
A Design Methodology for Domain Independent
Computer Generated Forces

David A. Van Veldhuizen and Larry J Hutson
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-7765

{dvanveld, lhutson}@afit.af.mil

Abstract

The "synthetic battlespace", used by the military as
a training arena, exhibits several deficiencies. These
limit battlespace combatants from interacting in a re-
alistic fashion. A promising method to correct these
deficiencies is by using "intelligent" computer gener-
ated actors who display realistic behavior. This paper
explores a generic architecture for these actors, and
gives a design extending the architecture for use in our
research effort. It also discusses a method for incor-
porating human behavior and skills into the computer
actor’s actions.

Introduction

To make better use of limited Department of Defense
training funds, the military has turned to Distributed
Interactive Simulation (DIS) technology, using com-
puterized simulations as the training arena. This "syn-
thetic battlespace’, although successful in certain ar-
eas, exhibits several deficiencies resulting from partic-
ipant’s inconsistencies.

A major problem is that the threat environment
(e.g., anti-aircraft artillery or aircraft) currently pre-
sented to all simulation participants is not consistent.
This prevents battlespace combatants front interacting
in a realistic fashion because they sense the environ-
ment at different fidelity levels. For example, simula-
tors of combat force aircraft have native threat gener-
ation systems for stand-alone and networked testing.
This heterogeneous capability often results in com-
patibility problems between simulators when adding
new weapons or theaters of operation. A contributing
problem is that many battlespace systems represent-
ing the same assets are implemented in a non-uniform
manner. Many simulation developers created unique
systems and implement modeling decisions supporting
their users in specific scenarios. These differing sys-
tems are difficult to coordinate on a distributed net-
work because they can’t perform at the same fidelity
level. This creates asset synchronization issues.

Lastly, a lack of actors, whether human or "intelli-
gent" computer-generated, exists within many military
simulations. Humans are able to rapidly identify and

defeat current computer-generated entities using unre-
alistic tactics (i.e., "gaming the system"), reinforcing
potentially fatal behaviors. State of the art still falls
short of presenting believable agents in many simula-
tions.

Taken together, these issues lead to great expense,
uncoordinated threat development, and training in-
consistencies between participants. A promising tech-
nology to fill this gap is Computer Generated Forces
(CGFs), which are computer controlled actors display-
ing intelligent behavior. Unlimited numbers of simula-
tion CGFs could be created on demand with minimal

..... ~ardl~ed in their presentation ofCOS~,, J -"- - -’ ’-o.,.,.++u ¢&ii ~

and reaction to threats throughout the battlespace.
Our current research focuses on creating and

implementing a design methodology for the Dis-
tributed Mission Training Integrated Threat Environ-
ment (DMTITE) project. The project’s goals are
identifying requirements for a distributed threat en-
vironment, evaluating similar efforts, and building a
demonstration unit providing a distributed threat en-
vironment in the synthetic battlespace. We envision
a "black box" where a generic design is used to con-
struct varied CGF types, each displaying appropriate
behaviors. This design allows users to specify any type
of land-, air-, or sea-based CGFs for use in training
simulations; however, initial development is limited to
aircraft, surface-to-air missile units, radars, and anti-
aircraft artillery.

This paper explores a generic CGF architecture, ex-
tends it for use in this application, discusses key is-
sues, and suggests implementations for key architec-
ture components. CGF characteristics, architecture
design methodology, and human-like behavior are dis-
cussed in the following sections.

Domain Independent CGF

Characteristics

Systems developed independently of one another make
standardization difficult, if not impossible. Any stan-
dardized domain independent CGF approach must
then consider certain requirements. This section re-
views these requirements, discusses projects relevant

86 MAICS-97

From:MAICS-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

to the current work, and motivation driving the devel-
opment effort.

CGF Requirements

Any CGF must satisfy a core of architecture, be-
havior, and knowledge-base requirements. Banks, et
al. (Banks, Stytz, & Santos 1996), have suggested such
a baseline set, identifying the following requirements as
providing a well-engineered system development foun-
dation: modifiability, high fidelity, adaptable decision-
making, and learning. Briefly, their requirements are as
follows. The ability to easily change CGF capabilities
must exist. This includes knowledge-base expansion
and flexibility of the underlying software architecture.
Realistic CGF behavior is required; the CGF’s physical
and cognitive representations must display believable
actions. CGF decision processes must deal with avail-
able information (or a lack thereof) and differing per-
formance requirements. Finally, CGFs must employ
a learning mechanism to improve their decision mak-
ing processes to avoid the predictable actions currently
allowing their identification as computer-generated ac-
tors.

Review of Relevant Efforts
Several efforts currently explore CGF creation and be-
havior. However, many do not address the entire set
of core requirements above, but only develop a lim-
ited subset. Two efforts incorporate some aspect of
the above and warrant mention here.

The Automated Wingman is an experimental CGF
assembled at the Air Force Institute of Technology’s
(AFIT’s) Virtual Environments Laboratory. It was
developed as a collaborative effort showing the imple-
mentation of a domain independent framework and ar-
chitecture for knowledge based CGFs (Benslay 1996;
Zurita 1996). Its strengths are the identification
and partitioning of domain knowledge into separate
knowledge bases; and development and implementa-
tion of an asynchronous game-tree driven by fuzzy
logic. Its shortfalls lie mainly in the incomplete pop-
ulation and partitioning of its knowledge bases, and
inference mechanisms to reason over them.

TacAir-Soar is an intelligent automated agent for
tactical air simulation. The goal of this research
is to build intelligent, automated agents for tacti-
cal air simulation, creating automated pilots whose
behavior in simulated battlefields is nearly indistin-
guishable from human pilots (Tambe et al. 1995).
The strengths of TacAir-Soar are its performance in
beyond-visual-range air combat scenarios, the abil-
ity to retain "memory" of actions performed and
their explanation, and communication and coordina-
tion among multiple agents. However, it emulates
the human cognitive process, which can vary across
problem domains. Its implementation as a specialized
(fighter) CGF complicates design of other CGF types
where the cognitive process and resultant actions may

be different, such as an underground command post.
Finally, it does not handle uncertainty in its decision
making process.

Requirement for New Approach
The CGFs we generate are designed for use in Dis-
tributed Virtual Environments (DVEs). In a DVE,
participants must move correctly, behave believably,
and approximate the complexity of the real world.
CGFs exhibiting human behaviors are critical; their
perceived behavior must be accurate and real enough
so that the other CGFs and human participants in
the DVE respond to the CGF as if it were a human-
controlled actor (Stytz 1996).

More research in this area is required. The large
and expanding numbers of interconnected simulations
in use by the Department of Defense, coupled with
the increasing reliance on these simulations for training
purposes, mandate the most realistic representation of
CGF behavior possible to maximize the training expe-
rience. This translates to civilian applications as well,
such as medicine or air-traffic-control training. Lessons
learned from these efforts are crucial in expanding the
performance envelope of the CGFs we propose.

CGF Architecture and Design

A generic CGF architecture is desirable because it pro-
vides a general template for instantiation of several
different CGF types, and for the variation of abilities
within a single type. Santos, et al. (Santos, Banks,
Stytz 1996), proposed a generic, adaptable CGF archi-
tecture which accounted for "variety" in a given type
of CGF and supported construction of vastly different
CGFs. We build on their efforts, extending the archi-
tecture to that shown in Figure 1.

The key to our model lies in the separation of phys-
ical and cognitive processes, which allows several ad-
vantages. First, it eliminates dependencies between the
two sets of processes; changes to one do not necessar-
ily impact the other. Second, it shifts the focus from
what knowledge is ava~able to how the knowledge de-
composes. This allows us to quickly identify areas in
which the CGF will be faced with uncertainty. Finally,
it allows instantiated CGFs to display a wide variety of
abilities and skills. These advantages are critical if we
want to eliminate the unnatural advantage human ac-
tors currently enjoy in the virtual battlespace. Current
CGF performance still falls short of these goals.

The DMTITE system-level architecture is shown in
Figure 2. Each DMTITE CGF sends and receives
world state information via a shared database that
maintains the most recent world state information re-
ceived from the DIS World State Manager (WSM). In-
stead of receiving a constant stream of updated in-
formation, the WSM approximates positions of other
entities in the DVE using local references and dead
reckoning algorithms. Information is updated only as
necessary, such as when an entity changes velocity or

Van Veldhuizen 87

hfo

’o~r[d
hfo

Corn purer Generated Entity
S~te

Physical.Component Representation

]~ Physical Component

Physic al Component

Physical Component

0
0
0
0

Physic al Component

Control Info

Cognitive Representation
Component

Long-Term
Decision En(

Figure 1: Design Methodology for Generic CGP Architecture

heading. Each local WSM is the sole provider of infor-
mation to other WSMs in the DVE.

Our extended CGF architecture supports a domain-
independent approach for implementing CGFs. The
Physical Representation Component (PRC) is com-
prised strictly of the physical attributes and properties
of the CGF; those characteristics that are subject to
physical laws. This representation supports the decom-
position of physical characteristics into objects and op-
erators. The modularity of physical components allows
for easy addition, deletion, and modification of these
components without requiring corresponding changes
to the cognitive representation.

The PRC also acts as the CGF’s only gateway to
the outside world. Since the WSM receives state infor-
mation for all participants in the DVE, the PRC uses
a sensor interface to filter out all information not ap-
plicable or desired by the CGF it supports. Data for
a particular CGF is passed to the corresponding phys-
ical component(s); data not applicable to that CGF
is ignored. This eliminates the need for each physical
component to determine whether received data is to
be processed.

The Cognitive Representation Component (CRC)
includes CGF characteristics that are less physical and
more cognitive in nature. It is responsible for emulat-
ing the outcomes of the human cognitive process (de-
cisions), but does not require a model of the cognitive
process be implemented. However, the CRC is respon-

sible for far more than just decision-making. In ad-
dition to decision engines, it also contains the CGF’s
goals, entity profile, and knowledge bases. The entity
profile specifies the CGF’s skill level and other com-
bat performance factors, which are discussed in more
detail in the next section.

The knowledge bases are separate from the decision
engines and are sub-divided into smaller, more atomic
knowledge bases. For example, an "evasive flight"
knowledge base might decompose into "known maneu-
vers", "opposing aircraft capabilities", and "terrain in-
formation". This results in tightly focused knowledge
bases visible to any decision engine making use of the
knowledge. These knowledge bases require state infor-
mation from physical components, thus, an interface is
constructed to act as an information gateway between
the physical and cognitive representations. While this
supports indirect access to physical state information,
changes to the physical representation impact only the
interface, not the knowledge bases. The interface also
informs the knowledges bases as to the type of infor-
mation it provides. Finally, each knowledge base is
designed to handle "good", "corrupted", and missing
information. This approach yields modular knowledge
bases containing unique information.

Our decision engines have specific responsibilities
and "areas of concern". The Long-Term Decision En-
gine reasons over strategic plans and goals of concern
to the CGF. For example, it allows the CGF to iden-

88 MAICS-97

state

i

slatt
k’,fo ~-.’-:-:-.--.’-:-.-:-~..:-:e: ~:~.’.:-.’-:-:-:+:-::-.:::x.:.:..-:.~::~::::

~:~:.%~:’.::~ ~ ~ ~.:.:.~i~ ~;.~;.~::~::;:’~
:.:.:.:.:.:.:.:.:.:~::.:..::::~.::::

::: ~:~ $--.’::::::::::::::::~::’~:’:.:.%’.:::’::.:~:k-:::.-:::::::::::::::.:.~. :::
$ta~e ::::::~::::::::::’-:: ::: :::::::::::::::::.’:::.’:::::::::::::::::.’:::::::~::>%~

~::..:~:: ::::"~:.::.:::’~:~:::::::::::::::~:.’::::::::::::~.:::: f~:>~:~

~!~i!:%:.:’:-~ ~’:.-:::~i.~-&~ ~i

Figure 2: DMTITE System-Level Architecture

tify "targets of opportunity" that advance the ulti-
mate mission goals simulation, but were not part of the
CGF’s original tasking. The Mission-Level Decision
Engine reasons over moment-to-moment and short-
term actions of the CGF. Such actions include initiat-
ing a bomb drop or attacking enemy aircraft. The t~e-
flexive Decision Engine directs survival (fight or flight)
and other reflex actions performed by the CGF. An ex-
ample of a reflexive action would be a soldier’s instinct
to drop to the ground when fired upon. The main
advantage of this approach is that multiple decision
engines scoped to different levels and tasks allow us
to fine-tune one set of behaviors with minimal impact
on other, unrelated behaviors. A major disadvantage
is that each engine will most likely render a different
decision for the same situation.

To overcome this situation, our architecture includes
an Arbitration Engine, a specialized decision engine de-
termining which decision is ultimately selected for ac-
tion. However, it considers not only the decisions ren-
dered by the other engines, but each decision’s merit
(relative to the others) and the current state of the en-
tity profile. For example, the flight (in "fight or flight")
decision is unlikely to be acted upon by a CGF repre-
senting a highly-trained, highly-disciplined combat en-
titity; such a decision has relatively low merit to the
CGF in most cases. However, a CGF representing a
poorly-trained, poorly-disciplined entity is more likely
to act upon such a decision, perceiving it to have rela-
tively high merit. When multiple decisions have rela-
tively similar merit and are similar in nature, the Ar-
bitration Engine combines them into a new, composite
decision. For example, in response to a heat-seeking
missile, the Mission-Level Decision Engine decides to

"deploy flares and execute a slight turn to the left".
However, the l%eflexive Decision Engine decides to "de-
ploy flares and execute a sharp turn to the left". The
Arbitration Engine combines these two decisions and
tells the CGF to "deploy flares and execute a moderate
turn to the left". The result is an action that, to an
outside observer, emulates momentary indecisiveness
on the part of the CGF-a very human-like behavior.

When the Arbitration Engine receives multiple deci-
sions of relatively similar merit but dissimilar nature,
it relies on the entity profile to determine which action
to select. For example, if the entity’s profile reflects
low confidence and an actual inability to cope with the
current situation, the Arbitration Engine may choose
to act upon the reflexive decision (possibly to the point
of abandoning the mission). On the other hand, if the
profile reflects a high degree of confidence but an ac-
tual inability to cope with the current situation, the
Arbitration Engine may choose to act upon the other
decision. This deliberate action possibly places the
CGF in significant, but otherwise avoidable, danger.
Other entity profile states may cause the Arbitration
Engine to ignore all of the decisions offered (emulating
an overwhelmed or "shell-shocked" entity), or demand
new decsions from the other decision engines. In short,
the Arbitration Engine ultimately decides the course
of action a CGF takes while attempting to incorporate
human-like behaviors in those actions.

Incorporating Human-Like Behavior:
The Entity Profile

Human opponents rapidly identify and defeat CGFs
acting upon random or scripted decisions, which are
not decisions based on combinations of world state,
mission success, or self-preservation. To prevent this
unnatural advantage, CGF behavior must be modeled
upon actual human behavior. This involves identify-
ing and incorporating concepts such as doctrine, tac-
tics, training, and information into the behavior of
the CGF. This raises two key concerns: unpredictabil-
ity and certifiability (Banks, Stytz, & Santos 1996).
Unpredictability does not imply random behavior; in-
stead, it is concerned with the lack of exploitable pat-
terns in CGF behaviors. Certifiability is the con-
cern that CGF behaviors be measurable against, and
comparable with, those displayed by humans in simi-
lar situations. The latter issue is addressed primarily
through the use of multiple CGF skill levels.

Multiple skill levels allow CGFs to exhibit behaviors
of "combat-hardened" individuals, those being exposed
to fire for the first time, and the range of experience
in between. Novices are more likely to display limited
maneuvering tactics or miss their targets, whereas vet-
erans display opposite behaviors. In a general sense, we
are concerned with two types of skill: weapons and ma-
neuver. Weapons skill is the effectiveness with which
the weapon systems available are used. Maneuver skill
encompasses how effectively the entity can maneuver

Van Veldhuizen 89

itself; for example, how well it flies an aircraft. These
attributes reflect not only training, but also the inher-
ent skill possessed by the entity. The values of these
attributes will often remain constant over the course of
a simulation, but are subject to change. By separating
the representation of these skills, we allow a greater
number of skill levels and resultant behavior than if
they were combined.

However, human behaviors in combat aren’t strictly
a measure of skill level; they also reflect other, less
tangible concepts. In fact, psychologists have identi-
fied four areas directly affecting combat performance:
psychological, social, instrumental, and physical (Shalit
1988). These areas are too semantically vague to be
used effectively by simulation planners. We use the
following domain-independent attributes to represent
these areas instead:

1. Motivation. Eagerness to engage an enemy. This
attribute reflects concepts such as "sense of duty",
"commitment", and "belief in a cause". The value
this attribute takes on may change during the course
of a simulation.

2. Social Identification. The degree to which the
entity "belongs" to the society for which it fights.
This attribute reflects concepts such as "patriotism".
The value of this attribute is assigned at the start of
a simulation and remains constant throughout the
simulation.

3. Perception of Enemy. How the entity perceives
itself in comparison to its opponent. Initially, this
attribute reflects the effects of propaganda, but as a
simulation progresses, will reflect the actual qualita-
tive differences between the entity and its opponent.

4. Means. The quantity and quality of resources avail-
able to the entity to complete its mission. This at-
tribute is strictly internal and its original value must
be derived; users may not define an initial value. Ob-
viously, this attribute will change over the course of
a simulation.

5. Physical Condition. The relative position of the
entity to an ideal, mission-ready condition. This
attribute reflects concepts such as "fatigue", "in-
juries", and "damage". The value assigned to this
attribute is dynamic over the course of a simulation.

These attributes, in conjunction with the skill at-
tributes discussed previously, comprise the entity pro-
file. Since these attributes are qualitative in nature,
they can be implemented as term sets comprised of
one or more linguistic variables (Banks, Stytz, & San-
tos 1996). While the Arbitration Engine is most likely
the primary user of the entity profile, other compo-
nents can incorporate this information as well. The
entity profile can be used by the knowledge bases to
"corrupt" world state information resulting in a desired
behavior. For example, a CGF with poor weapons skill
may "misread" its targeting information, selecting a

90 MAICS-97

short-range missile to target an out of range enemy .
Decision engines can use the entity profile while deter-
mining what course of action to recommend; an entity
with low motivation would be less likely to aggressively
close in on an enemy, and the decision engine should
take this into consideration.

Conclusion
The soundness of this design will become apparent as
we begin implementation of varied CGF types for the
DMTITE project. We will evaluate and incorporate
lessons learned from construction of the first CGFs
built into the later efforts. We plan on implement-
ing computer-generated fighter, anti-aircraft artillery,
and radar posts first, as many of the physical models
and domain knowledge necessary exists and is well-
documented. This allows rapid exploration and evalu-
ation of our methodology.

We’ve shown an architecture and design methodol-
ogy that is truly domain-independent, freeing the de-
signer from a particular computer simulation or host
platform. It gives a framework rio build CGFs of any
desired type and to exhibit varying levels of skilled
behavior. These factors allow CGFs to smoothly inte-
grate into simulations adhering to DIS standards. This
reduces the expense of adding simulation entities, helps
coordinate threat development, and removes inconsis-
tencies between simulation participants.

References
Banks, S. B.; Stytz, 1~[. t~.; and Santos, E. 1996.
l~equirements for intelligent aircraft entities in dis-
tributed environments. In 18th Interservice/Industry
Training Systems and Education Conference.
Benslay, Jr., J. 1996. A domain independent frame-
work for developing knowledge based computer gen-
erated forces. Master’s thesis, Air Force Institute of
Technology.

Santos, Jr., E.; Banks, S. B.; and Stytz, M. R.
1996. Engineering intelligent computer generated
forces. Technical report, Air Force Institute of Tech-
nology.

Shalit, B. 1988. Psychology of Conflict and Combat.
Praeger.

Stytz, M. R. 1996. Distributed virtual environments.
IEEE Computer Graphics and Applications 19-31.

Tambe, M.; Johnson, W. L.; Jones, R. M.; Koss, F.;
Laird, J. E.; l~osenbloom, P. S.; and Schwamb, K.
1995. Intelligent agents for interactive simulation en-
vironments. AI Magazine 15-37.

Zurita, V. B. 1996. A software architecture for com-
puter generated forces in complex distributed virtual
environments. Master’s thesis, Air Force Institute of
Technology.

