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Abstract

We consider complex scheduling problems that can
be captured as optimization under hard and soft con-
straints. The objective of such an optimization prob-
lem is to satisfy as many hard constraints as possible
and meanwhile to minimize a penalty function deter-
mined by the unsatisfied soft constraints. We present
an efficient local search algorithm for these problems
which improves upon Wsat(oip), a Walksat-based lo-
cal search algorithm for overconstrained problems
represented in integer programs. We introduce three
techniques to the Wsat(oip) algorithm to extend its
capability and improve its performance: backbone
guided biased moves to drive the search to the re-
gions in search space where high-quality and optimal
solutions reside; sampling-based aspiration search to
reduce search cost and make anytime solutions avail-
able over the course of the search; and dynamic pa-
rameter tuning to dynamically adjust the key param-
eters of the algorithm to make it robust and flexible
for various applications. Our experimental results on
large-scale crew scheduling, basketball tournament
scheduling and progressive party scheduling show
that the new improved algorithm can find better so-
lutions with less computation than Wsat(oip).

Introduction and Overview

The recent advances in the research of Boolean satisfiabi
ity (SAT) have provided great insights into the problem, suc
as phase transitions and backboh#4; 15; 23, and have
developed efficient algorithms for solving SAT, represente

by the widely applied Walksat local search algorithaS;

17] and its variantd7; 13. The success of Walksat has
also led to the paradigm of formulating and solving com-
plex planning and scheduling problems as SAT probléans

11; 1d. Under this paradigm, a complex problem is en-
coded as a SAT problem, a solution to the SAT problem i
found by applying an algorithm for SAT, and finally the so-
lution is mapped back to the original problem. This SAT-
based paradigm has been shown successful for some co
plex problems in real applications. For example, Blackbo

is one of the most competitive methods for planniig;
11], which was developed under the SAT-based paradigm by
applying SAT encoding and SAT algorithms.

Many constraints in real-world applications, however, are
complex and may not be easily and efficiently encoded as
clauses. More useful and general constraint formulations
are integer linear programs (ILF$; 2d, which allow inte-
ger variables and complex constraints, and subsume pseudo
Boolean formulae with variables taking values 0 of51 19;

20]. ILPs and pseudo Boolean formulae have been well ap-
plied to planning and scheduling problefds 12; 24.

Wsat(oip)[20] is an extension to the Walksat algorithm for
handling overconstrained integer programs (OIPs) that involve
hard and soft constraints. Here a hard constraint is one that
needs to be satisfied, and a soft constraint is one that may
be violated but incurs a penalty if not satisfied. The objec-
tive of such a problem is to satisfy all hard constraints, if
possible, or as many hard constraints as possible when over-
constrained, while minimizing a penalty function. Wsat(oip)
has been shown effective on large constraint optimization and
scheduling problemkl 2; 19; 24.

Inherited from the Walksat algorithm, Wsat(oip) is a local
search algorithm that makes stochastic local perturbations to
the current assignment of all variables in searching for pro-
gressively better solutior20]. A noticeable characteristic of
Walksat and Wsat(oip) is that whenever multiple choices exist,
a uniformly randomchoice will be made. For example, when
an unsatisfied clause is to be selected from a set of unsatisfied

lauses, each qualified candidate is given equal change to be
rg'icked. Likewise, the variable whose value is to be changed

0 next is chosen, uniformly randomly, from multiple candi-
dfeiates. Such uniform random moves are ineffective when there

Xist large “plateau” regions in search space, and the problem
is exacerbated in OIPs and Wsat(oip) when “plateau” regions
become larger due to larger domains of integer variables.

Motivated to solve complex, real-world scheduling prob-
lems with hard and soft constraints, particularly those de-
fcribed in[2], we aim to improve Wsat(oip). We introduce

hree techniques to the existing algorithm. The first is a method
of making biased moves in attempting to fix possible discrep-
Ifar)cies between the current variable assignment and an opti-
XmaI solution, so as to drive the search to the regions in search
space where high-quality and optimal solutions locate. These

Copyright ©2004, American Association for Artificial Intelligence biased moves are devised based on our previous work of back-
(www.aaai.org). All rights reserved.
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ity [23]. The second method is a sampling-based aspiration Ry Ry Rs
search in order to restrict the search to finding progressively T Q1.1 0 1 1
improving solutions, so as to reduce search complexity and in- Q1.2 1 0 0
crease anytime performance of the resulting algorithm. Our T Q2,1 1 1 0
experimental analysis show that this method is particularly ef- Q2,2 1 1 0

fective on problems with hard and soft constraints. The third
method is an extension of Hoos’s dynamic noise strategy for
Walksat]8] to Wsat(oip), so that the critical parameter of noise
ratio of Wsat(oip) does not have to be tuned for each individual
problem instance. The resulting enhanced Wsat(oip) algorithmource requirement, and a resource requirement can be met
becomes more robust, general and flexible for different appliby having one desirable resource allocated to it. We de-
cations. note the ¢; resource requirements of task by Q;, =

The paper is organized as follows. We first describe in Sec{Qi,1,Qi 2, -, Qi q }. Table 1 shows a small example of re-
tion 2 our motivating scheduling problem and consider its com-source requirements of two tasks over three resources. An en-
plexity. We then discuss pseudo Boolean encoding and ovetity of 1 (0) in the table means that a resource can (cannot)
constrained integer programs in Section 3, and briefly describlee allocated to the corresponding requirement. In general, the
Walksat and Wsat(oip) in Section 4. We then present the threavailable resources may not be sufficient to fulfill every task;
improving techniques for Wsat(oip) in Section 5. We exper-and a task carries a penalty, calledk penaltyif not sched-
imentally evaluate the extended Wsat(oip) algorithm in Seculed. The resource allocation problem is to allocate the re-
tion 6, using our scheduling problems and the instances of tweources to the tasks so that the overall penalty of unfulfilled
scheduling problems from CSPLIB]. Finally, we conclude tasks is minimized, which constitutes an optimization problem.
in Section 7. If all tasks have equal penalties, it is equivalent to fulfill the

maximal number of tasks.
2 Scheduling and Resource Allocation . Compared to some pther resource allqcation problems, for
instances the permutation problems considerdd&n21, our

The specific, motivating scheduling problem of this researchproblem has a unique, small structure embedded within a task.
is to schedule a large number of training activities for a crewA task can be scheduled if and only if all its resource require-
over a period of time, ranging from a few days to a few weekgments are met. We call this featuvandled resource require-
or monthd2]. In such a problem, a trainee needs to finish a sement Furthermore, a pair of resource requirements have an
of required activities that requires many trainers and variougxclusive resource contention in that a resource acquired by
equipment. These activities are associated with one anothene requirement cannot be allocated to the others. We call this
by precedent relationships, i.e., one training activity cannot béeatureexclusive resource contentiorTo be convenient, we
scheduled until a trainee has finished certain prerequisites. gall the problembundled, exclusive resource allocation prob-
used equipment (resources) can be reused after some maintem, or BERAPfor short.
nance, which itself is an activity to be scheduled. In addition, We now show that BERAP is NP-haif@]. To this end,
individual activities have different importance and carry differ-we prove that a decision version of the problem is NP-
ent penalties if not scheduled. The objective is to schedule asomplete[3]. A simple, special decision version of BERAP
many activities as possible for all the trainees within a grosss the following. Given a set of tasks, each of which has a set
period of time using the available trainers and equipment sof resource requirements, decide if at lelasasks can be ful-
that the penalty of unscheduled activities is minimized. Everfilled. Here we simply consider every task having a penalty
though this scheduling problem is not overarchingly sophis-one if it is not fulfilled.
ticated, it can indeed be viewed as a representative of ge%—

Table 1: A simple resource allocation problem.

heorem 1 BERAP with more than two resource requirements

eral scheduling problems with various constraints and bein .
gh er task is NP-complete.

required to optimize an objective function.
At the center of our training scheduling problem, as well asProof. To show the NP-completeness of the above decision
many other similar problems, is a resource allocation problemyersion of BERAP, we reduce a NP-complete set packing prob-
i.e., a problem of assigning resources (e.g., trainers and equifem [3] to it. Given a collectionS of finite sets and a positive
ment in our scheduling problem) to needy activities. The propintegerK < |S|, set packing is to decide § contains at least
erties of such an underlying resource allocation problem cark” mutually disjoint subsets. Formally, it is to decide if there
help characterize the scheduling problem. The complexity oéxists S’ C S such that|S’| > K and for allS; € S’ and
the former will dominate the complexity of the latter. If the re- S, € S/, S; N S, = (). The problem is NP-complete when ev-
source allocation problem is difficult, the scheduling problemery subsef; € S has more than two elements. We now reduce
is doomed to be hard as well. an NP-complete set packing problem to our decision BERAP.
We now consider a simple, static resource allocation probWe map all the elements in the subsets of a set packing prob-
lem that was abstracted from our training scheduling probiem instance to the resources of BERAP, each subset of the
lem at a particular time. We are given a setroftasks, set packing instance to a task of BERAP, and an element in the
7 = {N1,Ts,---,T,}, and a set ofr resources,R = subset to a resource requirement of the respective task. In other
{R1,Ry,---,R,}. Each task requires a certain humber ofwords, the total number of tasks is the number of subsgts
resources in order to execute, which we call resource rethe number of resources is the number of distinct elements in
quirements. Each resource can only be allocate to one redl subsets of5, and the number of resource requirements of
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a task is the number of elements in the corresponding subset. [ initial assignment generation ]
Given K < |5/, the constructed BERAP is to decide if at least
K tasks can be fulfilled. Clearly, a solution to the BERAP is (pick aunsatisfied clause C
also a solution to the original set packing problem. L (clause pick)

This NP-completeness result leads to the conclusion that our
crew scheduling problem is intractable in the worst case.

exist avariablein C wit
zero break-count?

no

ipacan

1-p p

(‘flip the chosen variable

3 PB Encoding and Integer Programs
A clause of Boolean variables can be formulated as a linear pick avariable of

pseudo Boolean (PB) constralt 20, which we illustrate by zero break-count in C
an example. We start by viewing Boolean value Triig &s (flat pick)
integer 1, and value Falsé’f as 0. We then map a Boolean
variablev to an integer variable that takes value 1 or 0, and {piCk avarigble of least break-}
map7w to 1 — x. Therefore, whem = T, we haver = 1 and count in C (greedy pick)
1 — 2z = 0 which corresponds to = F. With this mapping,
we can formulate a clause in a linear inequality. For example,
(v1 VU2 Vvs) can be mapped te; + (1 —x2) +x3 > 1. Here, Figure 1: Main operations in a try of WalkSAT.
the inequality means that the clause must be satisfied in order
for the left side of the inequality to have a value no less than
one. In general, the class of linear PB constraints is defined af the Walksat algorithni13; 17. For pedagogic reason, we
> ¢i-L; ~ d, wherec; andd are rational numbers, belongs  discuss Walksat first.
to {=, <, <, >, >}, and theL; are literals.

However, a clause in an overconstrained problem may not b1 Walksat
satisfied so that its corresponding inequality may be violatedThe Walksat algorithm starts with an initial random variable
To represent this possibility, we introduce an auxiliary integerassignment and makes moves by changing the value of one
variablew to the left side of a mapped inequality. Variable selected variable at a time, until it finds a satisfying assignment
w = 1 if the corresponding clause is unsatisfied, making theor after it has executed a predefined maximal number of flips.
inequality valid;w = 0 otherwise. Since the objective is to In the latter case, the best solution encountered so far will be
minimize the number of violated clauses, it is then to minimizetaken as the outcome. Each such unsuccessful attempt is called
the number of auxiliary variables that are forced to take valugtry or restart The procedure repeats until a maximal number
1. To be concretew; V 12 V v3), (v2 V T4) can be written as  of tries has been attempted.

pick avariablein C
(noise pick)

an overconstrained PB formula of minimiziflg = Cy - wy + To select a variable to flip in each step, the effect of chang-
Cs - wy, Subject to ing the current value of a variable is assessed. Changing a
21 +(l—x2) +x3 fw; >1 variable’s value may make some currently satisfied constraint

Ty +(1—24) +ws >1 unsatisfied. The numbers of constraints that will be made un-

) ) satisfied by changing a variable value is calledhbeak-count

where C, and C, are the penalties of the first and secondyf the variable at the current assignment. Walksat attempts

clauses, respectively. , to change a variable with zero break-count, aiming at not to
More complex constraint problems, where variables takeg,ake the next assignment worse than the current one. To find

integers rather than Boolean values, can be formulated as ov&fych g variable with zero break-count, Walksat first selects an
constrained integer programs (OIH&Y], which are integer nsaisfied claus€’, uniformly randomly from all unsatisfied

linear programs (ILPs)6] in the sense that they both use in- ¢|ases. This is calledause pick If C has a variable of zero
equalltles to _deflne the_ fea5|ble regions ofa so_lutlon space a’E’reak-count, Walksat then picks such a variabieformly ran-
aim to optimize an objectlyg function. OlIPs differ from ILPs domly, from the ones that qualify (callitat pick). If no zero
in that OIPs introduce additional, competing soft constraints tqy e ak-count variable exists @1, Walksat then makes a random
encode the overall optimization objective. _choice. With probabilityp it chooses,uniformly randomly

A constraint in OIP defines a feasible region for all assign-y yariaple from all the variables involved @ (called noise
ments of the (integer) variables involved. For an assignmenticy). or with probability1 — p it selects a variable with the
that violating a constraint, we can define the distance of thgsast hreak-count, breaking a tiebitrarily if multiple choices
assignment to the bound_ary of the feasible region specified byyist (calledgreedy pick). The overall procedure for one try of
the constraint. Such a distance can be measured by the Mafye algorithm is shown in Figure 1. The algorithm takes three
hattan distance, the minimum integer distance in the grid spage,rameters to run, the number of tries, the maximal number
defined by the variable domains. This Manhattan distance wagsy flips in each try, and a probability for noise pick, which is

call scoreof the constraint under the given assignmill.  commonly referred to as theise ratioof the algorithm.
Obviously, if an assignment satisfies a constraint, then its dis-

tance to the constraint boundary is zero. 4.2 Wsat(oip)
. . Wsat(oip) was built to solve OIPs by extending the Walksat
4 The Walksat and Wsat(oip) Algorithms algorithm to support integer variables and generic constraints

Wsat(oip) belongs to the family of Walksat-based local searclsuch as inequalities. The main extensions and modifications
algorithms, each of which follows the same basic procedurenade by Wsat(oip) are the following.
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e Distinguishing hard and soft constraint$¥hen Choos- variable captures the tightness of the constraints that the vari-
ing a violated constrainf’, Wsat(oip) selects a violated able is involved; the higher the frequency, the more constrained
hard constraint with probability,, and a violated soft the variable is.
constraint with probability — py,. We can apply backbone frequencies to modify random

« Restricted neighborhood When choosing a variable moves in Wsat(oip). If, somehow, we knew the backbone fre-

whose value to be changed from all the variables assoguencies of the variable-value pairs of a problem, we could

ciated with the selected constraifit the (integer) values construct a “smart” search algorithm by using the backbone

; ; frequency information as an oracle to guide each step of
tcrﬁs?éféféz from the current value by at maswill be Wsat(oip). At each step of the algorithm, we could use the

backbone frequencies to change the way in which a variable
e Tabu searchWhen multiple variable-value pairs exist in is chosen to focus on fixing the critically constrained variables
the greedy choice which make the same amount of imthat are not currently set correctly.
provement to the objective value, break ties first in favor - Unfortunately, obtaining the exact backbone frequencies of
of the one that has been used the least frequently, and thenproblem requires to find all optimal solutions, thus is more
in favor of the one that has not been used the longest.  difficult than finding just one solution. To address this prob-
Note that similar to Walksat, Wsat(oip) still uses a noise ra/€m. the second key idea of backbone guided local search is to
tio, which has to be tuned for every problem instance. estimate bac_kbone freq_uenues using IOC{?‘I _m|n|ma_from alocal
search algorithm. We simply treat local minima as if they were
) . optimal solutions and compufeseudo backbone frequencies
5 Improvement and Extensions to Wsat(oip) which are estimates to real backbone frequencies. More pre-

Wsat(oip) is not very efficient on large problems. We introducedsely’ we define the pseudo backbone frequency of a variable-

three extensions to improve its performance. \r/nailnui(rangalr as the frequency that the pair appears in all local
5.1 Backbone-guilded biased moves The quality of pseudo backbone frequencies depends on the
effectiveness of the local search algorithm used. High-quality
One observation on local search for SAT problems is that therlbcal minima can be obtained by effective local search algo-
exist a large amount of plateau regions in the search spa¢@thms. Even though Wsat(oip) may land on suboptimal solu-
where neighboring states all have the same quality. This obsetions with fairly high probabilities, most of the local minima
vation inspired the development of Walksat that “walks” on thefrom Wsat(oip) are expect to have large portions of variables
plateau, thus the name of Walksat, by making random moveset to correct values, so that they contain partial optimal solu-
in order to navigate through plateau regions and to hopefullyions or partial backbone. In this research, we directly adopt
find downfall edges. Such random, sometimes aimless, plateaWsat(oip) to collect local minima, and then in return apply the
moves are not very effective. Even though the use of a tabu lidgfackbone guided search method to the algorithm to improve its
can help prevent to visit the recently visited stdés the al-  performance.
gorithm may still have to explore a large portion of a plateau
area. Biased moves in Wsat(oip)

The inefficacy of Walksat’'s random moves is exacerbated®seudo backbone frequencies can be incorporated in Wsat(oip)
in Wsat(oip) where non-Boolean variables can have large ddo make "biased” moves. Consider an example of two vari-
mains, which lead to larger neighborhoods and thus largeables,z; andz,, that appear in a violated constraint and have
plateau regions. Therefore, it is important to shorten or avoidihe same effect under the current assignment, i.e., changing

if possible, such random moves. the value of one of them makes the violated constraint sat-
o isfied, and both variables have the same break-count or will
The main ideas cause the same number of satisfied constraints unsatisfied if

Our main idea to address the inefficacy caused by uniformlghanged. LetB be the set of backbone variables along with
random moves in Wsat(oip) is to exploit an extended conceptheir fixed values in the backbon®, be the set of local min-

of backbone. The backbone variables of an optimization probima from which pseudo backbone frequencies were computed,
lem are the ones that have fixed values among all optimal s@&ndv; andv, be the current values af; andz,. We will
lutions; and these backbone variables are collectively callegrefer to change:; over z, if under the current assignment,
the backbone of the problem. The size of the backbone, th&{(z1 = v1)€B|T} < P{(z2 = v2)€B|T}, which means
fraction of backbone variables among all variables, is a meathat under the current assignmerni,is less likely to be part of
sure of the constrainedness of a given problem. The concepiackbone tham,, given the set of local minim@. Note that

of backbone variables can be extended to backbone freque{(x = v)€B|T } is the pseudo backbone frequencyrof v

cies. The backbone frequency of a variable-value pair is theinder the evidence of the set of local miniffia

frequency that the pair appears in all optimal solutions; and the How can the pseudo backbone frequencies be used to al-
backbone frequency of a variable is the maximum backbonéer the way that Wsat(oip) chooses variables? As discussed
frequency of its values. Specifically, letbe a variable with in Section 4, Wsat(oipuniformly randomlychooses a vari-
domainD = {v,vs,---, v}, andp(z(v;)) be the backbone able when multiple choices exist. For example, when there are
frequency ofr takingv;, then the backbone frequencyois  multiple variables with zero break-count, Wsat(oip) chooses
p(x) = max,,ep{p(x(v;))}. Thus, a backbone variable must one arbitrarily. In backbone guided search, we apply pseudo
have backbone frequency of one. The backbone frequency ofteackbone information to force Wsat(oip) to make random yet
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biasedchoices. If two variables can make a constraint satisfiedpseudo backbone frequencies.
the variable having a higher backbone frequency will be cho- o
sen. In other words, we modify Wsat(oip)'s random strategie®.2 Aspiration search
in such a way that a backbone or critically constrained vari-Solving an OIP requires to optimize two (conflicting) objec-
able will be chosen more often than a less restricted variablajves, satisfying the maximum number of hard constraints and
To this end, we use pseudo backbone frequencies to help makginimizing a penalty function of soft constraints violated. Two
random biased selections. obvious methods can be adopted to make a balance between
Specifically, we apply pseudo backbone frequencies to mocthese two objectives. One is to directly search for a solution
ify the random choices made in Wsat(oip). The first randomby considering hard and soft constraint together, which was
choice in Wsat(oip) is constraint pick, where a violated con-suggested and taken in Wsat(ofgp]. This method attempts
straint is selected if multiple ones exist. We want to pick, withto select a variable involved in a hard or soft constraint with
high probabilities, those variables that are part of the backbongrobability p;, or probability1 — p;,, respectively. Note that
or highly constrained in all optimal solutions. Therefore, wethe performance of Wsat(oip) depends to a large degree on this
choose a constraint with the largest number of critically conparameter. The other method is to satisfy the maximum num-
strained variables. We use the pseudo backbone frequencibsr of hard constraints first and then try to minimize the total
of variables in an unsatisfied constraint, normalized among thgenalty of violated soft constraints. However, based on our ex-
violated constraints involved, to measure the degree of corperimental experience on Wsat(oip), these two methods do not
strainedness of the constraint. We then select an unsatisfiggork very well on large, complex OIPs.
constraint among all violated ones based on their degrees of In many real-world constraint problems, our training
constrainedness. Specifically, iethe the set of unsatisfied scheduling problems discussed in Section 2 in particular, the
constraints, ang. the sum of pseudo backbone frequencies olnumber of hard constraints may be large; finding the best as-
all the variables in a constraiit € C. We then select con- signment to the variables involved in hard constraints itself
straint C, with probability p. = ¢./Q, from all unsatisfied may be a costly task. Even if such an optimal solution can
constraints irC, whereQ = . q. is @ normalization fac-  be found, it may be too hard to be further extended to an over-
tor. all assignment of minimal penalty. Therefore, many optimal
Wsat(oip) uses three other random rules to arbitrarily seassignments to the variables in hard constraints must be exam-
lect a variable after an unsatisfied constraint is chosen (sd@ed, making the overall search prohibitively costly.
Section 4 and Figure 1). The flat pick rule chooses a vari- To make Wsat(oip) efficient on OIPs, we propose what we
able from a set of zero break-count variables, if any; thecall aspiration searchstrategy, which is controlled by aspi-
noise pick rule selects one from all variables involved in theration levels. An aspiration level corresponds to a targeted
chosen constraint; and the greedy pick rule takes a variablgenalty score; the higher an aspiration level, the lower the tar-
among the ones of least break-count. In essence, these rulgsted penalty score. Given an aspiration level, we first search
use the same operation, i.e., picking a variable equally likelffor an assignment so that the total penalty of unsatisfied soft
from a set of variables. Therefore, we can modify these rulegonstraints is no more than the targeted penalty value. When
all in the same way by using pseudo backbone frequenciesuch an assignment is found, we attempt to extend the cur-
Let {z1, 72, -+, 7, } be a set ofw variables from which one  rent partial assignment to satisfy the maximum number of hard
must be chosenjv,,v2,---, v, } be their best satisfying as- constraints. This process of extending a partial assignment to
signments (the ones satisfying the constraint and having thg complete assignment may be repeated many times; and the
highest pseudo backbone frequencies), &nd pa,- -, pw} maximum numbes);, of hard constraints satisfied is recorded.
be the pseudo backbone frequencies of variable-value paiiach such process corresponds to a probing in the search space
{(x1 = v1), (w2 = v2),---,(xw = vw)}. Then we choose under the current aspiration level. We then increase the aspira-
x; with probabilityp; / Z;.”Zl Dj- tion level and repeat the processes of probing with the objec-
Furthermore, the idea of pseudo backbone frequencies cdive of finding an assignment that violates no more less than
also be applied to generate an initial assignment for a loca$;, hard constraints and whose penalty meets the restriction of
search. Specifically, a variable is assigned a particular valuthe current new aspiration leves;, is also updated if a better
with a probability proportional to the pseudo backbone fre-assignment, one violating less hard constraints, is found under

guency of the variable-value pair. the current aspiration level. This means that the overall pro-
) _ ] cesses attempt to find progressively better solutions for both
The backbone guided Wsat(oip) algorithm hard and soft constraints. If we fail to find an assignment satis-

The backbone guided Wsat(oip) algorithm has two phases. THging at leastS;, hard constraints and keeping the penalty above
first is theestimationphase that collects local minima by run- the current aspiration level after a certain number of tries, the
ning Wsat(oip) with a fixed number of tries. The local minima algorithm terminates and the best solution found so far is re-
thus collected are compiled to compute the pseudo backbontarned.
frequencies of all variable-value pairs. Aspiration search has several advantages. First, it decom-
The second phase carries out the actemdkbone guided poses an OIP into several decision problems, each of which
search, which uses pseudo backbone frequencies to modify thas a different degree of constrainedness represented by an as-
way that Wsat(oip) chooses variables to change. This phaggration level. At a given aspiration level, this strategy also in-
also runs many tries, each of which produces a (new) local mintegrates a sampling method, which first probes the search space
imum. The newly discovered local minima are subsequentlyo reach a partial assignment such that the penalty function is
added to the pool of all local minima found so far to update theabove the aspiration level, with a search for satisfaction of the
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hard constraints. Thanks to the partial assignment, the haiid too low[8]. We refer to this strategy as Dyna-Walksat for
constraints can be simplified, as the variables involved in softonvenience.
constraints are instantiated, so that optimizing hard constraints Dyna-Walksat uses two parametei@nde. The difference
becomes relatively easier. As a result, aspiration search is abt# using these two new parameters and using the noise ratio
to reduce search cost. Second, the probalilityf choosing in the original algorithm is that these two new parameters do
a variable involved in hard constraints, an important parametetot have to be tuned for every single problem instance; the
determining the performance of Wsat(oip), disappears, makingerformance of Dyna-Walksat with the same valuesffand
the algorithm less problem dependent. Third, the aspiratiow is relatively consistent across different problem instances.
search strategy can interact closely with the backbone-guided Although Dyna-Walksat was originally designed and tested
local search method, making the latter more effective. Finallyon Walksat for SAT, we have found it effective as well on
since aspiration search is able to reach progressively better s@¢sat(oip) for pseudo Boolean encoded problems and OIPs.
lutions, the suboptimal solutions at various aspiration levelsye call Wsat(oip) using the dynamic noise strategy Dyna-
can thus be used as local minima to compute pseudo backborgsat(oip). Following[8] we setd = 1/6 and¢ = 1/5 in
frequencies, which expedites the process of gathering backyna-Wsat(oip), which have been found to be effective over
bone frequency information. a wide range of problem instances. Due to its simplicity and
When applying sampling method, it is desirable, albeit dif-reasonable performance, in the rest of the paper we will use
ficult, to know if the current partial assignment at a certainDyna-Wsat(oip) withy = 1/6 and¢ = 1/5 as default param-
aspiration level can be extended to satisfy at leégsthard  eters in our experimental analysis.
constraints. Our approach to this problem is to monitor the As mentioned at the end of the previous section, another pa-
progress of extending the partial assignment to a full assignrameter in our extended Wsat(oip) algorithm is the number of
ment. If the number of violated hard constraints decreases afnovesM between two consecutive check points for examin-
ter a fixed number of move®/, we consider the current partial ing progress, if any, made by the algorithm in extending the
assignment extensible. Otherwise, the current partial assigiurrent partial assignment to a complete one that satisfies the
ment will be abandoned, and another partial assignment aboyfaximum number of hard constraints under the current aspi-
the current aspiration level will be sampled. Note that the perration level. A good value for parametaf can be achieved
formance of the overall search is affected by the fixed numbefyhen a good balance is made between the algorithm’s ability to
of movesM within which a better complete assignment mustfind satisfied solutions and its ability to escape from local min-
be found. If this number is too large, we may waste too muchma. This leads to our adaptive parameter approach, in which
time on an unsatisfiable deadend; whereas if it is too small, wghe parametef/ is dynamically adjusted based on progress
may miss a satisfiable sample. We develop a dynamic metha#iade or not made, as reflected in the time elapsed since the
to adjust this parameteV/ in our extended Wsat(oip) algo- |ast improvement made to hard constraints. At the beginning
rithm. The detail of this method will be discussed in the nextof the search, we give an initial value that is proportional to the
section where we collectively deal with the issues of how to dynumber of hard constraints to parameten\/. If the number
namically adjust the parameters of the Wsat(oip) and extendegf hard constraints does not decrease over theMastearch

Wsat(oip) algorithm. steps, we increask/ by k;m, wherek; is a positive constant
. . less than one. Otherwise, we decredsdy kom, whereks is
5.3 Dynamic, adaptive parameters another positive constant less than one. In our experiments, we

One limitation of the WalkSAT family of algorithms, includ- took M = min{m, K/10} andk, = ke = M/5, whereK is
ing Wsat(oip), is its dependence on a manually set noise ratidhe maximum number of moves for a restart.
which is the probability of how often a nongreedy move should

be taken (see Section 4). In addition, whenever a noise ratio i~Ati i i
chosen it will be used throughout the search. It is evident tha? Applications and Experimental Evaluation

big progresses can be more easily made at an early stage \fe implemented an improved and extended Wsat(oip) algo-
a local search than at a late stage. Therefore the noise ratisthm that incorporates the backbone-guided biased moves,
should be adjusted dynamically depending on where the cusampling-based aspiration search and dynamic parameter
rent search is in the overall search space. strategies. We short-handed the improved Wsat(oip) as
The dynamic noise strategy proposed&h for Walksat is  EWSsat(oip). In this section, we report the experimental re-
one such method. The idea of this strategy is simple: start aults, comparing the EWsat(oip) algorithm with its predeces-
local search with the noise ratio equal to zero, and examingor, the Wsat(oip) algorithm. We carried out our analyses on
the number of violations in the current state evéry flips, three different scheduling problems: our crew training schedul-
wherem is the number of constraints of a given problem, anding problem (Section 2), progressive party scheduling and bas-
0 a constant. If the number of violations has not decrease#letball tournament scheduling. The last two problems were
since the last time we checkeéin¢ flips ago), the search is studied in[20], and also included as benchmark problems in
assumed to have stagnated, and the noise ratio is increased@SPLIB [4], an online repository of CSP problems. All our
wp + (1 — wp)é, wherewp is the current noise ratio angl  experiments were run on an AMD Athelon 1900 machine with
is another constant. Otherwise, the noise ratio is decreased 26B memory.
wp(1—2¢). The discrepancy between the formulas for increas- In our experiments, we tried various parameter settings for
ing and decreasing the noise ratio is based on some empiricéde Wsat(oip) algorithm, which include the probability of
observations of how Walksat behaves when the noise ratio ishoosing a hard violated constraint over a soft violated con-
too high, compared with how it behaves when the parametestraint and the size of tabu list. The comparison results below
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Problem Wsat(oip) EWsat(oip)
n | m unsat[ penalty| time || unsat| penalty| time

11520 16308 | 12.43| 10380| 287.4| 12.08 9330 | 167.6
21240| 34908 | 10.58 8550 | 824.7| 8.05 6270 | 490.2
21800| 37501 3.45 2520 56.0| 3.35 2325| 56.3
40718| 72071| 3.95 2970 26.2| 3.88 2880 | 41.2
41496| 66892 11.93| 10230| 1936.4| 8.70 6810 | 965.2
79580| 143896 4.10 3120 | 514.5| 3.97 2963 | 344.3

Table 2: Comparison on crew training scheduling, wheandm are the numbers of variables and clauses, respectivakat
is the average number of violated hard constrapegsialtythe average penalty score, aimiethe average CPU time in seconds.
The better results between the two algorithms are in bold.

are for the best parameters for Wsat(oip). Specifically, on our x 10"
crew scheduling problems, the best probabibyis 99%, and ‘
on the party scheduling and basketball scheduling problems,

N
[N}

T Wsaf(oip)
—o— EWsat(oip) |

the bestp,, is 90%. To make a fair comparison, we applied ?

dynamic parameter method to automatically adjust the noise 91-8’

ratios for both Wsat(oip) and EWsat(oip), and let EWsat(oip) 816/

have the same size of tabu list as used by Wsat(oip), which was 2

set to 4. gL
Q1.2

6.1 Crew training scheduling

The first and main problem we considered is our crew train-
ing scheduling problem. The test set consists of six large and o
many small problem instances, derived from a real applica- I &0
tion domain involved with a large number of crew members of
different specialty and various equipment that requires routine
maintenance. These problem instances vary in sizes and degree
of constrainedness; the largest instances has 79,580 variables
and 143,896 constraints. These problems were collected from
overconstrained situations and their hard constraints did not

seem to be satisfiable all together. Here we present the results . . . .
on these six large instances. cally constrained PPP problem instances in CSHéIBwhich

In our experiments, we allowed Wsat(oip) and EWsat(oi )are all satisfiable. The sizes of these problem instances are rela-
b ' P P vely small, comparing to the crew scheduling problems, with

to have 200 random restarts for each of their run, and 60,00?16 number of variables less than five thousand and the number

maximum moves (variable-value changes) with each restar ; ;
The average results comparing these two algorithms over 43f constraints no more than 32,000. We considered all of them

runs on all six problem instances are shown in Table 2. We e%ﬂ nog; tehxgz?rgﬁ?ﬁfﬁ \é\;ecﬁlgwﬁﬁichogsgg%%ngégsﬁ&se'sn (\)/Cg
amined the average minimum number of unsatisfied hard cor: 9 ’ ' :

: . . veraged the results over 40 runs for each of two algorithms.
straints (unsat), the average minimum penalties (penalty) an% X :
the average CPU time (time) required to reach solutions of suc able 3 shows the median and average CPU times to reach sat-

qualities. As the results show, EWsat(oip) is able to find bette?Sfying solutions by Wsat(oip) and EWsat(oip).

solutions with more hard constraints satisfied and lower penal- On four of the six PrOb'?”ﬁ Instances, bo_th _algorlthms take

ties for all problem instances, and with less execution time or%SS than one second to finish and have similar performance.

four out of the total six instances. n the other two problem instances, EWsat(oip) can reduce
Additional insights were gained when we examined the any-med'an execution time from 153 _secqnds 0 9.5 seconds agd

time performance of the two algorithms on these difficult prob-34-2 secgnds to 34.6 seconds, giving time reductions of 37.9%

lems. Figure 2 shows such an anytime comparison on ongnd 22.9%, respectively.

of the six instances, also averaged over 40 runs. As show .

EWsat(oip) can make significantimprovement in an early stag%‘3 Basketball tournament scheduling

of the search, indicating that it explores more fruitful regionsThe ACC Basketball Scheduling Problem (ACC) is to ar-

of the search space more effectively than Wsat(oip). The anyange a basketball tournament in the Atlantic Coast Confer-

time results on the other problem instances were similar to thagnce. The problem was originally described by Nemhauser

I
(oo

©
2}

0 1000 2000 3000
CPU time (seconds)

Figure 2: Anytime comparison on a crew scheduling.

in Figure 2. and Trick[16]. Walser developed a pseudo Boolean integer
_ _ linear programming model for these problef@g]. The ob-
6.2 Progressive party scheduling jective of an encoded ACC scheduling problem is to satisfy all

The Progressive Party Problem (PPP) is to progressivelthe hard constraints while minimizing the total penalty caused
timetable a sequence of parties. There are a total of six critiby violated soft constraints. The difficulties of the available
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Problem Wsat(oip) EWsat(oip)

name [ n [ m median| average| median| average
ppp:1-12,16 | 4662 | 31725 0.175 0.185 0.186 0.190
ppp:1-13 | 4632 | 30964| 0.406| 0.441| 0.388| 0.423
ppp:1,3-13,19| 4608 | 30348 0.469 0.472 0.388 0.449
Ppp:3-13,25,25 4644 | 31254 0.625 0.713 0.656 0.718
ppp:1-11,19,21] 4602 | 30179 || 15.283| 15.814 9.453| 12.856
ppp:1-9,16-19 | 4626 | 30747 | 44.906| 63.553| 34.546| 58.302

Table 3: Comparison on progressive party scheduling problem, whanelm are the numbers of variables and clauses, respec-
tively, andmedianandaverageare the median and average CPU times in seconds. The better results are in bold.

Problem Wsat(oip) EWsat(oip)
name | n [ m median| average|| median| average
acc-tight:2| 1620 | 2520 0.86 1.03 0.77 1.05
acc-tight:3| 1620 | 3249 1.30 2.16 1.26 1.83
acc-tight:4| 1620 | 3285 44.14 61.49 35.35 48.69
acc-tight:5| 1339 | 3052 | 1171.17| 1071.18|| 603.57| 609.05

Table 4: Comparison on ACC backetball scheduling problem, where the legends are the same as in Table 3.

problem instances vary dramatically. Here we only consideparticularly thank Joachim Walser for making the source code

four instances of moderate difficulties.

of his Wsat(oip) algorithm available to us. Thanks also to

The experiment setup was the same as for the party schedWSC/ISI Camera group for bringing to our attention the crew
ing problem considered earlier. The median and average timexheduling problems and for providing many problem in-
to reach satisfying solutions to these problems are included istances studied in the research. We thank Alejandro Bugacov
Table 4. EWsat(oip) outperformed Wsat(oip) on all these infor many helpful discussions.

stances except the slightly slower average time on instance acc-

tight:2. The performance of EWsat(oip) seems to particularlyReferences

improve on hard instances. For example, EWsat(oip) reduc ]
the median running time by 48.4% on acc-tight:5, increase
from 20.5% on acc-tight:4.

7 Conclusions 2]

Wsat(oip) is an extensively applied integer local search algo-
rithm for solving constraint problems with hard and soft con-
straints which are represented as overconstrained integer linear
programs (OIPs). In this paper, we introduced three strate-
gies to improve the performance and applicability of Wsat(oip)

in solving complex scheduling problems: biased-move strat[3]
egy to improve the efficacy of local search by exploiting back-
bone structures; sampling-based aspiration search to find high
quality solutions and improve anytime performance; dynami
parameter adaptation to make Wsat(oip) robust and more a 4l
plicable to real-world problems. Our experimental results
on three large and complex scheduling problems show that
our improved Wsat(oip) algorithm significantly improves upon
the original Wsat(oip) by finding better solutions on overcon-
strained problems or finding better or same-quality solutions
sooner. We expect that these new methods can be applied [t6]
other search algorithms and combinatorial optimization prob-
lems. (6]
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