P (E)) inhibits phrylates(cycE, pRb).

• dissociates(pRb, complex(e2f1, dp1)) means that pRb
dissociates from the [E2F1:DP1] complex.

dissociates(pRb, complex(e2f1, dp1))

causes ¬bound(pRb, complex(e2f1, dp1).

The dissociation is not possible if pRb is not bound to the
complex [E2F1:DP1], thus we have the rule

¬bound(pRb, complex(e2f1, dp1))

inhibits dissociates(pRb, complex(e2f1, dp1)).

• Finally, introduce(cdk2DN) corresponds to an experi-
ment in which a foreign gene of cdk2DN is introduced
into the cell, which causes cdk2DN protein to be present
in the cell.

introduce(cdk2DN) causes is present(cdk2DN).

In the presence of the dominant negative form cdk2DN,
the [cyclin E: cdk2] complex will not be able to phospho-
rylate pRb; that is

is present(cdk2DN) inhibits phrylates(cycE, pRb).

The triggering rules represent how the interactions of cyclins
with their associated kinases regulate the function of pRb.
The pRb protein is regulated by its states of phosphoryla-
tion. Once a complex is formed by a cyclin and its dependent
kinase, it triggers a corresponding pRb phosphorylation:

bound(cycD, cdk4) n triggers phrylates(cycD, pRb).

bound(cycE, cdk2) n triggers phrylates(cycE, pRb).

pRb is said being ”hyperphosphorylated”, if it is phospho-
rylated at both sites P (D) and P (E). The hyperphospho-
rylation of pRb triggers the dissociation of pRb from the
[E2F1:DP1] complex:

phrylated(pRb, P (D)), phrylated(pRb, P (E))

n triggers dissociates(pRb, complex(e2f1, dp1)).

We have presented the domain description DpRb of the reg-
ulatory network. Next, we show how to formulate and com-
pute queries about this network.
Let s0 be the initial state in which only fluent
bound(pRb, complex(e2f1, dp1)) is true; that is, there is
a unique protein complex which is formed by pRb being
bound to [E2F2:DP1]. Let Oinit be the initial state com-
plete set of observations that is consistent with s0. Choosing
tmax = 5 and applying the AnsProlog translation, we obtain
the following results.

• Prediction

Phosphorylation of pRb by cyclin D is not sufficient to
release pRb from [E2F1:DP1]:

(DpRb, Oinit) 6|= bound(pRb, complex(e2f1, dp1))

after bind(cycD, cdk4) at 0.

Similarly, phosphorylation of pRb by cyclin E is not suf-
ficient to release pRb from [E2F1:DP1]:

(DpRb, Oinit) 6|= bound(pRb, complex(e2f1, dp1))

after bind(cycE, cdk2) at 0.
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In order to have pRb dissociated from [E2F1:DP1], both
the phosphorylation induced by cyclin D and E must hap-
pen in a sequence:

(DpRb, Oinit) |= ¬bound(pRb, complex(e2f1, dp1))

after bind(cycD, cdk4) at 0, bind(cycE, cdk2) at 1.
(DpRb, Oinit) |= ¬bound(pRb, complex(e2f1, dp1))

after bind(cycD, cdk4) at 0, bind(cycE, cdk2) at 2.

• Explanation

We have seen that once the interactions between the cy-
clins and their dependent kinases are observed, pRb is ex-
pected to dissociated from [E2F1:DP1]. However, in the
cdk2DN introduction experiment, after the binding of cy-
clin D to cdk4 and of cyclin E to cdk2, the binding of pRb
to [E2F1:DP1] is observed staying intact. What can be an
explanation for this “abnormal” behavior of pRb?
Let O be the observation

O = { bound(cycD, cdk4) at 0, bound(cycE, cdk2) at 1,
bound(pRb, complex(e2f1, dp1)) at 5}

Then we have following explanations of O w.r.t
(DpRb, Oinit):

E1 = { introduce(cdk2DN) at 0 }.
E2 = { introduce(cdk2DN) at 1 }.

Intuitively, the main mechanism would be that the in-
troduction of cdk2DN has affected the cyclin E induced
phosphorylation, which prevents pRb from being hy-
perphosphorylated. Consequently, binding of pRb to
[E2F1:DP1] stays intact.

• Planning

Let G = ¬bound(pRb, complex(e2f1, dp1)). Then we
find several plans, including:

P1 = {bind(cycD, cdk4) at 0, bind(cycE, cdk2) at 0}.
P2 = {bind(cycD, cdk4) at 0, bind(cycE, cdk2) at 2}.
P3 = {bind(cycE, cdk2) at 0, bind(cycD, cdk4) at 1}.

Conclusions and future works
In this paper we introduced the action language A0

T as a
starting formalism for representation and reasoning about bi-
ological knowledge in molecular interactions domain. Tak-
ing a progressive approach toward the ultimate solution, we
designed A0

T with minimal features that afford sound the-
oretical and practical analysis of reasoning about triggered
actions. We then showed how to do prediction, explanation
and planning with respect to A0

T using AnsProlog and dis-
cussed the applicability of our approach with respect to a
biological example.
In regards to related works, (Baral & Tran 2003) gives a
more general formalism for specifying evolution trajectories
as part of an action language. The triggers in this paper, and
the observation language in this paper is much more simpler
with a focus on being able to implement in AnsProlog. Such
an implementation is not a focus in (Baral & Tran 2003),

where the other focus is incorporating probabilities to the
evolution trajectories.

In regards to the future we plan to expandA0
T so as to better

model molecular interactions. This involves issues such as
incomplete information, non-determinism, feed-back loops,
sensitization of molecules, and dealing with quantity of
molecules.
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