
1

Do Walls Compute After All?

Challenging Copeland’s Solution to Searle’s Theorem against Strong AI

Matthias Scheutz (mscheutz@indiana.edu)
Cognitive Science/Computer Science, Indiana University

Bloomington, IN 47404

Abstract

In this is paper I will briefly describe Searle’s criticism of
“strong AI” (which extends to computationalism in general)
and review Copeland’s version of what he calls “Searle’s
Theorem”, a claim made by Searle that “for any object there
is some description of that object such that under that de-
scription the object is a digital computer”. Copeland’s own
diagnosis and his solution to the paradox posed by Searle’s
Theorem will then be examined more closely. An analysis
of Copeland’s definition of what it means to implement a
computation will yield a Searle-like counterexample of
computing (extending an idea advanced by Putnam): under a
certain interpretation walls will, after all, compute. A brief
discussion and assessment of the consequences of my coun-
terexample will—contrary to one’s expectation—provide an
optimistic outlook for computationalism.

Introduction
Computation and implementation are mutually
dependent concepts upon which the fundaments
are built of what John Searle coined “strong
AI”—the view that “the mind is to the brain, as
the program is to the computer hardware”
(Searle[84], p. 28). Searle, being a firm oppo-
nent of strong AI, presented various rebuttals of
this doctrine, the most famous of which is his
heavily debated “Chinese room” thought exper-
iment (see, e.g., Searle[80] or Searle[84]). The
argument rests on the assumptions that (1) pro-
grams are formal (syntactical), (2) minds have
content (semantic content), and (3) that syntax it-
self is neither identical with nor sufficient by it-
self for semantics. It follows from these
premises that programs are neither sufficient for
nor identical with minds, thereby refuting strong
AI. As conclusive as this may sound at first
glance, assuming that the reasoning is valid, it
can still be doubted that all the premises are true.
And, as it turns out, much of the truth of the first

assumption depends on how one interprets the
notion “program” (see, e.g., Melnyk[96]).1

In his book The Rediscovery of Mind, Searle
augmented the above arguments by another sub-
stantial claim (which now affects computation
beyond its role in strong AI): physics is not suf-
ficient for syntax. In other words, the physical
properties of a system do not determine the sys-
tem’s syntactic properties (Searle[92], p. 210).
Syntax has to be assigned to a physical system,
and this assignment is arbitrary, hence observer
relative.2 It follows that “if computation is de-
fined in terms of the assignment of syntax then
everything would be a digital computer, because
any object whatever could have syntactical as-
criptions made to it” (Searle[92], p.207). Thus,
whether or not a physical system is “running a
program” depends solely on one’s interpretation
of that system:

“On the standard definition[…] of computation it is
hard to see how to avoid the following results: 1. For
any object there is some description of that object
such that under that description the object is a digital
computer. 2. For any program and for any sufficiently
complex object, there is some description of the object
under which it is implementing the program. Thus for
example the wall behind my back is right now imple-
menting the Wordstar program, because there is some
pattern of molecule movements that is isomorphic with

1 It seems that if minds are on a par with programs, i.e., if the

term “mind” can be legitimately compared to the term “program”,
then minds would be static, formal objects, too. Otherwise, the
first premise should really read “processes are formal”, but that
does not seem right anymore (for the program/process distinction
see, e.g., Smith[96], p. 33-34).

2 This argument, eventually, leads to multiple realizability of
computation, and has been attacked for that very reason (see, e.g.,
Endicott[96]).

From:MAICS-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

2

the formal structure of Wordstar.” (Searle[92], p.
208-209)

I n s h o r t : t h e n o t i o n a l p a i r
“computation/implementation” is not suitable for
describing minds and their relations to the physi-
cal systems “causing” them. This has not only
fatal consequences for strong AI, but for any
view maintaining that minds can be described
computationally; in particular, computationalism,
cognitivism, and various forms of functionalism
are at stake. It, therefore, does not come as a
surprise that Searle’s attack against main stream
cognitive science created hefty reactions, most of
which tried to find faults in his reasoning.

In this paper, I will focus one of the attacks,
namely Copeland’s theory of implementation
(Copeland[96]), which is especially interesting,
because it deviates significantly from the stan-
dard “physical state - abstract state correlation”
view (see, Chalmers[96,97], Melnyk[96], Endi-
cott[96], et. al.). The problem with the latter is,
as has been pointed out by the founder of func-
tionalism, Hillary Putnam, that such a corre-
spondence can always be found, if one “chooses”
physical states cleverly.3 Although some dis-
agree with Putnam’s proof (see, e.g.,
Chalmers[96]), I think that their arguments fail to
get at the heart of Putnam’s construction, but I
will not be able to argue this here.4 Instead, I
will show that even Copeland’s definition of
“computing a function” can be tricked by a Put-
nam-like argument: systems can be shown to
compute, to which one would normally not at-
tribute any computational capacity whatsoever.
Although one could argue that this rehabilitates
Searle’s theorem, I instead conclude that an ade-
quate notion of implementation, which meets
Putnam and Searle’s challenges, is still missing.

Copeland’s notion of implementation
Amongst the defenders of the “traditional theory
of computation” is Jack Copeland, who reformu-
lated both of Searle’s above-mentioned theses as
a theorem, calling it “Searle’s Theorem”. Given
an intuitive account of what it means to imple-

3 In the appendix to his book Representation and Reality
Putnam proved the following theorem: every ordinary open
system is a realization of every abstract finite automaton
([Putnam88]), which I will use later to construct a
counterexample to Copeland’s version of Searle’s theorem.

4 I present a detailed analysis of all the pros and cons of
Putnam’s construction as well as a diagnosis why no “physical
state - abstract state correlation” view is tenable in Scheutz[97].

ment a program (in general, a computation), this
theorem turns out to be true. However, the proof
relies essentially on non-standard interpretations
of theoretical terms that are thought to describe a
computer architecture, as Copeland points out.
Exploiting this weak spot, one can block un-
wanted conclusions such as “the wall behind my
back is right now implementing the Wordstar
program” by requiring that interpretations of al-
gorithms and their corresponding architectures
be “standard”. In the following, I will review
Copeland’s definition of “computing a function”
and state Searle’s theorem in Copeland’s terms
(the gist of its proof will be described in the next
section).

The driving force of Copeland’s What is
Computation? (Copeland[96]) is to clarify and
define what is means for an entity e to compute a
function f, which eventually boils down to the
following question: given a formal specification
SPEC of an architecture (e.g., the blueprint of a
PC) together with a specific algorithm for that
architecture (e.g., an addition program written in
486 assembly language) which takes arguments
of f as inputs and delivers values of f as outputs.
Furthermore, given an entity e (“real or concep-
tual, artifact or natural” Copeland[96], p. 336).
How can we say/determine that/whether e is a
machine of the kind described by SPEC on
which could “run” (i.e., a machine which com-
putes the function f)? Notice that this question
really requires an ontological as well as an epis-
temological answer, even if the latter will depend
on the former.

Copeland finds a solution to bridge this gap
in the notion “labeling scheme for e”, which is a
way of assigning labels (to parts of e) “that con-
stitute a ‘code’ such that spatial or temporal se-
quences of labels have semantical interpreta-
tions” (Copeland[96], p. 338). Obviously, labels
must be assigned for at least each of the con-
stants in SPEC denoting parts of the architecture.
A labeling scheme, then, consists of: (1) the des-
ignation of certain parts of the entity as label-
bearers, and (2) the method for specifying the la-
bel borne by each label-bearing part at any given
time (Copeland[96], p. 338).5 Given a labeling
scheme (which provides physical counterparts of
e for formal objects in SPEC), one could attempt
a truth-definition relating SPEC and e such that it

5 Note that nothing is said about the nature of the relation
between labels and parts of e. It seems to me that one should at
least require a functional correspondence.

3

is meaningful to ask if SPEC is true of e. Note
that this truth-definition crucially depends on the
vocabulary used for the formal specification
SPEC. Copeland downplays the importance of
the particular language of SPEC with the cryptic
remark “For definiteness, let SPEC take the form
of a set of axioms, although nothing in what fol-
lows turns on the use of the axiomatic method as
opposed to some other style of formalisation”
(Copeland[96], p. 337-338). However, his cri-
tique of Searle’s Theorem assumes that a con-
nective like “ACTION-IS” (which has to be in-
terpreted in a particular way) be an essential part
of SPEC. It seems to me that a serious truth-
definition can only be provided if the language at
hand is clearly defined and all necessary predi-
cates and connectives (such as “ACTION-IS”)
together with their interpretation are completely
determined, neither of which has been done in
Copeland’s paper. So, I will, too, pretend that
the specifics of SPEC do not matter, and that a
truth-definition can be provided once the lan-
guage of SPEC has been fixed.

Assuming a truth-definition relating expres-
sions (“formal axioms”) of the language of SPEC
using a labeling scheme L and an entity e, the
notion “model of SPEC” can be defined:

Definition 1: Let SPEC be a Given a formal
specification, L be a labeling scheme, and e be an
entity. Then the pair <e,L> is a model of SPEC
iff the formal axioms of SPEC are true of e under
L.

Using the above definition, Copeland can define
what it means for an entity to compute a function
and state a precise version of Searle’s Theorem
(Copeland[96], p. 338-339):6

Definition 2: An entity e is computing function f
iff there exists a labeling scheme L and a formal
specifications SPEC (of an architecture and an
algorithm specific to that architecture, which
takes arguments of f as inputs and delivers values
of f as outputs) such that <e,L> is a model of
SPEC.7

Theorem 1: (Searle’s Theorem) For any entity e
(with a sufficiently large number of discrim-
inable parts) and for any architecture-algorithm

6 There are other approaches that also use labeling schemes,

but do not need a semantic interpretation to define a notion of
computation, e.g., see Gandy[80].

7 As a consequence of Searle’s theorem, Copeland later
requires in addition that the model be “honest”.

specification SPEC there exists a labeling
scheme L such that <e,L> is a model of SPEC.

In more intuitive terms, this theorem states that
every object can be “interpreted” as computing
any function that any given computational archi-
tecture could specify. Obviously, something
must be wrong with this result (otherwise com-
puter dealers would be selling walls), the real
challenge, however, is to find and explicate its
defect.

Copeland’s Analysis of Searle’s Theorem

“[…]to compute is to execute an algorithm. More
precisely, to say that a device or organ computes is to
say that there exists a modelling relationship of a cer-
tain kind between it and a formal specification of an
algorithm and supporting architecture. The key issue
is to delimit the phrase ‘of a certain kind’”.
(Copeland[96], p. 335)

Since Copeland’s notion of implementation de-
pend essentially on a semantic interpretation of
the relationship between a formal specification
(i.e., the description of an architecture) and a
physical object, one has to insure—as he points
out in the quoted passage—that “unwanted inter-
pretations” are excluded; the question is only
how? To exclude them by fiat is certainly not a
viable option, so a criterion has to be established
to distinguish “benevolent” from “malicious”
interpretations; otherwise “walls implement ev-
ery computation”. And this criterion can be
found in the construction of the proof of Searle’s
Theorem (for details, see Copeland[96], p. 343-
346).

Given a formal specification VNC (of a von
Neumann computer, say), one would like to de-
fine a labeling scheme J such that a particular
wall (the one right behind me, for example) un-
der J is a model of VNC. To do this, one singles
out parts of the wall that are supposed to corre-
spond to “registers” in VNC, call them “wall
states”. Then one records the states of all regis-
ters in an actual von Neumann computer while it
is running Wordstar for n computational steps
and relates these to wall states. That is, for any
two consecutive computational steps there will
be two consecutive intervals of real-time such
that the content of a particular register corre-
sponds to a particular wall state (during the re-
spective interval). It is easy to check that all
formal states will correspond to wall states at any
time during the interval [t,t’] (t<t’) under consid-
eration. Furthermore, the axioms of VNC that

4

describe “state transitions” (using the connective
“ACTION-IS”) will be mirrored by “wall transi-
tions” under a certain interpretation of
“transition”. Hence, the wall will implement
Wordstar during [t,t’].

There are obviously quite a few problems as-
sociated with this construction, and Copeland
himself diagnoses three major shortcomings: (1)
all computational activity occurred outside of the
wall (by recording the activity within a CPU of a
machine that actually performed the computa-
tion), meaning that the labeling scheme is con-
structed (from this record) ex post facto. (2) the
labeling scheme involves unwanted temporal
specificity (by limiting the wall’s computational
capacities to the time interval [t,t’], a necessary
consequence of the ex post facto nature of the la-
beling scheme). And, finally, (3) the interpreta-
tion of “ACTION-IS” fails to support assertions
about the counterfactual behavior of a real von
Neumann computer.

All three problems point to the discrepancy
between the “intended” interpretation of VNC
and the “artificial” one that turned the wall into a
von Neumann computer. Copeland, therefore,
suggests that this is already the criterion we have
been looking for: the definition of an entity com-
puting a function has to be restricted to “honest”
models, that is, to models that do not use non-
standard interpretations of expressions in SPEC.

A Brief Analysis of Copeland’s Objections
Let me not call into question Copeland’s contro-
versial assumption that computation depends on
the right kind of interpretation of an object,
which to some extent results from his attempts to
subsume not only physical objects, but also con-
ceptual ones under the category “computer”.
What still strikes me as a serious mistake, one
that both Searle and Copeland’s approach share,
is to ignore the difference between “f can be im-
plemented on e” and “f is running on e”. The
wording of definition 2 (“is computing”) sug-
gests that Copeland wanted to capture the notion
“process” (that what is actually running on a
computer), whereas the existential quantifiers in
the definiens hint at the notion “program” instead
of “process”, at the potentiality of the entity to
run a particular program.8 A correct reading of

8 Maybe one has to introduce the further distinction “f can be
implemented on e” versus “f is implemented on e” to distinguish
between architectures cum algorithmic description from
architectures without.

definition 2 is crucial to Copeland’s first and
second objection, as they are at best objections
under the “program” reading. Another, already
mentioned criticism, that weakens Copeland’s
third objection, is the lack of a clear definition of
what the minimal requirements of a potential
language for SPEC are (it seems that, for exam-
ple, the connective “ACTION-IS” or something
equivalent should qualify). If formal state tran-
sitions are to be modelled using counterfactual
supporting connectives, then this opens the door
to all kinds of criticism regarding the nature and
legitimacy of counterfactuals, a debate that in my
opinion should not be part of a theory of imple-
mentation.

Copeland attempted to define very general
notions of computation and implementation
(reducing implementation to a logical modelling
relation and computation to the presence of this
relation between a formal specification and a de-
scription of an entity) that view all different
kinds of systems as computers, and rightfully so:
von Neumann computers, neural networks, Tur-
ing machines, or finite state automata, just to
name a few. Unfortunately, this generality in-
creases the difficulty to eliminate non-standard
interpretations. Copeland mentions two neces-
sary (but not necessarily sufficient) criteria that
facilitate the assessment of an interpretation’s na-
ture:

“I suggest two necessary conditions for honesty.
First, the labelling scheme must not be ex post facto.
[…] Second, the interpretation associated with the
model must secure the truth of appropriate
counterfactuals concerning the machine’s behavior.
Either of these two requirements suffices to debunk
[…] alleged problem cases.” (Copeland[96], p. 350)

However, as I will show in the next section,
these criteria are not sufficient.

A Wall that Computes
Given Copeland’s definition of computing a
function (together with all other involved no-
tions), my goal is to show that almost every sys-
tem implements a finite state automaton. I will
present the argument first (which—as already
mentioned—extends an idea by Putnam[88], and
then argue that it meets both criteria for
“honesty”. It follows that additional criteria are
needed to single out “intended interpretations” (if
this is possible at all).

5

Theorem 2: Every ordinary open system e is a
model of every finite state automaton.9

Proof: Let us start by defining the set of formal
specifications SPEC. It is standard to define a
finite state automaton (FSA) formally by a quin-
tuple <Q,,,q0,F>, where Q is the set of states, the
input alphabet, the “transition function” from
states and inputs to states, q0 the start state, and F
the set of final states.10 All triples of can be
viewed as instances of the axiomatic scheme
<q,i>q’, where q and q’ are states, i is an input,
and ‘’ is a primitive meaning “transits”. This
takes care of the “architecture part” of SPEC.
The state table, as exhibited by , defines for each
state in Q all possible transitions to other states
depending on the current state and the current
input (transitions can be made without reading
input, too, so-called -transitions, or more transi-
tions can be defined for the same input and
state—in that case the machine is called “non-de-
terministic”—however, I will restrict myself to
deterministic machines without -transitions).
Starting in the single start state q0, the automaton
changes states according to its inputs and state
table entries until it either reaches a final state (in
which case it is said to “accept the input”) or it
ends up in the “trap” state (a state, from which it
cannot make any other transition than remaining
it this state for every possible input). Notice that
determines what the actual state transitions are in
the FSA. These particular transitions can be
viewed as the algorithm “implemented” on a
more “generic automaton” (i.e., the given FSA
without a particular).11

Define a mapping f, then, from * into Q such
that f(w)=q if the FSA is in state q after having
read w, for all strings w in * (this mapping can be
obtained inductively from). Obviously, the FSA
takes arguments of f as inputs and delivers values
of f as outputs (in the sense that it ends up in the
state, which is the output of the function).
Hence, the second part of the requirements for
SPEC is satisfied, too.

9 For details about “ordinary open systems” see Putnam[88].
10 Sometimes, if the automaton is also required to produce

output, another component, the output alphabet , is added and is
defined correspondingly as a function from states and inputs to
states and outputs.

11 One could also exclude F, since in a way final states will
depend on all possible transitions. However, one can always take
another “generic automaton” with a desired set F’ different from
F, if needs more or fewer final states.

Now we need to exhibit a labeling scheme L
(see definition 1) and an interpretation of ‘’ such
that SPEC is true under that scheme for every
ordinary open system. Part 1 of the labeling
scheme asks us to specify parts of the entity, i.e.,
of an open system, as label-bearers. In order to
account for the fact that the FSA receives input
from the “outside”, I will treat inputs from now
on (as far as the “model of the FSA” is con-
cerned) as “input states” and call all other states
“inner states”. Since the only parts about the
automaton specified in SPEC are its states (input
and inner), we designate the boundary of e and
its “inner” part as bearers of labels. For Part 2 a
method has to be exhibited for specifying the la-
bel borne by each label-bearing part at any given
time—this is where things get tricky.

Consider an arbitrary interval of real-time
[t,t’] (within which the system will compute the
function f) and let the boundary of e be the “input
region”. Note that the environmental conditions
on the boundary throughout [t,t’] specify the
input that e will receive. By the Principle of
Noncyclical Behavior, “the state of the boundary
of such a system is not the same at two different
times” (see [Putnam88], p. 121). We need to
define “physical states” for e and the boundary
region of e, which can be related to the abstract
states in the automaton. The physical states, call
them interval states, will be defined (analogous
to Putnam) as sets of values of all field
parameters at all points within the boundary or at
the boundary of e, respectively, for a given
interval of real-time. To make them correspond
to automata states in the right way (i.e., if L(I)=i,
L(S)=q, and (i,q)=q’, then L(S’)=q’ for the state
S’ following S), we define the labeling L from
physical states onto abstract states inductively:
start by defining inductively an infinite sequence
of consecutive intervals T0, T1, T2, …, where T0

is [t,) and Tk is the open interval [) of real-time
(for k>0). Consider the interior of e during the
interval T0, call it S0, and map it onto the start
state q0. Then, for every interval state Sk

(defined by the interior of e during the interval
Tk) corresponding to some q of the FSA do the
following: first, define Ik to be the interval state
of the boundary of e during the interval Tk. Let
Ik correspond to the input state i of the FSA after
k steps (*). If the FSA, being in state q reading
input i , transits into state q’, define the
“successor state” Sk+1 to be the interval state of

6

the interior of e during the interval Tk+1. Note
that e will always finish its “computation” of f
within the interval [t,t’] independent of the length
of the input.12 This takes care of the second part
of L.

To see that e is a model under the given la-
beling scheme L for SPEC we need to find an
interpretation of ‘’ under which every transition
in the automaton modelled by <q,i>(q’) is true in
e , i n o t h e r w o r d s ,
((q,i)(q’)]]= true in e. This amounts to showing
t h a t f o r a l l t r i p l e s i n
:(L(q),L(i)) (L(q’)). Take to mean “causes” (or
“follows nomologically” by the laws of physics,
i.e., field theory given environmental condi-
tions). (**)

If e is in state L(q) and the input to e is L(i),
i.e., during the interval Tk the physical make-up
of e is given as well as its boundary conditions,
then by the laws of physics it would be possible
for a mathematically omniscient being (a Lapla-
cian supermind, see Putnam[88], p. 122-123, for
details) to determine that e will be in state L(q’)
at the beginning of Tk+1. Given the boundary
conditions during Tk+1 (which correspond to the
“next” input state and, thus, have to be pro-
vided), it can be determined that e will stay in
state L(q’) throughout Tk+1. This concludes the
proof that L and e are a model for SPEC under .
Hence, we have shown that for every open sys-
tem e and every finite state automaton described
by SPEC a labeling scheme L can be found such
that <e,L> is a model of SPEC.

So far, it seems that yet another instance of
Searle’s Theorem has been proved (where the
architecture-algorithm specifications are FSAs).
To make this result interesting, it needs to be
shown for “honest models”, i.e., for the
“intended” interpretation. In the above case,
however, this seems rather problematic, since it
is not clear at all what the standard model of a
FSA is supposed to be. A FSA specifies a very
general “architecture”, a system with an input
device (without further details as to the nature
and structure of this system cum device) both of

12 This means that the FSA could also “compute” infinite

strings in a finite amount of time (actually, in an arbitrarily small
time interval). Furthermore, the above construction even allows
for “infinite automata” (that is, machines with a countably infinite
set of state), see Scheutz[97] for more detail.

which can be in different states. So most objects,
using a little imagination, are potential FSAs and
in a way this is exactly what the theorem above
shows. In fact, I would claim that every physical
system that consists of different states and
exhibits transitions between these states de-
pending on some input to the system would
count as a standard model. This implies that the
above result could be strengthened to “honest
model”, if in addition Copeland’s two criteria are
met.

In the proof, I have marked two steps that are
candidates for the application of Copeland’s cri-
teria. In step (*) reference is made to an input
state which is undetermined, which essentially
depends on the particular input that is presented
to the FSA (i.e., the n-th input character). This
is, of course, the trick that makes it possible to
map the accidental boundary conditions of e at
“run-time” to the n-th input character. Obvi-
ously, there is no systematic relation between in-
puts and boundary states. Note, however, that
the reference to this character is uniquely fixed,
not ex post facto, but for all possible inputs! So
the first criterion does not apply.

Step (**) marks the second potential point of
conflict, the interpretation of ‘’ (the equivalent of
Copeland’s “ACTION-IS”) as “causes”. I think
that Copeland would agree that all state transi-
tions of e are caused, since they were just so de-
fined (see Copeland[96], p. 353). The question
is whether counterfactuals are supported, i.e.,
whether if the input had been L(i) and the current
state L(q) at any time t, e would have changed to
state L(q’) (according to the state table). I am
not sure if counterfactual support can actually be
required as a criterion, since even real systems
under “different environmental conditions” will
not support counterfactuals (e.g., a PC will stop
working correctly if it is exposed to a strong
magnetic field). As far as the above construction
is concerned, it does not really make sense to ask
for counterfactual support, since L is only de-
fined for a particular input string. Hence, if L(i)
and L(q) were given, e would have changed to
state L(q’) by definition of L. If we asked, on the
other hand, whether e in state S with input I had
changed to the successor state S’ (for interval
states S, S’, I) without supplying L, then it is not
even clear what this question means (despite the
fact that, given the boundary conditions I and the
state of the system S, its next state S’ will be
“caused”). So, one could say that the counterfac-
tual requirement is vacuously satisfied.

7

At this place I would like to mention a dif-
ferent kind of objection to the above theorem.
One could claim that e does not compute very
interesting functions, because the functions it
computes are (too closely) dependent on the
structure of the FSA. But e can really compute
any function from strings to strings that every
deterministic finite state transducer can compute.
Recall that e computes a function f from * into Q
such that f(w)=q (per definitionem in the above
proof). One can easily turn this into a more in-
teresting function by dividing w into an input and
an output part separated by ‘#’ (e.g., w=x#y).
The FSA is then said to compute a function g
from strings to strings such that g(x)=y iff
f(x#y)=q for some final state q.

Conclusion
I have tried to show that even promising defini-
tions, such as Copeland’s, of what it means to
“implement a computation” seem not precise
enough to capture only intended cases, given the
above result: walls, after all, compute. They
might not be “honest” models of specifications
of architectures such as “formal specifications of
von Neumann machines”, but they seem to be
honest models of finite state automata, a com-
mon, often used computational model. The
conclusion to be drawn from this example is not
that Searle’s theorem has been revived. Rather
further evidence is provided—and that is, what I
take Searle and Putnam’s objections to argue for
in the first place—for the need of a (better) the-
ory of implementation.

References
Chalmers, D. J. (1996) “Does a Rock Implement Every

Finite-State Automaton?”, Synthese 108, 310-333.
Chalmers, D. J. (1997) “A computational Foundation for

the Study of Cognition”. (unpublished manuscript)
Copeland, B. J. (1996) “What is Computation?”, Synthese

108, 335-359.
Endicott, R. P. (1996) “Searle, Syntax, and Observer Rela-

tivity”, Canadian Journal of Philosophy v26, 101-122.
Gandy, R. (1980) “Church’s Thesis and Principles for

Mechanism”. Proceedings of the Kleene Symposium (J.
Barwise, H. J. Keisler and K. Kunen, eds.). New York:
North-Holland Publishing Company.

Melnyk, A. (1996) “Searle’s Abstract Argument Against
Strong AI”, Synthese 108, 391-419.

Putnam, H. (1988) Representation and Reality. Cambridge:
MIT Press.

Scheutz, M. (1997) “Facets of implementation”.
(unpublished manuscript)

Searle, J (1980) “Minds, Brains and Programs”, The Be-
havioral and Brain Sciences 3, 417-424.

Searle, J (1984) Minds, Brains and Science. Cambridge,
Massachusetts: Harvard University Press.

Searle, J (1992) The Rediscovery of Mind. Cambridge,
Massachusetts: MIT Press.

Smith, B. C. (1996) The Origin of Objects. Cambridge,
Massachusetts: MIT Press.

