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Abstract

In this paper, we investigate knowledge reasoning within a
simple framework called knowledge structure. We use vari-
able forgetting as a basic operation for one agent to reason
about its own or other agents’ knowledge. In our framework,
two notions namely agents’ observable variables and the
weakest sufficient condition play important roles in knowl-
edge reasoning. Given a background knowledge base T and
a set of observable variables Oi for each agent i, we show that
the notion of agent i knowing a formula ϕ can be defined as a
weakest sufficient condition of ϕ on Oi under T . Moreover,
we show how to capture the notion of common knowledge
by using a generalized notion of weakest sufficient condition.
We also discuss possible applications of our framework in
some interesting domains such as the automated analysis of
the well-known muddy children puzzle and the verification of
the revised Needham-Schroeder protocol.

Introduction
Epistemic logics, or logics of knowledge are usually recog-
nized as having originated in the work of Jaakko Hintikka -
a philosopher who showed how certain modal logics could
be used to capture intuitions about the nature of knowledge
in the early 1960s (Hintikka 1962). In the mid of 1980s,
Halpern and his colleagues discovered that S5 epistemic log-
ics could be given a natural interpretation in terms of the
states of processes (commonly called agents) in a distributed
system. This model now is known as the interpreted system
model (Fagin et al. 1995). It was found that this model
plays an important role in the theory of distributed systems
and has been applied successfully in reasoning about com-
munication protocols (Halpern & Zuck 1992). However, the
work on epistemic logic has mainly focused on theoretical
issues such as variants of modal logic, completeness, com-
putational complexity, and derived notions like distributed
knowledge and common knowledge.

In this paper, we explore knowledge reasoning within a
more concrete model of knowledge. Our framework of rea-
soning about knowledge is simple and powerful enough to
analyze realistic protocols such as some widely used secu-
rity protocols.
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To illustrate the problem investigated in this paper, let us
consider the scenario that Alice sends Bob a message and
Bob sends Alice an acknowledgement when receiving the
message. We assume Alice and Bob commonly have the
following background knowledge base T :

Bob recv msg ⇒ Alice send msg
Bob send ack ⇒ Bob recv msg
Alice recv ack ⇒ Bob send ack

where Bob recv msg and Bob send ack are observ-
able variables to Bob, while Alice send msg and
Alice recv ack are observable to Alice.

The problem we concern with is how to verify that Alice
or Bob knows a statement ϕ. Intuitively, we should be able
to prove that for a statement observable to Alice (Bob), Alice
(Bob) knows the statement if and only if the statement itself
holds. Moreover, Alice knows Bob recv msg if and only if
Alice recv ack holds, and Bob knows Alice send msg iff
Bob recv msg holds. Finally, it should be always false that
Bob knows Alice recv ack.

One of the key notions introduced in our approach is
agents’ observable variables, which shares a similar spirit
of the notions of local variables and local propositions in
(van der Hoek & Wooldridge 2002; Engelhardt, van der
Meyden, & Moses 1998; Engelhardt, van der Meyden, &
Su 2003). Here we prefer to use the term “observable vari-
able” in order to avoid any confusion from the term “local
variable” used in programming, where “non-local variables”
such as “global variables” may often be observable.

Our knowledge model is also closely related to the notion
of weakest sufficient condition, which were first formalized
by Lin (Lin 2001). Given a background knowledge base T
and a set of observable variables Oi for each agent i, we
show that the notion of agent i knowing a formula ϕ can be
defined as the weakest sufficient condition of ϕ on Oi un-
der T , which can be computed via the operation of variable
forgetting (Lin & Reiter 1994). Moreover, we generalize the
notion of weakest sufficient condition and capture the notion
of common knowledge.

The notion of variable forgetting or eliminations of mid-
dle terms (Boole 1854) has various applications in knowl-
edge representation and reasoning. For example, Weber
(Weber 1986) applied it for updating propositional knowl-
edge bases. More recently, Lang and Marquis (Lang & Mar-
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quis 2002) used it for merging a set of knowledge bases
when simply taking their union may result in inconsistency.

Now we briefly discuss the role of variable forgetting in
our knowledge model. Let us examine the scenario de-
scribed above again. Consider the question: how can Al-
ice figure out Bob’s knowledge when she receives the ac-
knowledgement from Bob? Note that Alice’s knowledge
is the conjunction of the background knowledge base T
and her observations Alice recv ack etc. Moreover, all
Alice knows about Bob’s knowledge is the conjunction of
the background knowledge base T and all she knows about
Bob’s observations. Thus, Alice gets Bob’s knowledge by
computing all she knows about Bob’s observations. In our
setting, Alice gets her knowledge on Bob’s observations
simply by forgetting Bob’s non-observable variables in her
own knowledge.

To show the significance of our framework, we investigate
some of its interesting applications to the automated analy-
sis of the well-known muddy children puzzle and the veri-
fication of the revised Needham-Schroeder protocol (Lowe
1996).

The organization of this paper is as follows. In the next
section, we briefly introduce the concept of forgetting and
the notion of weakest sufficient and strongest necessary con-
ditions. In section 3, we define our framework of reason-
ing about knowledge via variable forgetting. In section 4,
we generalize the notion of weakest sufficient condition and
strongest necessary condition to capture common knowl-
edge in the reasoning within our framework. In section 5,
we consider a case study by applying our framework to deal
with the well known muddy children puzzle. In section 6,
we further apply our framework of knowledge reasoning to
security protocols verification. Finally, in secion 7 we con-
clude the paper with some remarks.

Preliminaries
Forgetting
Given a set of propositional variables P , we sometimes do
not distinguish a subset of P from its characteristic function,
i.e. a truth assignment for P . We say a formula ϕ over P
if each propositional variable occurring in ϕ is in P . For
convenience, we define true as an abbreviation for a fixed
valid propositional formula, say p∨¬p, where p is primitive
proposition in P . We abbreviate ¬true by false.

We also use |= to denote the usual satisfaction relation
between a truth assignment and a formula. Moreover, for a
set of formulas Γ and a formula ϕ, we use Γ |= ϕ to denote
that for every assignment σ, if σ |= α for all α ∈ Γ, then
σ |= ϕ.

Given a propositional formula ϕ, and a propositional vari-
able p, we denote by ϕ( p

true
) the result of replacing every p

in ϕ by true. We define ϕ( p
false

) similarly.
The notion of Variable forgetting (Lin & Reiter 1994), or

eliminations of middle terms (Boole 1854), can be defined
as follows:

Definition 1 Let ϕ be a formula over P , and V ⊆ P . The
forgetting of V in ϕ , denoted as ∃V ϕ, is a quantified for-
mula over P , defined inductively as follows:

1. ∃∅ϕ = ϕ;
2. ∃{p}ϕ = ϕ

(

p
true

)

∨ ϕ
(

p
false

)

;

3. ∃(V ∪ {p})ϕ = ∃V (∃{p}ϕ).

For convenience, we use ∀V ϕ to denote ¬∃V (¬ϕ).

Clearly, ∃V ϕ is a logical consequence of ϕ that is indepen-
dent of V ; moreover, it is the strongest consequence of ϕ.
Many characterizations of variable forgetting, together with
complexity results, are reported in (Lang & Marquis 1998).

Weakest Sufficient Conditions
The formal definitions of weakest sufficient conditions and
strongest necessary conditions were first formalized via the
notion of variable forgetting by (Lin 2001), which in turn
play an essential role in our approach.

Definition 2 Let V be a set of propositional variables and
V ′ ⊆ V . Given a set of formulas Γ over V as a background
knowledge base and a formula α over V .

• A formula ϕ over V ′ is called a sufficient condition of α
on V ′ under Γ if Γ |= ϕ ⇒ α. It is called a weakest
sufficient condition of α on V ′ under Γ if it is a sufficient
condition of α on V ′ under Γ, and for any other sufficient
condition ϕ′ of α on V ′ under Γ, we have Γ |= ϕ′ ⇒ ϕ.

• A formula ϕ over V ′ is called a necessary condition of α
on V ′ under Γ if Γ |= α ⇒ ϕ. It is called a strongest
necessary condition of α on V ′ under Γ if it is a necessary
condition of α on V ′ under Γ, and for any other necessary
condition ϕ′ of α on V ′ under Γ, we have Γ |= ϕ⇒ ϕ′.

The notions given above are closely related to theory of
abduction. Given an observation, there may be more than
one abduction conclusion that we can draw. It should be
useful to find the weakest of such conclusions, i.e. the weak-
est sufficient condition of the observation (Lin 2001). The
notions of strongest necessary and weakest sufficient condi-
tions of a proposition also have many potential applications
in other areas such as reasoning about actions. The follow-
ing proposition, which is due to Lin (Lin 2001), shows how
to compute the two conditions.

Proposition 3 Given a background knowledge base θ on V ,
and a formula φ on V . Let V ′ ⊆ V . Suppose that SNC and
WSC are a strongest necessary condition and a weakest
sufficient condition of φ on V ′ under θ respectively. Then

• WSC is equivalent to ∀(V − V ′)(θ ⇒ φ); and
• SNC is equivalent to ∃(V − V ′)(θ ∧ φ).

The following gives a generalized notion of weakest suffi-
cient conditions and strongest necessary conditions.

Definition 4 Given a set of formulas Γ over V as a back-
ground knowledge base. Let α be a formula over V , and V
a collection of subsets of V .

• A formula ϕ is called V-definable under Γ (or simply
called V-definable if there is no confusion in the context),
if for each P ∈ V , there is a formula ψP on P such that
Γ |= ϕ⇔ ψP .
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• A formula ϕ is called a V-sufficient condition of α under
Γ if it is V-definable and Γ |= ϕ ⇒ α. It is called a
weakest V-sufficient condition of α under Γ if it is a V-
sufficient condition of α under Γ, and for any other V-
sufficient condition ϕ′ of α under Γ, we have Γ |= ϕ′ ⇒
ϕ.

• The notions of V-necessary conditions of α and strongest
V-necessary conditions of α under Γ can be defined in the
same way.

Given a set of formulas Γ over V as a background knowl-
edge base and P ⊆ V , a formula is a weakest {P}-sufficient
condition of α under Γ iff it is equivalent to a weakest suffi-
cient condition of α on P .

Let Γ be a set of formulas, V a set of propositional vari-
ables, and V a set of subsets of V . For convenience, we use
EV to denote a relation between two assignments s, s′ on V
satisfying Γ such that (s, s′) ∈ EV iff there exists a P ∈ V
with s∩P = s′ ∩P . We use E∗

V
to denote the transitive clo-

sure of EV . The following proposition gives the existence of
weakest V-sufficient and strongest V-necessary conditions.

Proposition 5 Given a finite set V of propositional vari-
ables, a set Γ of formulas over V as a background knowl-
edge base, a formula α over V , and a set V of subsets of
V . Denote by SWSC the set of assignments s over V such
that s |= Γ, and for all assignments s′ satisfying Γ with
(s, s′) ∈ E∗

V
, s′ |= α. Also denote by SSNC the set of as-

signments s over V such that s satisfies Γ, and there exists
an s′ such that s′ |= Γ, s′ |= α and (s′, s) ∈ E∗

V
. Then,

• if a formula satisfies exactly those assignments in SWSC ,
then the formula is a weakest V-sufficient condition of α
under Γ; and

• if a formula satisfies exactly those assignments in SSNC ,
then the formula is a strongest V-necessary condition of
α under Γ.

Proof: We prove only the first point because the second
can be done in a similar way. Let φ1 be a boolean formula
over V such that, for all assignment s, s |= φ1 iff s ∈ SWSC .
Then, for every assignment s ∈ SWSC , we have s |= α
because (s, s) ∈ E∗

V
. Thus, φ1 |= α.

To prove φ1 is V-definable, we show that, for each P ∈ V ,
φ1 |= ∀(V − P )φ1, which implies that φ1 is equivalent to
the formula ∀(V − P )φ1 over P . To prove φ1 |= ∀(V −
P )φ1, in a semantical way, it suffices to show that, for every
assignment s ∈ SWSC and s′ |= Γ, if s ∩ P = s′ ∩ P , then
s′ ∈ SWSC . Let s and s′ be given as above and suppose
s ∩ P = s′ ∩ P . Then, (s, s′) ∈ EV . Given an assignment t
satisfying Γ, if (s′, t) ∈ E∗

V
, then (s, t) ∈ E∗

V
by (s, s′) ∈ EV .

Thus, s′ ∈ SWSC . This proves that φ1 is V-definable.
Now we show that φ1 is a weakest V-sufficient condition

under Γ. Suppose φ is a V-definable and sufficient condition
of α under Γ, we want to prove that Γ |= φ ⇒ φ1. The
semantical argument of such a proof is as follows. Let s be
an assignment satisfying Γ and φ, we must show that s ∈
SWSC , i.e., for every assignment s′ satisfying Γ such that
(s, s′) ∈ E∗

V
, s′ |= α. Because Γ |= φ ⇒ α, it suffices to

show that s′ |= φ. By the condition (s, s′) ∈ E∗
V

, there is a
finite sequence of assignments s0, · · · , sk satisfying Γ with

s0 = s and sk = s′, and for every j < k, (sj , sj+1) ∈
EV . By the V-definability of φ, we know that for every j <
k, sj |= φ implies sj+1 |= φ. Thus, we have s′ |= φ by
induction.

The above proposition can be thought of as a semanti-
cal characterization of weakest V-sufficient and strongest V-
necessary conditions.

Knowledge and Weakest Sufficient Conditions
In our framework, a knowledge structure is a simple model
of reasoning about knowledge. The advantage of this model
is, as will be shown later, that agents’ knowledge can be
computed via the operation of variable forgetting.

Knowledge Structure
Definition 6 A knowledge structure F with n-agents is a
(n + 2)-tuple (V,Γ, O1, · · · , On) where (1) V is a set of
propositional variables; (2) Γ is a set of boolean formulas
over V ; and (3) for each agent i, Oi ⊆ V .

The variables in Oi are called agent i’s observable vari-
ables. An assignment that satisfies Γ is called a state of
knowledge structure F . Given a state s of F , we define
agent i’s local state at state s as s ∩Oi.

A pair (F , s) of knowledge structure F and a state s of F
is called a scenario.

In our framework, the language of epistemic logic, de-
noted by LCn , is a propositional language augmented with
modal operator Ki for each agent i, and modal operator
C∆ for each set of agents ∆. For a formula α, Kiα means
that agent i knows α, and C∆α indicates that it is common
knowledge among agents in ∆ that α holds. Based on sce-
narios, we define the semantics of language LCn as follows.
• For each primitive proposition p, (F , s) |= p iff s |= p.
• For any formulas α and β, (F , s) |= α∧ β iff (F , s) |= α

and (F , s) |= β; and (F , s) |= ¬α iff not (F , s) |= α.
• (F , s) |= Kiα iff for all s′ ofF such that s′∩Oi = s∩Oi,
(F , s′) |= α.

• (F , s) |= C∆α iff (F , s′) |= α for all s′ of F such that
(s, s′) ∈ E∗

V∆
, where E∗

V∆
is defined as in the previous

section.
Let F = (V,Γ, O1, · · · , On) be a knowledge structure.

For convenience, by F |= α, we mean that for every state
s of F , (F , s) |= α. We say that a formula is an i-local
formula if it is on Oi. Clearly, agent i knows an i-local
formula ϕ in F iff Γ |= ϕ.

Lemma 7 Let V be a finite set of variables, F =
(V,Γ, O1, · · · , On) be a knowledge structure, and s be a
state of F . Also suppose that ∆ ⊆ {1, · · · , n}, and V∆ =
{Oi | i ∈ ∆}. Then

1. for any boolean formula ψ over V , (F , s) |= ψ iff s |= ψ;
2. for any formula γ ∈ Γ, (F , s) |= γ;
3. for any i-local formula β, (F , s) |= Kiβ ⇔ β;

4. For any V∆-definable formula β, (F , s) |= C∆β ⇔ β;

5. for any formulas α1 and α2, (F , s) |= Ki(α1 ⇒ α2) ⇒
(Kiα1 ⇒ Kiα2);
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6. For any formulas α1 and α2, (F , s) |= C∆(α1 ⇒ α2)⇒
(C∆α1 ⇒ C∆α2).

7. For any formula α and i ∈ ∆, (F , s) |= C∆α ⇒
KiC∆α.

Proof: Here we only prove point 4, the proofs of the rest
of points will immediately follow from the definition of the
satisfaction relationship |= between a scenario and a for-
mula. Suppose that formula β is V∆-definable, we need
to show (F , s) |= C∆β ⇔ β. It suffices to prove that
(F , s) |= β ⇒ C∆β. Assume (F , s) |= β. To prove
that (F , s) |= C∆β, we need to show that for every as-
signment s′ such that (s, s′) ∈ E∗

V∆
, (F , s′) |= β. From

the definition of E∗
V∆

, it suffices to show that for every fi-
nite sequence of assignments s0, · · · , sk with s0 = s and
(sj , sj+1) ∈ EV∆ (0 ≤ j < k), we have that for every
j ≤ k, (F , sj) |= β. We show this by induction on j. When
j = 0, the result is clearly true. Assume (F , sj) |= β. Now
we prove (F , sj+1) |= β. Because (sj , sj+1) ∈ EV∆ , there
is an i ∈ ∆ such that Oi ∩ sj = Oi ∩ sj+1. On the other
hand, β is equivalent to a i-local formula. Thus, sj |= β iff
sj+1 |= β. Hence, (F , sj+1) |= β as desired.

Remark 8 It is worth mentioning that we can actually asso-
ciate a knowledge structure F = (V,Γ, O1, · · · , On) with a
Kripke structure M(F) = (W,π,K1, · · · ,Kn), where

1. W is the set of all states of F ;
2. for each w ∈ W , the assignment π(w) is the same as w;

and
3. for each agent i and assignments w,w′ ∈ W , we have

that wKiw′ iff w ∩Oi = w′ ∩Oi.

It is easy to show that for any formula α, (F , s) |= α iff
the situation (M(F), s) satisfies α. In this sense, a knowl-
edge structure can be viewed as a specific Kripke structure.

Knowledge as Weakest Sufficient Conditions
The following theorem establishes a bridge between the no-
tion of knowledge and the notion of weakest sufficient and
strongest necessary conditions.

Theorem 9 Let V be a finite set of variables, F =
(V,Γ, O1, · · · , On) a knowledge structure, α a formula over
V , and for an agent i, WSCαi and SNCαi a weakest suffi-
cient condition and a strongest necessary condition of α on
Oi under Γ respectively. Then, for each state s of F ,

(F , s) |= Kiα⇔WSCαi

and
(F , s) |= ¬Ki¬α⇔ SNCαi .

Proof: We only show (F , s) |= Kiα⇔WSCαi , while the
other part can be proved in a similar way. BecauseWSCαi is
a sufficient condition of α under Γ, we have Γ |=WSCαi ⇒
α. Let θ be the conjunction of all formulas in Γ, then we
have |= θ ⇒ (WSCαi ⇒ α), which leads to (F , s) |=
KiWSCαi ⇒ Kiα (by Lemma 7.) Because WSCαi is i-
local, by Lemma 7 again, we have (F , s) |= WSCαi ⇒
KiWSCαi . Hence, (F , s) |=WSCαi ⇒ Kiα.

To show the other direction (F , s) |= Kiα ⇒ WSCαi ,
we consider the formula ∀(V − Oi)(θ ⇒ α), where θ is

the same as above. By Proposition 3, we have Γ |= ∀(V −
Oi)(θ ⇒ α) ⇒ WSCαi . On the other hand, we know that
(F , s) |= Kiα ⇒ ∀(V − Oi)(θ ⇒ α) by the definition of
Kiα. This proves (F , s) |= Kiα⇒WSCαi .

The following corollary presents a symbolic way to com-
pute an agent’s knowledge.

Corollary 10 Let V be a finite set of variables, F =
(V, {θ}, O1, · · · , On) a knowledge structure with n agents,
and α a formula over V . Then, for every state s of F ,

(F , s) |= Kiα⇔ ∀(V −Oi)(θ ⇒ α).

Proof: Immediately by Theorem 9.

Example 11: Now we consider the communication sce-
nario between Alice and Bob addressed in section 1 once
again. To show how our system can deal with the knowl-
edge reasoning issue in this scenario, we define a knowledge
structure F as follows:

F = (V, {θ}, OA, OB),

where
• OA = {Alice send msg,Alice recv ack},

• OB = {Bob recv msg,Bob send ack},

• V = OA ∪OB , and
• θ is the conjunction of the following three formulas:

Bob recv msg ⇒ Alice send msg,
Bob send ack ⇒ Bob recv msg,
Alice recv ack ⇒ Bob send ack,

Now given a state of F

s =











Alice send msg,
Alice recv ack,
Bob recv msg,
Bob send ack











,

we would like to know whether Alice knows that Bob re-
ceived the message. Consider the formula

∀

{

Bob recv msg,
Bob send ack

}

(θ ⇒ Bob recv msg).

From Definition 1, the above formula is simplified as
¬Alice send msg ∨ Alice recv ack, which, obviously, is
satisfied in the scenario (F , s), i.e.

(F , s) |= ¬Alice send msg ∨Alice recv ack.

Then from Corollary 10, we have

(F , s) |= KABob recv msg.

Similarly, we can show that

(F , s) |= KAAlice send msg

and
(F , s) |= KAAlice recv ack,

which indicate that Alice knows that she sent the message
and she knows that she received acknowledgement from
Bob.
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Given a set of states S of a knowledge structure F and a
formula α, by (F , S) |= α, we mean that for each s ∈ S,
(F , s) |= α. The following proposition presents an alterna-
tive way to compute an agent’s knowledge.

Proposition 12 Let V be a finite set of variables, F =
(V,Γ, O1, · · · , On) a knowledge structure with n agents,
and α and ψ two formulas over V . Suppose that SNCψi
is a strongest necessary condition of ψ on Oi under Γ, Sψ
denotes the set of those states s of F such that (F , s) |= ψ,
and S

SNC
ψ

i

denotes the set of those states s such that

(F , s) |= SNC
ψ
i . Then, for each agent i, we have that

(F , Sψ) |= Kiα iff (F , S
SNC

ψ

i

) |= α.

Proof: Let S1 be the set of all states s satisfying (F , s) |=
∃(V −Oi)(θ∧ψ). Because Γ |= SNC

ψ
i ⇔ ∃(V −Oi)(θ∧

ψ), we have S1 = S
SNC

ψ

i

. Also it is easy to see that for state
s of F , s ∈ S1 iff there is a state s′ of F such that s′ |= ψ
and s ∩ Oi = s′ ∩ Oi. Therefore we have (F , Sψ) |= Kiα
iff S1 ⊆ {s | (F , s) |= α}. This leads to (F , Sψ) |= Kiα
iff (F , S1) |= α iff (F , S

SNC
ψ

i

) |= α.

The intuitive meaning behind Proposition 12 is that if all
we know about the current state is ψ, then all we know
about agent i’s knowledge (or agent i’s observations) is the
strongest necessary condition of ψ on Oi. A useful method
of knowledge computation can be extracted from this propo-
sition when the nested depth of knowledge operators is no
more than 2.

Proposition 13 Let V be a finite set of variables, F =
(V, {θ}, O1, · · · , On) a knowledge structure with n agents,
α and ψ two formulas over V , and Sψ denote the set of
states s of F such that (F , s) |= ψ. Then, for each agent i
and each agent j, we have

1. (F , Sψ) |= Kiα holds iff

|= (θ ∧ ∃(V −Oi)(θ ∧ ψ))⇒ α;

2. (F , Sψ) |= KjKiα holds iff

|= (θ ∧ ∃(V −Oi)(θ ∧ ∃(V −Oj)(θ ∧ ψ)))⇒ α.

Proof: The first part of the theorem follows immedi-
ately from Proposition 12. To show the second part, let
S∃(V−Oj)(θ∧ψ) be the set of all states s satisfying (F , s) |=
∃(V −Oj)(θ ∧ ψ). By Proposition 12, we have that

(F , Sψ) |= KjKiα iff (F , S∃(V−Oj)(θ∧ψ)) |= Kiα.

By the first part of this theorem, we have that
(F , S∃(V−Oj)(θ∧ψ)) |= Kiα iff

|= θ ∧ ∃(V −Oi)(θ ∧ ∃(V −Oj)(θ ∧ ψ))⇒ α.

As will be illustrated in our analysis of security protocols
(i.e. Section 6), the part 2 of Proposition 13 is useful for
verifying protocol specifications with nested knowledge op-
erators. Given a background knowledge base θ, when we
face the task of testing whether KjKiα holds in those states

satisfying ψ, by part 2 of Proposition 13, we can first get
φ1 = ∃(V −Oj)(θ∧ψ), which is a strongest necessary con-
dition of ψ on Oj . This is all we know about what agent j
observes fromψ. Then we compute φ2 = ∃(V−Oi)(θ∧φ1),
i.e. the strongest necessary condition of φ1 on Oi which is,
from the viewpoint of agent j, about what agent i observes.
In this way, the task of checking KjKiα is reduced to a task
of checking θ ∧ φ2 ⇒ α.

Corollary 14 Let V be a finite set of propositional variables
and F = (V, {θ}, O1, · · · , On) a knowledge structure with
n agents, α and ψ two formulas over V . Suppose that Sψ
denotes the set of all states s of F such that (F , s) |= ψ, and
SNC

ψ
i and WSCαi are a strongest necessary condition of

ψ onOi and a weakest necessary condition of α onOi under
{θ} respectively. Then

1. (F , Sψ) |= Kiα iff |= (θ ∧ ψ)⇒WSCαi ; and

2. (F , Sψ) |= Kiα iff |= (θ ∧ SNCψi )⇒ α.

Proof: The firs part of the corollary follows from Theo-
rem 9 and Lemma 7, while the second part follows immedi-
ately by Proposition 12.

In our analysis of security protocols, we observe that very
often, it seems more efficient to check an agent’s knowledge
via the second part of Corollary 14 rather than via the first
part. But this may not be always true for some other appli-
cations (e.g. see the example of the muddy children puzzle
in the next section).

Common Knowledge
Common knowledge plays an important role in reasoning
about knowledge (Fagin et al. 1995). In this section, we
generalize the concept of weakest sufficient and strongest
conditions so that they can be used to compute common
knowledge.

Generalized Weakest Sufficient Condition
We first investigate the computation of the weakest V-
sufficient and strongest V-necessary conditions by using the
notions of a least and a greatest fixed points of an operator,
which is introduced as follows.

Let ξ be an operator from the set of boolean formulas over
x to the set of boolean formulas over x. We say a ψ is a fixed
point of ξ, if |= ξ(ψ) ⇔ ψ. We say a ψ0 is a greatest fixed
point of ξ, if ψ0 is a fixed point of ξ and for every fixed
point ψ of ξ, we have |= ψ ⇒ ψ0. Clearly, any two greatest
fixed points are logically equivalent to each other. Thus, we
denote a greatest fixed point of ξ by gfpZξ(Z). Similarly,
We say a ψ0 is a least fixed point of ξ, if ψ0 is a fixed point
of ξ and for every fixed point ψ of ξ, we have |= ψ0 ⇒ ψ.
We denote a least fixed point of ξ by lfpZξ(Z). We say ξ
is monotonic, if for every two formulas ψ1 and ψ2 such that
|= ψ1 ⇒ ψ2, we have |= ξ(ψ1) ⇒ ξ(ψ2). For a finite set
x of boolean formulas if ξ is monotonic, then there exist a
least fixed point and a greatest fixed point (Tarski 1955).

Theorem 15 Let V be a finite set of variables, F =
(V, {θ}, O1, · · · , On) a knowledge structure, α a formula
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over V , ∆ ⊆ {1, · · · , n}, V∆ = {Oi | i ∈ ∆}. Assume
that Λ1 and Λ2 be two operators such that

Λ1(Z) =
∧

i∈∆

∀(x−Oi)(θ ⇒ Z)

and
Λ2(Z) =

∧

i∈∆

∃(x−Oi)(θ ∧ Z).

Then,

• a weakest V∆-sufficient condition of α under {θ} is equiv-
alent to gfp Z(α ∧ Λ1(Z)); and

• a strongest V∆-necessary condition of α under {θ} is
equivalent to lfp Z(α ∨ Λ2(Z)).

Proof: We only prove the first point of this theorem, the
proof of the other point is similar. Let WSCα∆ be a weakest
V∆-sufficient condition of α under {θ}. Note that the opera-
tor (α∧Λ1(Z)) is monotonic and thus there exists a greatest
fixed point of it. Let ψ1= gfp Z(α∧Λ1(Z)). We must show
that θ |=WSCα∆ ⇔ ψ1.

We first show that θ |= WSCα∆ ⇒ ψ1. For this purpose,
we only need to prove

1. θ |=WSCα∆ ⇒ (α ∧ Λ1(true)); and

2. for all formulas ϕ on V , if θ |= WSCα∆ ⇒ ϕ, then θ |=
WSCα∆ ⇒ (α ∧ Λ1(ϕ)).

The first point is trivially true because Λ1(true) is equiva-
lent to true and WSCα∆ is a sufficient condition of α under
{θ}. To show the second point, suppose θ |= WSCα∆ ⇒ ϕ.
For i ∈ ∆, Let αi be the formula on Oi such that θ |=
WSCα∆ ⇔ αi. Then, θ |= αi ⇒ ϕ. It follows that |= αi ⇒
(θ ⇒ ϕ) and hence |= αi ⇒ ∀(V −Oi)(θ ⇒ ϕ) because αi
does not depend on the variables in (V − Oi). So, we have
that, for all i ∈ ∆, θ |= WSCα∆ ⇒ ∀(V − Oi)(θ ⇒ ϕ).
The conclusion of the second point follows immediately.

We now show that θ |= ψ1 ⇒ WSCα∆, or θ |= (θ ⇒
ψ1) ⇒ WSCα∆. It suffices to show that θ ⇒ ψ1 is V∆-
sufficient condition of α under {θ}, that is,

1. θ ⇒ ψ1 is V∆ definable; and

2. θ |= (θ ⇒ ψ1)⇒ α.

By the fact that ψ1 is a fixed point of the operator (α ∧
Λ1(Z)), we have that

|= ψ1 ⇒ (α ∧
∧

i∈∆

∀(x−Oi)(θ ⇒ ψ1)).

It follows that |= ψ1 ⇒ α, and hence θ |= (θ ⇒ ψ1) ⇒ α.
To show the other point, for i ∈ ∆, we need to prove that
θ ⇒ ψ1 is equivalent to a formula over Oi. By the above,
we have that ψ1 ⇒ ∀(V − Oi)(θ ⇒ ψ1). It follows that
θ |= (θ ⇒ ψ1)⇒ ∀(V −Oi)(θ ⇒ ψ1), and hence

θ |= (θ ⇒ ψ1)⇔ ∀(V −Oi)(θ ⇒ ψ1)

because |= ∀(V −Oi)(θ ⇒ ψ1)⇒ (θ ⇒ ψ1) holds trivially.
Thus (θ ⇒ ψ1) is equivalent under θ to ∀(V − Oi)(θ ⇒
ψ1), which is over Oi. This completes the first point of the
conclusion of the theorem.

Common Knowledge as Weakest V-sufficient
Conditions
Given a set ∆ of agents and a family V∆ of observable vari-
able sets of these agents, we investigate the relationship be-
tween common knowledge and the weakest V∆-sufficient
and strongest V∆-necessary conditions.

Theorem 16 Let V be a finite set of variables, F =
(V,Γ, O1, · · · , On) a knowledge structure, ∆ ⊆ {1, · · · , n},
V∆ = {Oi | i ∈ ∆}, α a formula over V , and WSCα∆ and
SNCα∆ a weakest V∆-sufficient condition and a strongest
V∆-necessary condition of α under Γ respectively. Then,
for every state s of F ,

(F , s) |= C∆α⇔WSCα∆

and
(F , s) |= ¬C∆¬α⇔ SNCα∆.

Proof: We only show (F , s) |= C∆α ⇔ WSCα∆; the
other part can be done in a similar way. Because WSCα∆ is
a sufficient condition of α, we have that Γ |= WSCα∆ ⇒ α.
Let θ be the conjunction of all formulas in Γ, we have
that |= θ ⇒ (WSCα∆ ⇒ α), which leads to (F , s) |=
C∆WSCα∆ ⇒ C∆α (by point 6 of Lemma 7). Because
WSCα∆ is V∆-definable, we have, by point 4 of Lemma 7,
(F , s) |= WSCα∆ ⇒ C∆WSCα∆. Hence, (F , s) |=
WSCα∆ ⇒ C∆α.

To show the other direction (F , s) |= C∆α ⇒ WSCα∆,
we consider the formula ψ1 in the proof of Theorem 15, i.e.,
the greatest fixed point of the operator

ξ(Z) = α ∧
∧

i∈∆

∀(V −Oi)(θ ⇒ Z).

Because we already have (F , s) |= ψ1 ⇒ WSCα∆ by The-
orem 15, it suffices to show (F , s) |= C∆α ⇒ ψ1. Because
the greatest fixed point ψ1 of the operator ξ can be obtained
by a finite iteration of the operator with the starting point
ξ(true), we only need to prove that

1. F |= C∆α⇒ ξ(true); and
2. for arbitrary boolean formula ϕ over V , if F |= C∆α ⇒
ϕ, then F |= C∆α⇒ ξ(ϕ).

The first point is trivially true because ξ(true) is equivalent
to α. To prove the second, suppose F |= C∆α ⇒ ϕ. Then,
for each i ∈ ∆, F |= Ki(C∆α ⇒ ϕ). Thus, we have that
F |= C∆α ⇒ Kiϕ by points 5 and 7 of Lemma 7. Hence,
F |= C∆α ⇒ ∀(V − Oi)(θ ⇒ ϕ) (by Corollary 10). It
follows that F |= C∆α ⇒

∧

i∈∆ ∀(V − Oi)(θ ⇒ ϕ) and
hence F |= C∆α ⇒ ξ(ϕ). We thus get F |= C∆α ⇒ ψ1.
This completes the proof.

Proposition 17 Given V , F , ∆, V∆, α as defined in Theo-
rem 16. Let ψ be a formula over V . Assume that a strongest
V∆-necessary condition of ψ is SNCψ∆. Denote by Sψ the
set of those states s of F such that (F , s) |= ψ, and by
S
SNC

ψ

∆

the set of those states s such that (F , s) |= SNC
ψ
∆.

Then, for each agent i, we have

(F , Sψ) |= C∆α iff (F , S
SNC

ψ

∆

) |= α.
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Proof: Let S1 be the set of all states s such that there is
a state s′ with s′ |= ψ and (s′, s) ∈ V∆. We have that
(F , Sψ) |= C∆α iff for every s ∈ S1, (F , s) |= α. This
leads to (F , Sψ) |= C∆α iff (F , S1) |= α. On the other
hand, by Proposition 5, we have that S1 = S

SNC
ψ

∆

. Then
the conclusion of the proposition follows immediately.

Note that, in Proposition 17, if α is a formula, we have
that (F , Sψ) |= C∆α iff Γ |= SNC

ψ
∆ ⇒ α. Moreover,

by Thoerem 16, we have (F , Sψ) |= C∆α iff Γ |= ψ ⇒
WSCα∆, where WSCα∆ is a weakest V∆-sufficient of α.

A Case Study: the Muddy Children Puzzle
In this section, we demonstrate how our framework can be
applied to practical problems by using the example of the
muddy children puzzle.

Muddy Children Puzzle
The muddy children puzzle is a well-known variant of the
wise men puzzle. The story goes as follows (Fagin et al.
1995): Imagine n children playing together. Some of the
children, say k of them, get mud on their foreheads. Each
can see the mud on others but not on his/her own forehead.
Along comes the father, who says, “at least one of you has
mud on your forehead.” The father then asks the following
question, over and over: “Does any of you know whether
you have mud on your own forehead?”

Assuming that all children are perceptive, intelligent,
truthful, and they answer simultaneously, what we want to
show is that the first (k − 1) times the father asks the ques-
tion, they will say “No” but the kth time the children with
muddy foreheads will all answer “Yes.”

Modelling the Muddy Children Puzzle
To model the muddy children puzzle, let mi be a proposi-
tional variable, which means that child i is muddy (i < n).
Denote by V the set {mi | i < n}. Suppose the assign-
ment s0 = {mi | i < k} represents the actual state: child 0,
· · ·, child k − 1 have mud on their foreheads; and the other
children have not.

Each step j ≤ k is associated with a knowledge structure

Fj = (V,Γj , O0, · · · , On−1)

where Oi = V − {mi} for each i < n, and Γj is defined as
follows:
• At step 1: Γ1 = {

∨

i<nmi}.

• At step j + 1: Let ψji , for each i < n, be the formula

∀mi(Γj ⇒ mi). We have that Γj+1 = Γj∪
{

ϕ
j
i | i < n

}

where

ϕ
j
i =

{

¬ψji , if (Fj , s0) |= ¬Kimi

ψ
j
i , if (Fj , s0) |= Kimi.

Note that, we cannot just add Ki(mi) or ¬Ki(mi) to Γj
because Γj+1 should be a formula over V and Ki(mi) or
¬Ki(mi) depends on Γj . On the other hand, by Propo-
sition 12, ψji indeed indicates that agent i knows mi (i.e.

Figure 1: Performances of the two algorithms for the muddy
children puzzle

Kimi) with respect to Fj because V − Oi = {mi}. We
have that, for 0 < j < k and i < n, (Fj , s0) |= ¬Kimi,
and for i < k, (Fk, s0) |= Kimi as desired.

Experimental Results
Our framework of knowledge structure has been imple-
mented by using the BDD library (CUDD) developed by
Fabio Somenzi at Colorado University. To check agents’
knowledge, we implemented two different algorithms in
terms of Part 1 and 2 of Corollary 14 in Section 3, respec-
tively. Algorithm 1, which is based on part 1 of Corollary 14,
seems much more efficient than Algorithm 2, which is based
on part 2 of Corollary 14, for this particular example. The
reason is as follows. It is clear that the main task of both al-
gorithms is to check whether (Fj , s0) |= Ki(mi). However,
Algorithm 1’s method is to compute s0 |= ∀mi(Fj ⇒ mi),
while Algorithm 2 is to compute |= ∃mi(Fj ∧ s0) ⇒ mi.
Now the main reason why Algorithm 1 is much more effi-
cient for this particular problem is clear: ∀mi(Fj ⇒ mi) is
simply equivalent to Fj( mi

false
). Assuming half of the chil-

dren are muddy, Fig. 1 gives the performances for a Pentium
IV PC at 2.4GHz, with 512RAM. In the figure, the x-axis is
for the number of children, and the y-axis for the CPU run
time in seconds.

The muddy children puzzle as a famous benchmark prob-
lem of reasoning about knowledge can be resolved by
both proof-theoretic and semantical approaches, for ex-
ample, (Baltag, Moss, & Solecki 1998; Gerbrandy 1999;
Lomuscio 1999). Proof-theoretic approaches depend on ef-
ficient provers for multi-modal logics; and semantical ones
may suffer from the state-explosion problem. Our approach
is essentially a semantical one, but we give a syntactical and
compact way to represent Kripke structures by using knowl-
edge structures, and hence may avoid the state-explosion
problem to some extent.

Application to Verification of Security
Protocols

In this section, we apply our knowledge model to security
protocols verification. Security protocols that set up cred-
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its of the parties and deal with the distribution of crypto-
graphic keys are essential in communication over vulnera-
ble networks. Authentication plays a key role in security
protocols. Subtle bugs that lead to attack are often found
when the protocols are used for many years. This presents a
challenge of how to prove the correctness of a security pro-
tocol. Formal methods are introduced to establish and prove
whether a secure protocol satisfies a certain authentication
specification.

Background on Authentication Protocols
Authentication protocols aim to coordinate the activity of
different parties (usually referred to as principals) over a
network. They generally consist of a sequence of message
exchanges whose format is fixed in advance and must con-
form to. Usually, a principal can take part into a protocol run
in different ways, as the initiatoror the responder; we often
call the principal has different roles. Very often a principal
can take part into several protocols runs simultaneously with
different roles.

The design of authentication protocols must have the con-
scious in mind that the message may be intercepted and
someone with malicious intention can impersonate an hon-
est principal. One of the key issues in authentication is to
ensure the confidentiality, that is, to prevent private informa-
tion from being disclosed to unauthorized entities. Another
issue is to avoid intruder impersonating other principals. In
general, a principal should ensure that the message he re-
ceives was created recently and sent by the principal who
claims to have sent it.

Cryptography is a fundamental element in authentication.
A message transmitted over a channel without any crypto-
graphic converting is called plaintext. The intention of cryp-
tography is to transform a given message to some form that
is unrecognizable by anyone except the intended receiver.
The procedure is called encryption and the corresponding
parameter is known as encryption key. The encoded message
is referred to as ciphertext. The reverse procedure is called
decryption and uses the corresponding decryption key. The
symmetric-key cryptography, which is also called secret-key
cryptography, uses the same key for both encryption and de-
cryption. The asymmetric-key cryptography, which is also
called public-key cryptography, uses different keys for en-
cryption and decryption. The one for the encryption is pub-
lic key that is generally available for anyone. Corresponding
to the public key is the private key, which is for the decryp-
tion and only owned by one principal.

The Dolev-Yao Intruder Model
The standard adversary model for the analysis of security
protocols was introduced by Dolev and Yao in 1983 and is
commonly known as Dolev-Yao model (Dolev & Yao 1983).
According to this model, a set of conservative assumptions
is made as follows:

1. Messages are considered as indivisible abstract values in-
stead of sequences of bits.

2. All the messages from one principal to any other princi-
pals must pass through the adversary and the adversary

acts as a general router in the communication.
3. The adversary can read, alter and redirect any messages.
4. The adversary can only decrypt a message if he has the

right keys, can only compose new messages from keys
and messages that he already possesses.

5. The adversary cannot perform any statistical or other
cryptanalytic attacks.

Although this model has drawback of finding implementa-
tion dependent attacks, it simplifies the protocol analysis. It
has been proved to be the the most powerful modelling of
the adversary (Cervesato 2001) because it can simulate any
other possible attackers.

The Revised Needham-Schroeder Protocol
As Lowe (Lowe 1996) pointed out that the Needham-
Schroeder protocol has the problem of lacking the identity
of the responder and can be fixed by a small modification.
However, it is not clear if the revised version is correct. Our
approach provides a method to automatically prove the cor-
rectness of security protocols instead of just finding bugs as
usual analysis tools do for security protocols.

In the cryptography literature, the revised Needham-
Schroeder protocol is described as follows:

1. A→ B: {Na,A}Kb
2. B → A: {B,Na,Nb}Ka
3. A→ B: {Nb}Kb
whereA→ B :M is a notation for “A sendsB the message
M ” or “B receives the message M from A”. The notation
{M}K means the encryption of M with the key K. Also,
A,B denote the principal identifiers, Ka,Kb indicate, re-
spectively, A’s and B’s public keys. Moreover, Na and Nb
are the nonces which are newly generated unguessable val-
ues by A and B, respectively, to guarantee the freshness of
messages.

Two informal goals or specifications of the protocol are
“A knows that B knows A said Na and Na is fresh,” and
“B knows that A knows B said Nb and Nb is fresh .”

To analyze the protocol, we introduce A and B local his-
tories for the protocol: If A plays the role of the initiator in
the protocol, and assumes that B be the responsor, then A’s
local history is that

1. A said {Na,A}KbA
2. A sees {BA, Na,NbA}Ka
3. A said {NbA}KbA
where “A said M” means that A sent the message M , or
other message containing M ; “A sees M” indicates that A
receives M or got M by some received messages; BA is
the responsor of the protocol from A’s local view; KbA and
NbA are, from A’s local view, the responsor’s public key
and nonce, respectively.

If B plays the role of responsor in the protocol, and as-
sumes A be the initiator, then A’s local history is that

1. B sees {NaB , AB}Kb
2. B said {B,NaB , Nb}Ka
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3. B sees {Nb}Kb
where AB is the initiator of the protocol from A’s local ob-
servations; KaB and NaB are, from B’s local view, the ini-
tiator’s public key and nonce, respectively.

The main point of our analysis is that if an agent is
involved in the protocol, then the agent’s real observa-
tions should be compatible with the so-called local history.
For example, if A is the initiator of the protocol, A sees
{B,NaB , Nb}Ka, then according to A’s local history for
the protocol we have that A assumes that B is the respon-
sor of the protocol, the responsor’s nonce is Nb, and from
the responsor’s view, the initiator’s nonce is Na (see the 4th
formula of the background knowledge Γ bellow).

Let us see how our framework of reasoning about knowl-
edge can be applied to this protocol.

The variable set V consists of the following atoms:

• fresh(Na): Nonce Na is fresh.

• fresh(Nb): Nonce Nb is fresh.

• role(Init, A): A plays the role of the initiator of the pro-
tocol.

• role(Resp,B): B plays the role of the responder of the
protocol.

• RespA = B: A assumes that the responder of the proto-
col is B.

• InitB = A: B assumes that the initiator of the protocol
is A.

• NaB = Na: B assumes that the partner’s nonce in the
execution of the protocol is Na.

• NbA = Nb: A assumes that the partner’s nonce in the
execution of the protocol is Nb.

• said(B,Na): B said Na by sending a message contain-
ing Na.

• said(A,Nb): A said Nb.

• sees(B, {Na,A}Kb): B sees {Na,A}Kb (possibly by
decrypting the messages received. )

• sees(A, {B,NaB , Nb}Ka): A sees {B,NaB , Nb}Ka.

The background knowledge Γ consists of the following
formulas:

1.

(

sees(B, {Na,A}Kb)∧
said(B,Na)∧
fresh(Na)

)

⇒ role(Resp,B)

2.





sees(A, {B,NaB , Nb}Ka)∧
said(A,Nb)∧
fresh(Nb)



⇒ role(Init, A)

3.







role(Resp,B)∧
sees(B, {Na,A}Kb)∧
said(B,Na)∧
fresh(Na)






⇒

(

InitB = A∧
NaB = Na

)

4.







role(Init, A)∧
sees(A, {B, NaB , Nb}Ka)∧
said(A, Nb)∧
fresh(Nb)






⇒

(

RespA = B∧
NaB = Na∧
NbA = Nb

)

5.
(

role(Init, A)∧
RespA = B

)

⇒

(

sees(B, {Na,A}Kb)∧
said(B,Na)

)

6.
(

role(Resp, B)∧
InitB = A

)

⇒

(

sees(A, {B, NaB , Nb}Ka)∧
said(A, Nb)

)

7. (role(Init, A)⇒ fresh(Na))∧
(role(Resp,B)⇒ fresh(Nb))

Notice that the first two formulas are required for the ratio-
nality of the agentsA andB. The other formulas in Γ can be
obtained automatically by some fixed set of meta rules. We
obtain the third and fourth formulas by the comparing their
local history for the protocols to the conditions appearing
in the formulas. To get the fifth formula informally, con-
sider A’s local history under the conditions role(Init, A)
and RespA = B, which should be that

1. A said {Na,A}Kb
2. A sees {B,Na,NbA}Ka
3. A said {NbA}Kb.
According to A’s local history, A sees the nonce Na gen-
erated by A itself. Because Na is only said in the message
{Na,A}Kb, thus B, who has the inverse key of Kb, must
see this message and said Na. Similarly, we can see that
sixth formula holds. The last formula follows immediately
by the definition of the protocol.

The set OA of observable variables to A is
{fresh(Na), role(Init, A), RespA = B}.

The set OB of observable variables to B is
{fresh(Nb), role(Resp,B), InitB = A}.

Now consider the knowledge structure
F = (V,Γ, OA, OB).

Let SpecA be the formal specification:




fresh(Na)∧
role(Resp,A)∧
RespA = B



⇒ KAKB

(

said(A,Na)∧
fresh(Na)

)

and SpecB be the formal specification:




fresh(Nb)∧
role(Resp,B)∧
InitB = A



⇒ KBKA

(

said(B,Nb)∧
fresh(Nb)

)

.

It is easy to show that, for all states s of F ,
(F , s) |= SpecA ∧ SpecB

as desired.
We should mention that, in the original Needham-

Schroeder protocol (R.M.Needham & M.D.Schroeder
1978), the second message is B → A: {Na,Nb}Ka in-
stead of B → A: {B,Na,Nb}Ka. Therefore, the fourth
formula in Γ would change to






role(Init, A)∧
sees(A, {NaB , Nb}Ka)∧
said(A, Nb)∧
fresh(Nb)






⇒

(

NaB = Na∧
NbA = Nb

)

Thus, RespA = B do not necessarily hold under
the condition role(Init, A) ∧ sees(A, {NaB , Nb}Ka) ∧
said(A,Nb) ∧ fresh(Nb). This is why the specifications
SpecA and SpecB do not hold for the original Needham-
Schroeder protocol.
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Discussion

BAN logic (Burrows, Abadi, & Needham 1990) is one of
the most successful logical tools to reason about security
protocols. However, the semantics of BAN is always ar-
guable, and it is not clear under what assumption the rules
of BAN logic is sound and complete. This motivated the re-
search of seeking more adequate frameworks (models). Pro-
viding a model-theoretic semantics for BAN logic has been
a central idea in the development of BAN-like logics such
as AT (Abadi & Tuttle 1991) and SVO (Syversion & van
Oorschot 1996). The major advantage of our approach is
that we can prove the correctness of a protocol systemat-
ically, rather than finding a flaw (bug) of a protocol. Also,
our method operates on the actual definition of the protocols,
not on some kind of their abstract specifications.

Conclusion

In this paper, we have investigated knowledge reasoning
within a simple framework called knowledge structure.
Variable forgetting is used as a basic operation for one agent
to reason about its own or other agents’ knowledge. Given
a background knowledge base T , and a set of observable
variables Oi for each agent i, we have showed that the no-
tion of agent i knowing a formula ϕ can be defined as the
weakest sufficient condition of ϕ on Oi under T . Moreover,
we generalize the notion of weakest sufficient conditions to
capture the notion of common knowledge in framework. To
illustrate the applications of our knowledge structures, we
have discussed the automated analysis of the well-known
muddy children puzzle and the verification of the corrected
Needham-Schroeder protocol.

Our work presented in this paper can be further extended
in several directions. First, we will investigate whether our
knowledge structures can be extended and used as a ba-
sis for knowledge based programming (Fagin et al. 1995).
Secondly, in our current framework of knowledge struc-
tures, we have not considered the issue of only know-
ing which has been extensively studied in other knowl-
edge reasoning models, e.g. (Halpern & Lakemeyer 1996;
van der Hock, Jaspars, & Thijsse 2003; Levesque 1990). It
will be an interesting topic of how our knowledge model
handles only knowing in reasoning about knowledge.

Finally, recent research has shown that knowledge update
has many important applications in reasoning about actions
and plans and dynamic modelling of multi-agent systems
(Zhang 2003). Baral and Zhang have proposed a general
model for performing knowledge update based on the stan-
dard single agent S5 modal logic (Baral & Zhang 2001).
We believe that their work can be extended to many agents
modal logics by using the knowledge structure defined in
this paper and therefore to develop a more general system for
knowledge update. Along this direction, an interesting ques-
tion is what is the underlying relationship between knowl-
edge forgetting - a specific type of knowledge update, and
variable forgetting as addressed in this paper.
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