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Abstract

We extend graded modal logic (GML) to a logic that
captures the concept of majority. We provide an axiom-
atization for majority logic,MJL, and sketch sound-
ness and completeness proofs. Along the way, we must
answer the question what is a majority of an infinite
set? Majority spaces are introduced as a solution to this
question.

Introduction
The language of modal logic has long been used to model
intensional notions such as knowledge, belief and obliga-
tion. In this extended abstract we present a new modal logic
which models an agent’s ability to reason about majorities.
The concept of majority plays an important role when an
agent is faced with a decision in a social situation. For ex-
ample, think of dinner with a group of friends. Chances are
that many of the decisions, such as choice of restaurant, ap-
petizers or wine, were based on the will of the majority. An
extended example which illustrates this point is found in the
next section. Of course, the concept of majority is integral
to many voting systems. With these intuitions in mind, we
propose a logic,MJL, in which the concept of majority is
axiomatized.

Given a formulaα, the language of normal modal logics
can express ”αis true inall accessible worlds” (2α), and ”α
is true inat least oneaccessible world” (3α). But suppose
that we want to express thatα is true in at leastthreeaccessi-
ble worlds or thatα is true in amajority (more than half)of
the accessible worlds. The language of normal modal logic
cannot express such statements. The logicMJL presented in
this paper will use modal operators that can specify exactly
how many accessible worlds are of interest.

To start with, we add the graded modalities first discussed
in (Fine 1972; Goble 1970). For anyn ∈ N, the formula
3nα is intended to meanα is true in strictly more thann ac-
cessible world, and so its dual2nα is intended to mean¬α
is true in less than or equal ton accessible worlds. We may
call 3nα an at leastformula, since3nα will be true pre-
cisely whenα is true inat leastn+1 accessible worlds. Sim-
ilarly we may call2nα all but formulas, since2nα will be
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true precisely whenα is false inall but n accessible worlds.
For simplicity we write3α instead of30α and2α instead
of 20α. For instance, if the formula2k⊥ is true at some
world w, thenw has at mostk accessible worlds.

We then extend the graded modal logic (GML) as de-
scribed in (Fattorosi-Barnaba & Cerrato. 1988; Caro 1988)
with a modal operatorW , whereWα is intended to meanα
is true in more than or equal to half of the accessible worlds.
Hence its dual,Mα will mean α is true in more than half
of the accessible worlds. HereM represents strictMajority
andW representsWeak majority. In what follows, when we
use ”majority”, we mean weak majority (i.e. more than or
equal to 50%).

Before proceeding we should check that we are in fact
gaining expressive power with the new modal operators. To
see this note thatMJL does not obey bisimulation. We can
easily find two bisimular Kripke models where in one of
them we haveWα is true at some states and in the other
Wα may not be true at a bisimular state. It follows that the
operatorW cannot be defined from the standard modal oper-
ators (2and3). A similar argument shows that3n cannot
be defined from the standard modal operators. For an ex-
tended discussion of this fact refer to (Fattorosi-Barnaba &
Cerrato. 1988). Furthermore, a similar argument shows that
the modal operatorM cannot be expressed with the graded
modal operators1

Given the intended interpretation ofWα, defining truth
in a Kripke model is straightforward provided there are only
finitely many accessible worlds. However, there are situa-
tions, such as in the canonical model, in which one cannot
assume that the number of accessible worlds is finite. This
leads us to the question of what is the majority of an infinite
set? The standard definition, i.e. more than half, no longer
makes sense. Should we consider the even numbers a weak
majority of the natural numbers, and if so what about the

1In (de Rijke 2000) de Rijke develops a notion of bisimula-
tion (g-bisimulation) for graded modal logic. He then uses this no-
tion to prove some model theoretic results such as the finite model
property. So, we need to show that there are two models that are
g-bisimular but can be distinguished using theM operator. Of
course, if the number of accessible worlds is fixed to ben then
Mα can be defined to be3bn/2cα; however ifMα can be de-
fined using graded modal operators, then this definition must hold
regardless of the number of accessible worlds.
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set that contains all the even numbers plus the set{1, 3}?
Mark Fey in (Fey 2002) proposes some interesting answers
to this question. However, Fey’s solutions are not appropri-
ate for our framework and so we need another solution. We
proposemajority spaces, which generalize the concept of an
ultrafilter, as a solution to the problem of defining a majority
of an infinite set.

This extended abstract is organized as follows. The next
section reviews graded modal logic. We then describe the
language of majority logic and offer an axiomatization. Af-
ter introducing majority spaces, we provide a Kripke style
semantics and sketch the completeness proof.

Graded Modal Logic
In this section, we provide a brief overview of graded
modal logic. Graded modal logic was first introduced in
(Fine 1972; Goble 1970). It was then studied in (Fattorosi-
Barnaba & Cerrato. 1988; H. J. Ohlbach & Hustadt 1995;
Caro 1988; de Rijke 2000; Tobies 2001) in which issues of
axiomatization, completeness, decidability and translations
into predicate logic are discussed. We briefly discuss the
language of graded modal logic and state some of the main
results found in the literature. All results and proofs can
be found in (Fattorosi-Barnaba & Cerrato. 1988) and (Caro
1988).

Definition 1 Given a countable set of atomic propositions
P = {p0, p1, . . .}, a formulaα of GML can have the follow-
ing syntactic form:

α := p | ¬α | α ∨ α | 3nα

wherep ∈ P andn ∈ N.

For eachn ∈ N, we define2nα := ¬3n¬α, and
3!nα := 3n−1α ∧ ¬3nα (n 6= 0) where3!0α := ¬30α.
So 3!nα will have the intended meaning thatα is true in
exactlyn accessible worlds. LetLGML be the set of all well-
formed formulas ofGML.

The following axiomatization was presented in (Caro
1988).

G0 All tautologies in the language ofGML

G1 3n+1α → 3nα (n ∈ N)

G2 20(α → β) → 3nα → 3nβ (n ∈ N)

G3 3!0(α ∧ β) → ((3!n1α ∧ 3!n2β) → 3!n1+n2(α ∨
β)) (n1, n2 ∈ N)

GML is closed under modus ponens (MP) and necessi-
tation (N), i.e., from` α infer` 2α. We write`GML α if α
can be deduced fromG0−G1 using the rulesMP andN .

GML formulas are interpreted in the usual Kripke struc-
tures. LetM = 〈S, R, V 〉 be a Kripke model, whereS is a
set of worlds,R is a binary relation overS andV : P → 2S

is a valuation function. The boolean connectives and propo-
sitional variables are evaluated as usual. We will only show
how the formula3nα is evaluated at a worlds ∈ S:

M, s |= 3nα iff |{t : sRt andM, t |= α}| > n

We sayα is valid in M iff ∀s ∈ S, M, s |= α, and
write M |= α. We write |= α if α is valid in all mod-
els (based on some class of frames2) We also make use
of the following notation throughout this paper:R(s) =
{t | sRt} and for any formulaα (of MJL or GML),
Rα(s) = {t | sRt andt |= α}. So, the above definition
can be rewritten as

M, s |= 3nα iff |Rα(s)| > n

GML is shown to be sound and complete with respect
to the class of all frames in (Fattorosi-Barnaba & Cerrato.
1988). LetF be the class of all frames. It is easily verified
that the axiomsG0−G1 are valid in any model based onF
andMP andN preserve validity. We state the completeness
theorem below, but postpone discussion until later in this
paper.

Theorem 1 (Completeness of GML)Let F be the class of
all frames. Then for any formulaα ofGML, |= α iff `GML α.

In (Caro 1988)GML is shown to be decidable by show-
ing that GML has the finite model property. Maarten de
Rijke (de Rijke 2000) arrives at the same conclusion using
an extended notion of bisimulation appropriate for a modal
language with graded modalities. de Rijke also establishes
invariance and definability results. Finally in (Tobies 2001),
Tobbies shows that the decidability problem forGML is in
PSPACE.

Majority Logic: Syntax
We extend the graded modal language with a new modal
operatorW whereW is interpreted as ”weak majority.”

Definition 1 Given a countable set of atomic propositions
P = {p0, p1, . . .}, a formulaα of MJL can have the follow-
ing syntactic form:

α := p | ¬α | α ∨ α | 3nα |Wα

wherep ∈ P andn ∈ N.

Let LMJL be the set of all well-formed formulas of the
majority modal logic. DefineMα := ¬W¬α. So, MJL
takes the language ofGML and closes under the operator
W . Notice in particular that there are an infinite number
of modal operators, one for each natural number plus the
majority operators.

Axiomatization
We propose the following axiomatization ofMJL. Since
MJL extends graded modal logic, we will include the ax-
iom schemesG1, G2 andG3. These axioms captures our
intuitions when we can count accessible worlds. But what
axioms shall we adopt to reason about “majority”? The fol-
lowing discussion will motivate the proposed axiomatization
which can be found at the end of the discussion.

2Unless otherwise stated we will assume that we are working
with models based on the class of all frames. Refer to (Blackburn,
de Rijke, & Venema 2001) for more information on frames.
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Suppose a group of friends are trying to decide where to
go for dinner. As is common in most social situations, the
goal is to keep as many people happy as possible. If more
than half of the people want Indian for dinner and more than
half want Italian for dinner, then there must be someone who
wants both Italian and Indian. This is easy to see if we con-
sider a specific example. If there are 10 friends deciding
on dinner and 6 people want Indian and 6 people want Ital-
ian, then obviously at least someone wants both Indian and
Italian3. This reasoning is captured by the following axiom
scheme

Mα ∧Mβ → 3(α ∧ β)

Now, suppose that more than half of the friends want Ital-
ian for dinner. Also, suppose that every time the group
eats Italian where wine is always served with Italian food.
We can conclude that a majority of the friends want wine
with dinner. And so, we will included the following axiom
scheme

Mα ∧�(α → β) → Mβ

Suppose that you are put in charge of making dinner reser-
vations for the group of 10 people. Given that 5 people pre-
fer Italian and 5 people prefer Indian, what can you conclude
if you are given additional information that more that 3 peo-
ple do not like Italian and do not like Indian. The natural
conclusion to draw is that more than 3 people like Indian
and Italian food. Otherwise, say you conclude that only two
people like both Indian and Italian food. This would mean
that 3 people like Italian but not Indian, 3 people like Indian
but not Italian and (more than ) 3 people like neither Indian
nor Italian. Since these sets are disjoint, the total sum of
people is 11 or more, and so it must be the case that more
than 3 people like Indian and Italian. This line of reasoning
is captured by the following axiom scheme

Wα ∧Wβ ∧3n(¬α ∧ ¬β) → 3n(α ∧ β) (n ∈ N)

The final situation is similar to the above situation. except
suppose that a majority of the people prefer Italian.

Wα ∧Mβ ∧3n(¬α ∧ ¬β) → 3n+1(α ∧ β) (n ∈ N)

The preceding discussion is summarized by the following
list of axioms and rules.

Axiom 1 Classical propositional tautologies

Axiom 2 3n+1α → 3nα (n ∈ N)

Axiom 3 �(α → β) → (3nα → 3nβ) (n ∈ N)

Axiom 4 3!0(α∧β) → ((3!n1α∧3!n2β) → 3!n1+n2(α∨
β)) (n1, n2 ∈ N)

Axiom 5 Mα ∧Mβ → 3(α ∧ β)

Axiom 6 Mα ∧�(α → β) → Mβ

Axiom 7 Wα∧Wβ∧3n(¬α∧¬β) → 3n(α∧β) (n ∈ N)

3Of course two people could have said that they don’t care
where they eat. This is not the same as two people saying that
they wantboth Italian and Indian, but for the purposes of this ex-
ample we will assume that a ”don’t care” vote is a vote for both
options

Axiom 8 Wα∧Mβ∧3n(¬α∧¬β) → 3n+1(α∧β) (n ∈
N)

MP Fromα andα → β deriveβ.

NEC Fromα derive2α.

We write`MJL α if α can be deduced from Axioms 1 - 8
using the rulesMP andN . If it is clear from context, we
may write` α instead of̀ MJL α.

Properties of the Axioms
We now discuss some of the properties of the axioms pro-
posed in the previous section. Some of these properties turn
out to be useful in the completeness proof and others are
natural properties of majorities and weak majorities.

This first lemma gives some consequences of the pro-
posed axioms. The lemma also shows that our axiomati-
zation captures many natural properties of ”majority” and
”weak majority”. Part (i) showsM andW are both normal
modal operators. Part (ii) is equivalent to saying that given
any setX and any subset ofX either it or its complement
(or both) constitutes weak majority ofX. (iii) - (viii) are
obvious properties of majority and weak majority sets.

Lemma 2 Suppose thatα andβ are arbitrary formulas of
MJL. Then

i. If ` α → β then` Mα → Mβ and` Wα → Wβ.

ii. ` Wα ∨W¬α

iii. ` Mα → Wα and` Mα → 3α

iv. ` ¬M⊥
v. ` �α → Wα

vi. ` Mα ∧Wβ → 3(α ∧ β)
vii. ` Wα ∧3(¬α ∧ β) → M(α ∨ β)

viii. ` Wα ∧Wβ ∧ ¬3(α ∧ β) → ¬3(¬α ∧ ¬β)

Proof Suppose thatα andβ are any formulas ofMJL.

i. Suppose that̀ α → β. We will show` Mα → Mβ and
` Wα → Wβ. By theNEC, ` 2(α → β), and so by
modus ponens and Axiom 6,̀ Mα → Mβ. ` Wα →
Wβ follows easily using contraposition.

ii. ` ¬3(α ∧ ¬α) → ¬(M¬α ∧ Mα) is an instance of
Axiom 5. Hence` 2> → (Wα ∨ W¬α). By NEC
` 2>. Therefore byMP , ` Wα ∨W¬α.

iii. ` Mα → Wα follows from (ii), and` Mα → 3α is an
instance of Axiom 5.

iv. Using (iii) we get` ¬3⊥ → ¬M⊥, and hencè ¬M⊥.

v. Using axiom 5` ¬3(¬α ∧ ¬α) → ¬(M¬α ∧ M¬α)
which is` �α → Wα

vi. Note by axiom 6 we have
` Mα ∧ 2(α → ¬β) → M¬β. So we havè Mα ∧
Wβ → ¬2(α → ¬β) and so using propositional calculus
` Mα ∧Wβ → 3(α ∧ β)

vii. Wα∧3(¬α∧ β) → Wα∧3(¬α∧ (α∨ β))∧2¬(α∧
¬(α∨β)) but we haveWα∧3(¬α∧ (α∨β))∧2¬(α∧
¬(α ∨ β)) → M(α ∨ β)
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viii. By lemma 2-(vi) as a substitution instance, we get`
Wα ∧ M(β ∨ ¬α) → 3(α ∧ β) which is equivalent to
` Wα∧¬3(α∧β) → ¬M(β ∨¬α), but the above item
of the lemma,̀ Wβ∧3(¬α∧¬β) → M(β∨¬α). Thus
we get̀ Wβ∧Wα∧¬3(α∧β) → Wβ∧¬M(β∨¬α)
and hencè Wβ ∧ ¬M(β ∨ ¬α) → ¬3(¬α ∧ ¬β)

�

Using the language of graded modal logic, we can find a
formula that expresses exactly how many worlds are acces-
sible at any given state. For anyn ∈ N, the formula3n!>
will be true at some worldw iff there are exactlyn acces-
sible worlds. Similarly, the formulas2n⊥ will be true at
some worldw iff there areat mostn accessible worlds. We
will defineAn := 3n!>, A≤n := 2n⊥ andA>n := 3n>.
So,An is true at a states if there are exactlyn accessible
worlds. The following lemma show what happens when we
know the exact number of accessible worlds.

Lemma 3 Suppose thatAn is the formula defined above.
Then

i. ` An → (2bn/2cα ∨2bn/2c¬α) For all n ∈ N
ii. ` An → (2bn/2c−1α → 3bn/2cα) For all n > 2

iii. For all n ∈ N, ` An → (Mα ↔ 3bn/2cα).

Proof Part (i) and (ii) are statements of graded modal
logic, and given the completeness and soundness proofs
in (Caro 1988; Fattorosi-Barnaba & Cerrato. 1988), follow
easily from semantic arguments. We first note the following
properties which are instances of Axioms 8 and 7 respec-
tively (let β = α).

1. ` Mα ∧3n¬α → 3n+1α

2. ` Wα ∧3n¬α → 3nα

We need only show property(iii).
• Suppose that̀ An ∧3bn/2cα. By part (i) of this lemma

we get` An ∧ 3bn/2cα → 2bn/2cα and by (2) we get
` An ∧3bn/2cα ∧2bn/2cα → Mα

• Suppose that̀ An ∧ Mα. If n = 0 or n = 1 then we
haveMα → 3α so we get3bn/2cα. Assumen > 2 by
(1) we haveMα → (3bn/2cα ∨ 2bn/2c−1α). Using part
(ii) of this lemma we get̀ An ∧Mα → 3bn/2cα

�

Majority Logic: Semantics
In this section we will present the semantics forMJL. As
usual, formulas ofMJL will be interpreted over Kripke
models. The formulaWα will be true provided that the
set of all accessible worlds in whichα is true is a majority
of the set of all accessible worlds. The definition makes
sense only if there arefinitely many accessible worlds. But
what constitutes a majority of an infinite set? The following
section offers a solution to this question.

Recall that ifS is any set of states andR a binary relation
onS, thenR(s) = {t | sRt} and for any formulaα (of MJL
or GML), Rα(s) = {t | sRt andt |= α}. This definition of
course depends on the definition of truth in a model which
is given below.

Majority Spaces
A very interesting situation arises when a Kripke model is
not finitely generated, that is whenR(s) may be infinite for
some states ∈ S. While the semantics of a majority sub-
set is very clear in the finite case, it is not clear what should
constitute a majority when there are an infinite number of
possibilities. We cannot for example stipulate that every in-
finite set is a (strict) majority. This would create the unsatis-
factory situation where a set and it’s complement could be a
majority.

Another natural choice would be to call a setX ⊆ R(s)
a majority ifXC is finite, i.e take the majority sets to be the
co-finite sets. However, suppose thatR(s) = X1∪X2∪X3,
whereX1, X2, andX3 are nonempty pairwise disjoint sets
Then one would expect that for somei andj wherei 6= j,
Xi ∪ Xj would be a majority. This is certainly true in
the finite case, and so one would expect it to be true in
the infinite case. However, it is easy to come up with an
example where all of theXi are infinite; and so, none of the
Xi ∪Xj would be a majority.

Instead of trying to define a majority set as some special
subset ofR(s), we will let a model stipulate which sets are
to be considered a majority.

Definition 2 Let W be any set. We will call any setM ⊆
2W a majority system if it satisfies the following properties.

M1. If X ⊆ W , then eitherX ∈ M or XC ∈ M.
M2. If X ∈ M, Y ∈ M andX ∩ Y = ∅, thenY = XC .
M3. Suppose thatX ∈ M and F ⊆ X is any finite set.

If G is any set whereG ∩ X = ∅ and |F | ≤ |G|, then
(X − F ) ∪G ∈ M.

The pair〈W,M〉 will be called aweak majority space.
Given a setW , a setX ⊆ W will be called astrict majority
(with respect toM) if X ∈ M andXC 6∈ M. X will be
called aweak majority if X ∈ M and XC ∈ M. We
need to check that the above properties correspond to our
intuitions about majority sets. We will call any setX ∈ M
amajority set.

It is easy to see that majority spaces are closed under su-
perset. We show that many of the intuitions we have about
majority sets on a finite space remain in a majority space.
For example, we show that given any majority setX, if we
add something new toX, then this new formed set will be a
strict majority. We also show that if a setW is infinite, then
all majority sets must also be infinite.

Lemma 4 If X is a weak majority andF 6= ∅ is a set such
thatF 6⊆ X, thenX ∪ F is a strict majority.

Proof Suppose thatX is a weak majority andF 6= ∅ is any
set such thatF 6⊆ X. Notice first that sinceX ∈ M and
X ⊆ X ∪ F , X ∪ F ∈ M by fact ?? (this is true for any
setF ). We need only show that(X ∪ F )C 6∈ M. Suppose
that (X ∪ F )C ∈ M. By property M2, sinceX ∈ M,
(X ∪ F )C ∈ M andX ∩ (X ∪ F )C = ∅, we must have
(X∪F )C = XC which impliesF ⊆ X. But this contradicts
the assumption thatF 6⊆ X.

�
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Lemma 5 Suppose that〈W,M〉 is a majority space and
thatW is infinite. IfX ∈ M thenX is infinite.

Proof Suppose that〈W,M〉 is a majority space andW is
infinite. Suppose thatX ⊆ W is finite andX ∈ M. Note
that sinceX is finite, XC is infinite. Take any finite set
G ⊂ XC , where|X| ≤ |G| (such a set must exist sinceW
is infinite). Then by property M3,(X −X)∪G = G ∈ M;
and so, by property M2,G = XC . But this is a contradiction
sinceG is finite andXC is infinite.

�

This last proposition demonstrates that our notion of an
infinite majority is equivalent to the natural notion of a ma-
jority when we only have a finite number of elements. In
other words, we will show that ifW is a finite set, then the
majority sets are the sets that have more than or equal to half
of the elements. We will also show that whenW is finite,
the sets that can be called a majority (i.e. satisfy properties
M1-M3) are the sets that have more than or equal to half of
the elements.

Proposition 6 Suppose thatW is a finite set and thatM′ =
{M ⊆ W : |M | ≥ |W |/2}, Then

〈W,M′〉 is a majority space

Furthermore, if〈W,M〉 is any other majority space then
M = M′.

Proof Suppose thatW is a finite set andM′ is as defined
above. We must first show that〈W,M′〉 is a majority space.
For any set,X ⊆ W , since |X| + |XC | = |W |, either
|X| ≥ |W |/2 or |XC | ≥ |W |/2 and so eitherX ∈ M′ or
XC ∈ M′. Hence property M1 is satisfied. For property
M2, suppose thatX, Y ∈ M′, andX ∩ Y = ∅. Since
|X| ≥ |W |/2 and |Y | ≥ |W |/2, |X| + |Y | ≥ |W |. But
sinceX ∪ Y ⊆ W , |X ∪ Y | ≤ |W | and so|X ∪ Y | = |W |.
Therefore,X ∪ Y = W (this follows sinceX andY are
assumed to be subsets ofW ). SinceX andY are disjoint
andX ∪ Y = W , thenY = XC . Finally we need to show
that property M3 is satisfied. Suppose thatX ∈ M′. Then
|X| ≥ |W |/2. Suppose thatF ⊆ X andG is any finite set
such that|F | ≤ |G| andG ∩X = ∅. Then

|(X − F ) ∪G| = |(X − F )|+ |G| − |(X − F ) ∩G|
= |X − F |+ |G|
≥ |X − F |+ |F |
= |X ∪ F | = |X| ≥ |W |/2

so,(X − F ) ∪G ∈ M′.

Let 〈W,M〉 be any majority space and letX ∈ M. We
must now show that|X| ≥ |W |/2. Suppose not, that is
suppose that|X| < |W |/2. Therefore|XC | > |X|. Let
Y ⊆ XC and|Y | = |X| (such a set must exist since|XC | >
|X|). Then by property M3, since|X| ≤ |Y | andY ∩X =
∅, (X−X)∪Y = Y ∈ M. But by property M2,Y = XC .
But this is a contradiction, since|X| < |W |/2 and |Y | <
|W |/2. Hence,|X| ≥ |W |/2.

�

Example of a majority space In this section we provide
concrete example of a majority space. Furthermore, we
show that this majority space is not an ultrafilter.

Given a setW , a filterF is any non-empty collection of
subsets ofW that is closed under intersection and superset.
A filter is an ultrafilter if for all setsA eitherA ∈ F orAC ∈
F . Finally, F is principal if F contains a singleton, and
F is non-principal if it is not principal (hence contains all
cofinite sets). Given any infinite set, Zorn’s lemma implies
the existence of a non-principal ultrafilter.

Let X1, X2, X3 be three disjoint sets such that eachXi is
infinite. Let Ui be a non-principal ultrafilter overXi. Now
Let X = X1 ∪X2 ∪X3. Define

M = {x|∃i 6= j such thatx ∩Xi ∈ Ui andx ∩Xj ∈ Uj}

We claim that(X, M) is a majority space. Here is the proof:

M1 Takex ⊆ X. Assumex 6∈ M then assume without loss of
generality thatx∩X1 6∈ U1 andx∩X2 6∈ U2. Then from
the definition of the ultrafilter we have:xC ∩ X1 ∈ U1

andxC ∩X2 ∈ U2. SoxC ∈ M

M2 Let x ∈ M, y ∈ M andx ∩ y = ∅ Since we only have
three setsX1, X2, X3 then there is i such thatx∩Xi ∈ Ui

andy ∩Xi ∈ Ui. Sox ∩ y ∈ Ui and thus∅ ∈ Ui which
is a contradiction.

M3 x ∈ M and Lety = (x− f) ∪ g where f in a finite subset
of x and|f | ≤ |g|. The proof goes easily using two facts:

Fact 1 ifxi ∈ Ui then for any finite setf ∈ Xi we havexi −
f ∈ Ui.
proof: suppose(xi−f) 6∈ Ui thenXi− (xi−f) ∈ Ui.
So(Xi − (xi − f))∩ xi ∈ Ui and that isf ∈ Ui which
a contradiction sinceUi is a non-principal ultrafilter.

Fact 2 ifxi ∈ Ui then for anyg ∈ Xi we havexi ∪ g ∈ Ui

Hence(X, M) is a majority space. Notice thatX1∪X2 ∈
M andX2 ∪ X3 ∈ M but their intersectionX2 6∈ M. So
M is not an ultrafilter overX. It should be clear that this
example can be generalized to any odd number of disjoint
sets.

Majority Models
In this section we will extend the definition of a Kripke
model in order to define truth of a majority logic formula.

Definition 3 A majority model is a tuple M =
〈S, R, V,m〉. WhereS is any set of states,R is an accessi-
bility relation andV is the valuation functionV : P → 2S ,
andm : S → 22S

is amajority function such that for each
s ∈ S, 〈R(s),m(s)〉 is a majority space.

So,m assigns a majority space to each state. Lets ∈ S be
any state. We will define truth of a formulaα at states in
modelM as follows:

1. M, s |= p iff s ∈ V (p), wherep ∈ P
2. M, s |= ¬α iff M, s 6|= α

3. M, s |= α ∨ β iff M, s |= α orM, s |= β

4. M, s |= 3nα iff |Rα(s)| > n (n ∈ N)
5. M, s |= Wα iff Rα(s) ∈ m(s)
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And soM, s |= Mα iff R¬α(s) 6∈ m(s). First notice that
if R(s) is finite for eachs ∈ S, then by proposition 6, then
M, s |= Wα iff |Rα(s)| ≥ |R(s)|/2. We will now show
that the axioms of majority logic are valid in all majority
models.

Theorem 7 MJL is sound with respect to the class of all
majority models.

Proof Soundness was shown in (?) for axioms 1 - 4, MP,
and Nec. LetM = 〈S, R, V,m〉 be any majority model and
s ∈ S. We will show Axiom 5 - 8 are true at states. Sinces
is arbitrary, each axiom will be valid inM; and hence, the
axioms are sound. All of the proofs are straightforward and
are left to the reader. As an example, we show the result
holds for Axiom 7 and 8.

Axiom 7: Assumes |= Wα∧Wβ∧3n(¬α∧¬β) so we
haveRα(s) ∈ m(s), Rβ(s) ∈ m(s) and|R¬α∧¬β(s)| > n
we need to prove that|Rα∧β(s)| > n. Assume
|Rα∧β(s)| ≤ n. Let X ⊂ R¬α∧¬β(s) where|X| = n (X
is a proper subset). LetY = (Rβ(s) − Rα∧β(s)) ∪ X
according to M3Y ∈ m(s) and we haveY ∩ Rα(s) = ∅
and Y 6= RC

α (s) which is a contradiction with M2. So
|Rα∧β(s)| > n and thuss |= 3n(α ∧ β)

Axiom 8: Assumes |= Wα∧Mβ∧3n(¬α∧¬β) so we
haveRα(s) ∈ m(s), R¬β(s) 6∈ m(s) andR¬α∧¬β(s) >
n we need to prove that|Rα∧β(s)| > n + 1. Assume
|Rα∧β(s)| ≤ n + 1. But R¬β(s) = (Rα(s) − Rα∧β(s)) ∪
R¬α∧¬β(s) and by M3 we getR¬β(s) ∈ m(s) which is a
contradiction.

�

Completeness
We adapt the proof of (Fattorosi-Barnaba & Cerrato. 1988)
to show completeness forMJL. This section will sketch the
completeness proof.

Given any consistent set of formulas of majority logic,Γ,
using Lindenbaum’s Lemma, we can construct a maximally
consistent superset ofΓ. As usual, the states of our canonical
model will be maximally consistent sets. In what follows,Γ
will always be assumed to be a maximally consistent set of
formulas.

When constructing a canonical model for a graded modal
logic, it is necessary to control the number of worlds acces-
sible from any given state. Given any state, i.e. maximally
consistent set,Γ, our goal is to constructR(Γ) such that

3nα ∈ Γ iff |{Γ′ ∈ R(Γ) | α ∈ Γ′}| > n

We will construct a satisfying family for eachΓ, denoted
by SF (Γ) so that we may defineR(Γ) = SF (Γ) and then
R will satisfy the above property. To this end we will
present the following definitions and lemmas from (Caro
1988). Recall thatω is the first countable ordinal, and that
ω+1 = ω∪{ω}. LetΦ be the set of all maximally consistent
sets.

Definition 4 The functionµ : Φ× Φ → ω + 1 is defined as
follows: for everyΓ1,Γ2 ∈ Φ

µ(Γ1,Γ2) = ω if for anyα ∈ Γ2, 3nα ∈ Γ1 for all n ∈ N
µ(Γ1,Γ2) = min{n ∈ N : 3!nα ∈ Γ andα ∈ Γ2} o.w.

The functionµ is well defined (refer to (Fattorosi-Barnaba
& Cerrato. 1988; Caro 1988) for more about this function).
The following lemma is an easy consequence of definition 4

The main idea is thatµ will tell us how many accessible
worlds are needed. Given two maximally consistent sets,
Γ1,Γ2, µ(Γ1,Γ2) tells us the minimum number of copies of
Γ2 that are needed to be accessible fromΓ1.

We are now ready to define thesatisfying family of a
maximally consistent setΓ0.
Definition 5 LetΓ0 ∈ Φ. The set

SF (Γ0) =
⋃
{{Γ} × µ(Γ0,Γ) : Γ ∈ Φ}

will be called the satisfying family ofΓ0.

An element ofSF (Γ0) is of the form〈Γ, n〉 wheren <
µ(Γ0,Γ) , therefore we shall think ofSF (Γ0) as made up of
µ(Γ0,Γ) ordered copies ofΓ, for anyΓ ∈ Φ.

The following theorem is the main theorem from (Caro
1988).
Theorem 8 For anyα and anyn ∈ N,

3nα ∈ Γ0 iff |{Γ ∈ SF (Γ0) : α ∈ Γ}| > n

where to simplify notations, we identify a couple〈Γ, n〉 (n <
µ(Γ0,Γ)) with its first component.

We can now define the canonical for majority logic. We
define the canonical modelMΛ = 〈SΛ, RΛ, V Λ,mΛ〉 for
MJL as follows, whereΛ is a consistent set of majority logic
formulas. First of all, let

µ(Γ) = sup{µ(Γ′,Γ) | Γ′ ∈ Φ}
So µ(Γ) gives the maximum number of copies ofΓ that
needed in the canonical model. Define

SΛ =
⋃
{{Γ} × µ(Γ) | Γ ∈ Φ} ∪ {〈Γ, 0〉 | µ(Γ) = 0}

So we may think ofSΛ as made up ofµ(Γ) copies ofΓ
if µ(Γ) 6= 0, and by one copy ofΓ if µ(Γ) = 0, for any
maximally consistent setΓ.

For each〈Γ, i〉 ∈ SΛ define,

RΛ(〈Γ, i〉) = SF (Γ)

and for every propositionp and every〈Γ, i〉 ∈ SΛ we set:

V Λ(p) = {〈Γ, i〉 | p ∈ Γ}
We need only define a majority functionmΛ : SΛ →

22SΛ

. In what follows we will write Γ instead of
〈Γ, i〉 ∈ SΛ. This abuse of notation should not cause any
confusion and so will be used to simplify the presentation.

LetRΛ
α(Γ) = SFα(Γ) = {Γ′ : Γ′ ∈ SF (Γ) andα ∈ Γ′}.

We are ready to definemΛ(Γ) so that〈RΛ(Γ),mΛ(Γ)〉 is a
majority space.

Given any maximally consistent setΓ, it is easy to see that
exactly one of the following cases must be true:
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1. 3!n> ∈ Γ for somen ∈ N
2. 3n> ∈ Γ ∀n ∈ N

If we are in Case 1, then|SF (Γ)| = n, and so we can
define

mΛ(Γ) = {X : X ⊆ SF (Γ) and|X| ≥ d|SF (Γ)|/2e}
By Proposition 6,〈R(Γ),mΛ(Γ)〉 is a majority space.

So suppose that we are in case 2, that is for alln ∈ N,
3n> ∈ Γ. We need some definitions before we proceed.

Definition 6 LetY be any set andX ⊆ 2Y . Then define

Xf = {A | ∃B ∈ X such thatA = (B − F ) ∪G

whereF is finite,|F | ≤ |G| andX ∩G = ∅}

So,Xf is X closed under finite perturbations. It is easy
to see thatX ⊆ Xf (takeF andG both to be empty).

Definition 7 LetY be any set andX ⊆ 2Y , then define

X = {A ⊆ Y : A 6∈ X andAC ∈ X}

Note thatA ∈ X ∪X iff AC ∈ X ∪X.
Let Γ be any maximally consistent set. We will now

constructmΛ(Γ):

1. DefineM0(Γ) = {SFα(Γ) |Wα ∈ Γ}
2. DefineM1(Γ) = (M0(Γ))f . That is takeM0(Γ) and

close off under finite perturbations.

3. LetO = SF (Γ) − (M1(Γ) ∪ M1(Γ)). The setO con-
tains the ”other” sets. That is the setsX such that neither
X nor XC have made it intoM1(Γ). In order to satisfy
M1, we must pick one ofX or XC to be elements of the
majority space. These choices must be made in a way that
is consistent with the propertiesM1−M3. LetU be any
non-principal ultrafilter overSF (Γ). Define

mΛ(Γ) = M1(Γ) ∪ (O ∩ U)

The following lemma shows that the construction above
gives us what we want, namely a way to construct a majority
space at each state in the canonical model.

Lemma 9 Given any maximally consistent setΓ,
〈RΛ(Γ),mΛ(Γ)〉 is a majority space.

We now have enough to prove the main truth lemma. The
proof of the main truth lemma will be as usual, with the
only interesting case being the following lemma.

Lemma 10 For any maximally consistent setΓ and any for-
mulaα of MJL,

RΛ
α(Γ) ∈ mΛ(Γ) iff Wα ∈ Γ

Given the previous lemmas, the truth lemma follows
easily:

Lemma 11 (Truth Lemma) For any formulaα and any
Γ ∈ SΛ we have

MΛ,Γ |= α iff α ∈ Γ
Given the truth lemma forGML andMJL, the complete-

ness theorem follows using a standard argument.

Theorem 12 (Canonical Model Theorem for MJL) if Λ
is a consistent majority logic then:

α ∈ Λ iff α is valid inMΛ (for anyα)

Conclusion and Future Work
We have extended graded modal logic with an operatorW
that can express the concept of weak majority. In order to
interpretW in a Kripke structure, we defined a majority
space. A majority space extends the well-defined concept of
a majority of a finite set to an infinite set. A axiom system
was presented and the proof of soundness and completeness
was sketched.

Along the way, we looked at how to define the majority
of an infinite set. Instead of trying to find a naturally
occurring definition, we define a majority space which gives
a lot of room in the definition of a majority subset of an
infinite set. Thus if asked if the even numbers (E) are a
strict majority or a weak majority of the natural numbers
(N), we would answer that it depends on what is being
modelled. On the one hand, it seems clear thatE is a weak
majority of N. However, consider the following sequence
of sets: {0, 2, 1}, {0, 2, 4, 1, 3}, {0, 2, 4, 6, 1, 3, 5}, . . ..
The first set has a strict majority of even numbers, and
since each new set adds only one even number and one
odd number, every element of this sequence has a strict
majority of even numbers. The limit of this sequence is
N; and so if we think ofN as being ”constructed” by this
sequence of sets, one would expect thatE is astrict majority.

The main technical question is the decidability ofMJL.
Since it was shown in (Caro 1988) the graded modal logic
has the finite model property, we expect thatMJL will
share this property.

We also point out that we cannot express the statement
“among the worlds in whichα is true, β is a majority ”
in our language. Such statements are often used when
reasoning about candidates in an election. For example,
among the Democratic registered voters, Kerry has the ma-
jority of their votes. We would like to extend the language
of majority logic with an operator that can express such
statements. A step in this direction would be to introduce a
binary modality≤, in which the intended meaning ofα ≤ β
is α is true in “less” states thanβ.

Finally, we point to some possible applications of our
logic. Although, the primary interest of this paper is tech-
nical, we feel that our framework can be used to reason
about social software (see (Parikh 2002) for more informa-
tion) such as voting systems (Brams & Fishburn 2002). This
line of research will be pursued in a different paper.
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