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Abstract true precisely whem is false inall but n accessible worlds.
For simplicity we writeC« instead ofCg« andOa instead

of Opa. For instance, if the formulal, L is true at some
world w, thenw has at mosk accessible worlds.

We extend graded modal logic (GML) to a logic that
captures the concept of majority. We provide an axiom-
atization for majority logic,MJL, and sketch sound-

ness and completeness proofs. Along the way, we must We then extend the graded modal logic (GML) as de-
answer the question what is a majority of an infinite scribed in (Fattorosi-Barnaba & Cerrato. 1988; Caro 1988)
set? Majority spaces are introduced as a solution to this with a modal operatoW, whereW « is intended to meaa

question. is true in more than or equal to half of the accessible worlds.

Hence its dualM o will mean « is true in more than half

; of the accessible worlds. Herd represents strick/ ajority
Introduction andWV represent$V eak majority. In what follows, when we
The language of modal logic has long been used to model yse "majority”, we mean weak majority (i.e. more than or
intensional notions such as knowledge, belief and obliga- equal to 50%).
tion. In this extended abstract we present a new modal logic  Before proceeding we should check that we are in fact
which models an agent's ability to reason about majorities. gaining expressive power with the new modal operators. To
The concept of majority plays an important role when an  see this note tha#lJL does not obey bisimulation. We can
agent is faced with a decision in a social situation. For ex- easily find two bisimular Kripke models where in one of
ample, think of dinner with a group of friends. Chances are them we havédV « is true at some state and in the other
that many of the decisions, such as choice of restaurant, ap-j17 may not be true at a bisimular state. It follows that the
petizers or wine, were based on the will of the majority. An  gperatod¥’ cannot be defined from the standard modal oper-
extended example which illustrates this point is found in the gtors (Dand<). A similar argument shows that,, cannot
next section. Of course, the concept of majority is integral be defined from the standard modal operators. For an ex-
to many voting systems. With these intuitions in mind, we tended discussion of this fact refer to (Fattorosi-Barnaba &
propose a logicMJL, in which the concept of majority is  Cerrato. 1988). Furthermore, a similar argument shows that

axiomatized. the modal operatod/ cannot be expressed with the graded
Given a formula, the language of normal modal logics  modal operatofs

can express "ds true inall accessible worlds” (O and "o Given the intended interpretation & «, defining truth

is true inat least oneaccessible world” (G« But suppose i g Kripke model is straightforward provided there are only

that we want to express thats true in at leasthreeaccessi- finitely many accessible worlds. However, there are situa-

ble worlds or thatx is true in amajority (more than halfpf ~  tions "such as in the canonical model, in which one cannot

the accessible worlds. The language of normal modal logic assume that the number of accessible worlds is finite. This

cannot express such statements. The IbIt presentedin  eads us to the question of what is the majority of an infinite

this paper will use modal operators that can specify exactly set? The standard definition, i.e. more than half, no longer

how many accessible worlds are of interest. makes sense. Should we consider the even numbers a weak

in (Fine 1972; Goble 1970). For any € N, the formula

Onaisintended to meaa is true in strictly more than ac- !In (de Rijke 2000) de Rijke develops a notion of bisimula-
cessible world, and so its dual, « is intended to meana tion (g-bisimulation) for graded modal logic. He then uses this no-
is true in less than or equal toaccessible worlds. We may  tion to prove some model theoretic results such as the finite model
call &, « anat leastformula, since, o will be true pre- property. So, we need to show that there are two models that are
cisely whenu is true inat leastn+1 accessible worlds. Sim-  g-bisimular but can be distinguished using thé operator. Of
ilarly we may calld,,« all but formulas, sinced, o will be course, if the number of accessible worlds is fixed tonbthen

Mo can be defined to be |, /) «; however if M« can be de-
Copyright © 2004, American Association for Artificial Intelli- fined using graded modal operators, then this definition must hold
gence (www.aaai.org). All rights reserved. regardless of the number of accessible worlds.
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set that contains all the even numbers plus the{$g3}?
Mark Fey in (Fey 2002) proposes some interesting answers
to this question. However, Fey’s solutions are not appropri-
ate for our framework and so we need another solution. We
proposemajority spaces, which generalize the concept of an
ultrafilter, as a solution to the problem of defining a majority
of an infinite set.

This extended abstract is organized as follows. The next
section reviews graded modal logic. We then describe the
language of majority logic and offer an axiomatization. Af-
ter introducing majority spaces, we provide a Kripke style
semantics and sketch the completeness proof.

Graded Modal Logic

In this section, we provide a brief overview of graded
modal logic. Graded modal logic was first introduced in
(Fine 1972; Goble 1970). It was then studied in (Fattorosi-
Barnaba & Cerrato. 1988; H. J. Ohlbach & Hustadt 1995;
Caro 1988; de Rijke 2000; Tobies 2001) in which issues of
axiomatization, completeness, decidability and translations
into predicate logic are discussed. We briefly discuss the
language of graded modal logic and state some of the main
results found in the literature. All results and proofs can
be found in (Fattorosi-Barnaba & Cerrato. 1988) and (Caro
1988).

Definition 1 Given a countable set of atomic propositions
P = {po, p1, - - .}, a formulac. of GML can have the follow-
ing syntactic form:

a=p|alaVal|dya
wherep € Pandn € N.

For eachn € N, we defined,,a := —-<,—a, and
Olpa = Cp_1a A =O,a (n #£ 0) wheredlga := —Opar.
So ¢!, will have the intended meaning thatis true in
exactlyn accessible worlds. Lelgy. be the set of all well-
formed formulas ofGML.

The following axiomatization was presented in (Caro
1988).

GO All tautologies in the language &ML
Gl O —<COpa (neN)
G2 Op(a — B) = Opa— OB (ne€N)

G3 Oly(a A B) — ((Cly,a AOL,B) — Ol tn,(aV
B)) (ni,n2 €N)

GML is closed under modus ponens ()/@&hd necessi-
tation (), i.e., fromt « infer - Oa. We writebgyL o if «
can be deduced frolf0 — G1 using the rules\/ P and N.

GML formulas are interpreted in the usual Kripke struc-
tures. LetM = (S, R, V) be a Kripke model, wher§'is a
set of worlds,R is a binary relation ove§ andV : P — 29
is a valuation function. The boolean connectives and propo-
sitional variables are evaluated as usual. We will only show
how the formula®,,« is evaluated at a worldl € S:

M, s |E Opaiff [{t:sRtandM,t = a}| >n

We saya is valid in M iff Vs € S, M,s = «, and
write M = a. We write = « if o is valid in all mod-
els (based on some class of fraf)e¥/e also make use
of the following notation throughout this papeR(s) =
{t | sRt} and for any formulaa: (of MJL or GML),
R.(s) = {t | sRtandt = «a}. So, the above definition
can be rewritten as

M, s |E Opaiff |[Ro(s)] >n

GML is shown to be sound and complete with respect
to the class of all frames in (Fattorosi-Barnaba & Cerrato.
1988). LetF be the class of all frames. It is easily verified
that the axioms70 — G1 are valid in any model based ¢n
andM P andN preserve validity. We state the completeness
theorem below, but postpone discussion until later in this
paper.

Theorem 1 (Completeness of GML)Let § be the class of
all frames. Then for any formulaof GML, | «iff FgmL .

In (Caro 1988)GML is shown to be decidable by show-
ing that GML has the finite model property. Maarten de
Rijke (de Rijke 2000) arrives at the same conclusion using
an extended notion of bisimulation appropriate for a modal
language with graded modalities. de Rijke also establishes
invariance and definability results. Finally in (Tobies 2001),
Tobbies shows that the decidability problem @KL is in
PSPACE.

Majority Logic: Syntax

We extend the graded modal language with a new modal
operator W whereW is interpreted as "weak majority.”

Definition 1 Given a countable set of atomic propositions
P = {po,p1, ...}, a formulac of MIL can have the follow-
ing syntactic form:

a=p|-alaVa|dya|Wa
wherep € P andn € N.

Let LyyL be the set of all well-formed formulas of the
majority modal logic. Define\la := =W-a. So,MJIL
takes the language @ML and closes under the operator
W. Notice in particular that there are an infinite number
of modal operators, one for each natural number plus the
majority operators.

Axiomatization

We propose the following axiomatization MJL. Since
MJL extends graded modal logic, we will include the ax-
iom scheme<~1,G2 andG3. These axioms captures our
intuitions when we can count accessible worlds. But what
axioms shall we adopt to reason about “majority”? The fol-
lowing discussion will motivate the proposed axiomatization
which can be found at the end of the discussion.

2Unless otherwise stated we will assume that we are working
with models based on the class of all frames. Refer to (Blackburn,
de Rijke, & Venema 2001) for more information on frames.
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Suppose a group of friends are trying to decide where to Axiom 8 WaAMBAC, (—an—8) — Onipi1(anp) (n €

go for dinner. As is common in most social situations, the N)
oal is to keep as many people ha as possible. If more .

fqhan half of th(iJ people v)\;a?n Irlladian fg%inn(fr and more than MP Froma anda — (3 derive 3.
half want Italian for dinner, then there must be someone who NEC Froma deriveda.
wants both Italian and Indian. This is easy to see if we con-
sider a specific example. If there are 10 friends deciding
on dinner and 6 people want Indian and 6 people want Ital-
ian, then obviously at least someone wants both Indian and
Italian®. This reasoning is captured by the following axiom
scheme

We writekyyL « if o can be deduced from Axioms 1 - 8
using the rules\/ P and N. If it is clear from context, we
may write- « instead of-y;. a.

Properties of the Axioms

MaAMpB — O(anp) We now discuss some of the properties of the axioms pro-

Now, suppose that more than half of the friends want Ital- posed in the previous section. Some of these properties turn
ian for dinner. Also, suppose that every time the group out to be useful in the completeness proof and others are

eats Italian where wine is always served with Italian food. natural properties of majorities and weak majorities.
We can conclude that a majority of the friends want wine ~ This first lemma gives some consequences of the pro-

with dinner. And so, we will included the following axiom  Posed axioms. The lemma also shows that our axiomati-
scheme zation captures many natural properties of "majority” and

MaAO(a — B8) — MB "weak majority”. Part (i)__showsw_ andW are bqth normql
) ) . modal operators. Part (ii) is equivalent to saying that given
Suppose that you are putin charge_of making dinner reser- any setX and any subset ok either it or its complement
vations for the group of 10 people. Given that 5 people pre- (or both) constitutes weak majority of. (i) - (viii) are

fer ltalian and 5 people prefer Indian, what can you conclude opyious properties of majority and weak majority sets.
if you are given additional information that more that 3 peo-

ple do not like Italian and do not like Indian. The natural Lemma 2 Suppose that and 5 are arbitrary formulas of
conclusion to draw is that more than 3 people like Indian MJL. Then

and Italian food. Otherwise, say you conclude that only two .

people like both Indian and Italian food. This would mean " If - a — gthent Ma — MG and- Wa — W§.
that 3 people like Italian but not Indian, 3 people like Indian il. = WaV W-a

but not Italian and (more than ) 3 people like neither Indian jii. - Ma — Wa and- Ma — Cao
nor ltalian. Since these sets are disjoint, the total sum of,,  _,

people is 11 or more, and so it must be the case that more

than 3 people like Indian and Italian. This line of reasoning V- Fla — Wa

is captured by the following axiom scheme Vi. F Ma AW — OlaAf)

WaAWBA O (~aA—8) = On(anfB) (neN) Vii. FWaAO(-anp)— M(aVp)
o . viil. £ Wa AWBA=O(a A B) = —~O(—a A=)
The final situation is similar to the above situation. except
suppose that a majority of the people prefer Italian. Proof Suppose that and3 are any formulas oMJL.

WaAMBASG(~aA—8)— Onpi(anfB) (neN) i. Suppose that o — 5. We will show- Mo — M5 and
F Wa — Wg. Bythe NEC, + O(a — 3), and so by
The preceding discussion is summarized by the following ~ modus ponens and Axiom 6, Ma — M3. - Wa —

list of axioms and rules. W G follows easily using contraposition.
Axiom 1 Classical propositional tautologies i. B =0 -a) — =(M-a A Ma) is an instance of

. Axiom 5. Hence- OT — (Wa VvV W-a). By NEC
Axiom 2 Op 1 — Onar (n €N) - OT. Therefore byM P, - Wa v W—a.
Axiom 3 U(a — ) — (Opa — ©,3) (n €N) iii. - Mo — Wa follows from (i), and- Ma — o is an
Axiom 4 Olg(aAB) = ((Oly, aAO,, B) — Olyy i, (aV instance of Axiom 5.
B)) (n1,n2 € N) iv. Using (iii) we get- =& L — —M 1, and hencé —M L.
Axiom5 Ma A MB — O(a A ) v. Using axiom 5~ =<¢(—a A —a) — —~(M—-a A M-a)
Axiom 6 Ma A 8) — Mg which isk Oa — Wa

— —

_ “ “ vi. Note by axiom 6 we have

Axiom 7 WaAW BAC, (man=03) — On(anp) (n € N) F Ma A O — =8) — M-3. Sowe have- Ma A

o _ W — —0O(a — — ) and so using propositional calculus
Of course two people could have said that they don't care

where they eat. This is not the same as two people saying that F Ma AW — Sahf)

they wantboth Italian and Indian, but for the purposes of this ex- Vil. WaAO(maAB) = WaAO(man (aV B)) AO=(aA
ample we will assume that a "don't care” vote is a vote for both ~ —(aV 3)) but we haveVa A C(—a A (aV B)) AO-(aA
options (aVp)) = M(aVp)
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viii. By lemma 2-(vi) as a substitution instance, we get
Wa ANM(BV-a) — O(a A B) which is equivalent to
FWaA-O(anB) — —-M(BV —a), but the above item
of the lemmal WAAO(—aA—8) — M(BV—a). Thus
we get- WBAWaA-O(anp) = WEA-M(BY-a)
and hencé WG A -M(BV ~a) — =O(—a A —f)

O

Using the language of graded modal logic, we can find a
formula that expresses exactly how many worlds are acces-
sible at any given state. For amyc N, the formula®,, ! T
will be true at some worldy iff there are exactlyn acces-
sible worlds. Similarly, the formulasl,, L will be true at
some worldw iff there areat mostn accessible worlds. We
will define A, := ORI T, Acpy ;= 0, L andA~, = <O, T.

So, A, is true at a stata if there are exactly: accessible
worlds. The following lemma show what happens when we
know the exact number of accessible worlds.

Lemma 3 Suppose tha#,, is the formula defined above.
Then

i. FAn_)(DLn/QJa\/DLn/QJ_‘a) Foralln e N
ii. l_An_>(D|_n/2jfla_’<>|_n/2JO‘) Forall n > 2
iii. Forall nEN,}—An—>(Ma<—><>Ln/2Ja).

Proof Part (i) and (ii) are statements of graded modal
logic, and given the completeness and soundness proofs
in (Caro 1988; Fattorosi-Barnaba & Cerrato. 1988), follow
easily from semantic arguments. We first note the following
properties which are instances of Axioms 8 and 7 respec-
tively (let 5 = «).
1L.EFMaANO,na— Oppia
2.FWan,~a— Opa
We need only show propertyis).
e Suppose that A, A |, 2 . By part (i) of this lemma
we gett Ay A Oy ) — Oy 2)a and by (2) we get
FALA <>Ln/2ja AO|pj2j0 — Mo
e Suppose that A, A Ma. If n = 0orn = 1 then we
haveMa — $a so we getd |, 5 . Assumen > 2 by
(1) we haveM o — (O 2)a V O 2 —1c0). Using part
(ii) of this lemma we get- A, A Ma — <, /0)

O

Majority Logic: Semantics
In this section we will present the semantics fdJL. As
usual, formulas ofMJL will be interpreted over Kripke
models. The formuldV « will be true provided that the
set of all accessible worlds in whichis true is a majority
of the set of all accessible worlds. The definition makes
sense only if there arénitely many accessible worlds. But
what constitutes a majority of an infinite set? The following
section offers a solution to this question.

Recall that ifS is any set of states ari@ a binary relation
on S, thenR(s) = {t| sRt} and for any formulax (of MJL
orGML), R, (s) = {t | sRt andt |= a}. This definition of
course depends on the definition of truth in a model which
is given below.

Majority Spaces
A very interesting situation arises when a Kripke model is
not finitely generated, that is whd®(s) may be infinite for
some state € S. While the semantics of a majority sub-
set is very clear in the finite case, it is not clear what should
constitute a majority when there are an infinite number of
possibilities. We cannot for example stipulate that every in-
finite set is a (strict) majority. This would create the unsatis-
factory situation where a set and it's complement could be a
majority.

Another natural choice would be to call a S€tC R(s)
a majority if X is finite, i.e take the majority sets to be the
co-finite sets. However, suppose thigts) = X1 UX2U X5,
where X1, X», and X3 are nonempty pairwise disjoint sets
Then one would expect that for somand;j wherei # j,
X; U X; would be a majority. This is certainly true in
the finite case, and so one would expect it to be true in
the infinite case. However, it is easy to come up with an
example where all of thé&(; are infinite; and so, none of the
X; U X, would be a majority.

Instead of trying to define a majority set as some special
subset ofR(s), we will let a model stipulate which sets are
to be considered a majority.

Definition 2 Let W be any set. We will call any sétt C
2" amajority systemif it satisfies the following properties.

M1. If X C W, then eitherX € Mt or X€ € M.
M2. If X e MY eMandX NY = &, thenY = XC©.

M3. Suppose tha’ € 9t and F C X is any finite set.
If G is any set wheré7 N X = @ and |F| < |G|, then
(X-F)UGeMm.

The pair(W, 91) will be called aweak majority space.
Given a seiV, asetX C W will be called astrict majority
(with respect tadn) if X € M and X ¢ M. X will be
called aweak majority if X € 9t and X¢ € M. We
need to check that the above properties correspond to our
intuitions about majority sets. We will call any s&t €
amajority set.

It is easy to see that majority spaces are closed under su-
perset. We show that many of the intuitions we have about
majority sets on a finite space remain in a majority space.
For example, we show that given any majority &gtif we
add something new t&, then this new formed set will be a
strict majority. We also show that if a sBt is infinite, then
all majority sets must also be infinite.

Lemma 4 If X is a weak majority and” # & is a set such
that FF Z X, thenX U F' is a strict majority.

Proof Suppose thak is a weak majority and” # & is any
set such tha#" ¢ X. Notice first that sinceX € 9t and
X C XUF,XUF € M by fact?? (this is true for any
setF). We need only show thdtX U F)¢ ¢ 9. Suppose
that (X U F)¢ € 9. By property M2, sinceX € 90,

(XUF)Y e MandX N (X UF) = @, we must have
(XUF)¢ = X“ whichimpliesF’ C X. Butthis contradicts
the assumption that Z X.

O
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Example of a majority space In this section we provide
concrete example of a majority space. Furthermore, we
show that this majority space is not an ultrafilter.

Given a sefV, a filter 7 is any non-empty collection of
subsets of¥ that is closed under intersection and superset.
Afilter is an ultrafilter if for all setsA eitherA € F or A ¢
F. Finally, F is principal if 7 contains a singleton, and
F is non-principal if it is not principal (hence contains all
cofinite sets). Given any infinite set, Zorn’s lemma implies
the existence of a non-principal ultrafilter.

O Let X, X5, X3 be three disjoint sets such that eachis
infinite. Leti; be a non-principal ultrafilter ovek;. Now
Let X = X; U X, U X3. Define

M = {z|3i # j suchthatr N X; € 4; andz N X; € 4l;}

Lemma5 Suppose thatWW,9t) is a majority space and
that W is infinite. If X € M thenX is infinite.

Proof Suppose thatiW, M) is a majority space ant is
infinite. Suppose thak C W is finite andX € 9. Note
that sinceX is finite, X is infinite. Take any finite set
G C XY, where|X| < |G| (such a set must exist sin¢&
is infinite). Then by property M3 X — X)UG = G € I0;
and so, by property M2y = X . But this is a contradiction
sinceG is finite andX ¢ is infinite.

This last proposition demonstrates that our notion of an
infinite majority is equivalent to the natural notion of a ma-
jority when we only have a finite number of elements. In
other words, we will show that i/ is a finite set, then the ) . o }
majority sets are the sets that have more than or equal to half We claim that( X, ) is a majority space. Here is the proof:
of the elements. We will also show that wh&n is finite, M1 Takex C X. Assumer ¢ O then assume without loss of
the sets that can be called a majority (i.e. satisfy properties  generality that: N X; ¢ 4, andz N X, ¢ 4,. Then from
M1-M3) are the sets that have more than or equal to half of  the definition of the ultrafilter we haver® N X; € 44,

the elements.

Proposition 6 Suppose thaltl’ is a finite set and thabt’ =
{M CW : |M|>|W|/2}, Then

(W, 90’} is a majority space

Furthermore, if (W, 91) is any other majority space then M3

M =M.

M2

andz® N X, € 4y, S0z e M

Letx € M,y € Mandx Ny = @ Since we only have
three sets(y, X5, X5 thenthereisisuchthatn X; € 4;
andy N X; € ;. Sox Ny € U; and thusz € 4; which
is a contradiction.

x € Mand Lety = (z — f) U g where fin a finite subset
of x and|f| < |g|. The proof goes easily using two facts:

Proof Suppose thalV is a finite set andt’ is as defined Fact1 ifz; € 4, then for any finite sef € X; we havez; —

above. We must first show th&t/’, 9t') is a majority space.
For any set.X C W, since|X| + |X¢| = |W]|, either
|Xé > |[W|/2 or |X¢| > |W|/2 and so eithetX € 90 or
X“ e M. Hence property M1 is satisfied. For property
M2, suppose thal,Y € 9%, and X NY = &. Since
|X| > |[W]|/2and|Y]| > |[W|/2, | X|+ |Y| > |W]|. But
sinceXUY CW, | XUY|<|W|andsgdX UY| = |W]|.
Therefore,X UY = W (this follows sinceX andY are
assumed to be subsets1df). SinceX andY are disjoint
andX UY = W, thenY = X¢. Finally we need to show
that property M3 is satisfied. Suppose thate 9. Then
|X| > |W|/2. Suppose that’ C X andG is any finite set
suchthalF'| < |G]andG N X = @. Then

(X =F) UGl = [(X=-F)+[G]-|(X - F)nG]|
= [X - F[+]G|
z X = Fl+|F|

(X UF|=|X[=[W]/2
s0,(X —F)UG e M.

Let (W, 91) be any majority space and I& € 21. We
must now show thatX| > |W|/2. Suppose not, that is
suppose thatX| < |W|/2. Therefore|X“| > |X|. Let
Y C X¢ and|Y| = |X| (such a set must exist SintE“| >
|X]). Then by property M3, sinceX| < |Y|andY N X =
@, (X - X)UY =Y € 9. But by property M2y = X,
But this is a contradiction, sinde&X| < |[W|/2 and|Y| <
|W|/2. Hence|X| > |[W]/2.

O
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feu.

proof: supposéz; — f) & i; thenX; — (z; — f) € 4;.
So(X; — (z; — f)) Nz; € 4; and that isf € 4l; which
a contradiction sinc#; is a non-principal ultrafilter.

Fact 2 ifx; € 4; then for anyg € X; we havex; Ug € §;

Hence(X, 9) is a majority space. Notice thaf; U X, €
M and X, U X3 € 9 but their intersectionXs ¢ 9. So
<M is not an ultrafilter overX. It should be clear that this
example can be generalized to any odd number of disjoint
sets.

Majority Models

In this section we will extend the definition of a Kripke
model in order to define truth of a majority logic formula.

Definition 3 A majority model is a tuple M =
(S, R, V,m). WhereS is any set of states® is an accessi-
bility relation andV is the valuation functiol : P — 25,

andm: S — 22" is amajority function such that for each
s € S, (R(s), m(s)) is a majority space.

So,m assigns a majority space to each state. d.et.S be
any state. We will define truth of a formutaat states in
model M as follows:

1. M,s=piff s € V(p), wherep € P

2. M, s = ~aliff M, s~ o

3 M,sEaVviiff M;sEaorM,skE=p
4. M,s = Cpaliff |[Ry(s)| >n  (neN)
5. M, s |E Waliff R.(s) € m(s)



And soM, s = Maiff R..(s) & m(s). First notice that
if R(s) is finite for eachs € .S, then by proposition 6, then
M, s = Waiff |[R.(s)| > |R(s)|/2. We will now show
that the axioms of majority logic are valid in all majority
models.

Theorem 7 MJL is sound with respect to the class of all
majority models.

Proof Soundness was shown in (?) for axioms 1 - 4, MP,
and Nec. LetM = (S, R, V, m) be any majority model and

s € 5. We will show Axiom 5 - 8 are true at state Sinces

is arbitrary, each axiom will be valid in; and hence, the
axioms are sound. All of the proofs are straightforward and
are left to the reader. As an example, we show the result
holds for Axiom 7 and 8.

Axiom 7: Assumes = WaAWBAO, (—maA—F) sowe
haveR,(s) € m(s), Rg(s) € m(s) and|R_qr-g(s)] > n
we need to prove thaiR,ag(s)] > mn.  Assume
|Rans(s)| < n. LetX C R_,n-p(s) where|X| = n (X
is a proper subset). L&t = (Rg(s) — Rang(s)) UX
according to M3Y" € m(s) and we havé” N R,(s) = @
andY # RS(s) which is a contradiction with M2. So
|Rans(s)| > nand thuss = <, (a A B)

Axiom 8: Assumes = WaAMBAO, (—aA—fF) sowe
haveR,(s) € m(s), R-3(s) & m(s) and R.qn-5(s) >
n we need to prove thgtR,ns(s)] > n + 1. Assume
|[Rans(s)] <n+ 1. BUtR_s(s) = (Ra(s) — Rans(s)) U
R_n-p(s) and by M3 we gefR_3(s) € m(s) which is a
contradiction.

O

Completeness

We adapt the proof of (Fattorosi-Barnaba & Cerrato. 1988)
to show completeness fMJL. This section will sketch the
completeness proof.

Given any consistent set of formulas of majority lodig,
using Lindenbaum’s Lemma, we can construct a maximally
consistent superset bf As usual, the states of our canonical
model will be maximally consistent sets. In what follows,
will always be assumed to be a maximally consistent set of
formulas.

When constructing a canonical model for a graded modal
logic, it is necessary to control the number of worlds acces-
sible from any given state. Given any state, i.e. maximally
consistent sef, our goal is to construd®(I") such that

Opaeliff {I" e R(T) |[a e’} >n

We will construct a satisfying family for each, denoted
by SF(T') so that we may defin&(I") = SF(T") and then

R will satisfy the above property. To this end we will
present the following definitions and lemmas from (Caro
1988). Recall that is the first countable ordinal, and that
w+1 = wU{w}. Let® be the set of all maximally consistent
sets.

Definition 4 The functionu : ® x ® — w + 1 is defined as
follows: for everyl'y, I's € ®

u(I'1,T2)
(T, T2)

The functiony is well defined (refer to (Fattorosi-Barnaba
& Cerrato. 1988; Caro 1988) for more about this function).
The following lemma is an easy consequence of definition 4

The main idea is that will tell us how many accessible
worlds are needed. Given two maximally consistent sets,
I'1, Ty, u(T'1,T2) tells us the minimum number of copies of
I'; that are needed to be accessible fldm

We are now ready to define theatisfying family of a
maximally consistent sét,.

Definition 5 LetI'y € ®. The set
SF(To) = J{T'} x u(To,T) : T € @}

will be called the satisfying family dfj.

An element of SF'(T'y) is of the form (T, n) wheren <
(o, T) , therefore we shall think of (') as made up of
1(To,T) ordered copies df, for anyT" € ®.

The following theorem is the main theorem from (Caro
1988).

Theorem 8 For any« and anyn € N,

Opa € Tyiff {T' € SF(Iy) :a €T} >n
where to simplify notations, we identify a cougle n) (n <
1(To, T)) with its first component.

We can now define the canonical for majority logic. We
define the canonical modgh® = (S, RM, VA m?) for
MJL as follows, wheré\ is a consistent set of majority logic
formulas. First of all, let

u(T) = sup{u(I’,T) | T’ € ®}

So p(T") gives the maximum number of copies Bfthat
needed in the canonical model. Define

§* = JUTY x u() [T € @} U{(T,0) | u(I) = 0}

So we may think ofS* as made up of.(T") copies ofl
if u(T') # 0, and by one copy of if u(I") = 0, for any
maximally consistent sdt.

wifforanya € T'y, O € Ty foralln € N
min{n e N : Ol,aeTanda € T2} o.w.

For eachl', i) € S* define,
RA(T,4)) = SF(T)
and for every propositiop and everyI', i) € S* we set:
VAp) = {(T,i) |[peT}
We need only define a majority function® : S —

A
2% In what follows we will write T' instead of

(T,i) € SA. This abuse of notation should not cause any
confusion and so will be used to simplify the presentation.

Let RA(T") = SE,(I') = {I": T" € SF(T) anda € I},
We are ready to define® (T') so that(R* ("), m*(T")) is a
majority space.

Given any maximally consistent détit is easy to see that
exactly one of the following cases must be true:
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1. ¢!, T eI’ forsomen € N
2.0, Tel'VneN

If we are in Case 1, thet6F(I")] = n, and so we can
define

mM)={X : X C SF(I')and|X| > [|SF(I)|/2]}
By Proposition 6{R(T"), m*(T")) is a majority space.

So suppose that we are in case 2, that is fona#t N,
&, T € T'. We need some definitions before we proceed.

Definition 6 LetY be any set and C 2¥. Then define
X7 ={A|3B e X suchthatd = (B - F)UG
whereF is finite, |F| < |Gl|and X N G = &}

So, X7 is X closed under finite perturbations. It is easy
to see thatX C X/ (take I’ andG both to be empty).

Definition 7 LetY be any set and C 2Y, then define
X={ACY : A¢ X andA® € X}

Note thatd € X U X iff A® € X UX.
Let I' be any maximally consistent set.
constructn® (I):

We will now

1. DefineMiy(T') = {SF,(T) | Wa €T}

2. DefineM(I') = (My(I'))?. That is takediy(T") and
close off under finite perturbations.

3. LetO = SF(I') — (M (") UMy (T)). The setO con-
tains the "other” sets. That is the séfssuch that neither
X nor X¢ have made it int@, (T'). In order to satisfy
M1, we must pick one o or X to be elements of the

Lemma 11 (Truth Lemma) For any formulaa and any
I' € S we have

MAT Eaiffael
Given the truth lemma foBML andMJL, the complete-
ness theorem follows using a standard argument.

Theorem 12 (Canonical Model Theorem for MJL) if A
is a consistent majority logic then:

a € Aiff ais valid in M, (for any«)

Conclusion and Future Work

We have extended graded modal logic with an operHtor

that can express the concept of weak majority. In order to
interpret W in a Kripke structure, we defined a majority
space. A majority space extends the well-defined concept of
a majority of a finite set to an infinite set. A axiom system
was presented and the proof of soundness and completeness
was sketched.

Along the way, we looked at how to define the majority
of an infinite set. Instead of trying to find a naturally
occurring definition, we define a majority space which gives
a lot of room in the definition of a majority subset of an
infinite set. Thus if asked if the even numberg @@e a
strict majority or a weak majority of the natural numbers
(N), we would answer that it depends on what is being
modelled. On the one hand, it seems clear (hét a weak
majority of N. However, consider the following sequence
of sets: {0,2,1},{0,2,4,1,3},{0,2,4,6,1,3,5},....
The first set has a strict majority of even numbers, and
since each new set adds only one even number and one
odd number, every element of this sequence has a strict
majority of even numbers. The limit of this sequence is
N; and so if we think ofN as being "constructed” by this

majority space. These choices must be made in a way that Sequence of sets, one would expect &t astrict majority.

is consistent with the propertidd 1 — M 3. Leti/ be any
non-principal ultrafilter oveS F(T"). Define

m™(T) = My (D) U (O NUY)

The following lemma shows that the construction above
gives us what we want, namely a way to construct a majority
space at each state in the canonical model.

Lemma9 Given any maximally consistent sef,

(RMT), m™(T)) is a majority space.

We now have enough to prove the main truth lemma. The
proof of the main truth lemma will be as usual, with the
only interesting case being the following lemma.

Lemma 10 For any maximally consistent seétand any for-
mulaca of MJL,

RMI) e mMD)iff WaeT

Given the previous lemmas, the truth lemma follows
easily:
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The main technical question is the decidabilityMdL.
Since it was shown in (Caro 1988) the graded modal logic
has the finite model property, we expect thagL will
share this property.

We also point out that we cannot express the statement
“among the worlds in whichx is true, 3 is a majority ”
in our language. Such statements are often used when
reasoning about candidates in an election. For example,
among the Democratic registered voters, Kerry has the ma-
jority of their votes. We would like to extend the language
of majority logic with an operator that can express such
statements. A step in this direction would be to introduce a
binary modality<, in which the intended meaning of< 3
is ac is true in “less” states thaf.

Finally, we point to some possible applications of our
logic. Although, the primary interest of this paper is tech-
nical, we feel that our framework can be used to reason
about social software (see (Parikh 2002) for more informa-
tion) such as voting systems (Brams & Fishburn 2002). This
line of research will be pursued in a different paper.
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