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Abstract

The bulk of research to date relating to intelligent
tutoring systems (ITS) is focused on the student, and
on methods for representing the knowledge itself.
From student models to learning schemas to
presentation methods, comparatively little attention
has been paid to the problem of educators attempting
to build viable curriculum plans for use in an ITS
environment---yet when this problem is addressed in
the literature, it is recognized as a potentially
daunting one. This paper presents initial work to
address the problem of ITS curriculum development
by proposing a practical, computable approach for
knowledge engineering that is based on proven
classroom methods. We describe our system for
dynamically creating student curriculum plans fi’om a
knowledge base created using the described
methodology, which utilizes already-established
algorithms of proven tractability, and then discuss
how this system can be integrated into existing and
future ITS design.

Introduction

Artificial intelligence has been applied to education for
years; in fact, trend analysts from as far back as 1983
declared such application to be "inevitable" (O’Shea 
Self, 1983). Nonetheless, despite ever-growing focus on
the computer as a dominant medium in the field of
educational technology (Ely, Januszewski, & LeBlanc,
1988), expert opinion concerning the utility of
artificially intelligent teaching tools ranges from
statements that instructional programs "don’t know
what they’re doing" (O’Shea & Self, 1983) to the
general conclusion that such programs are of poor
quality (Ely, Januszewski, & LeBlanc, 1988).

Before an intelligent tutoring system (ITS) can 
employed, it must have a knowledge base from which
to teach. That knowledge must be represented in a
tractable form to be useful--both from a computing
standpoint and from the point of view of presenting that
knowledge to a student.

In the literature, one finds numerous examples of
knowledge representation schemes, from the idea of
concept mapping (Novak & Gowin, 1984) to the
intensive, hierarchical databases used in the Air Force’s
Instructional System Development (ISD) project (HQ
AETC/XORR, 1984). Unfortunately, even in the case

of automated tools such as provided in the ISD project,
educators must face steep learning curves, a lack of a.
standardized interface, and a significant amount of
manual development when constructing lesson plans
(HQ AETC/XORR, 1984).

To date, the bulk of ITS research tends to focus on
student modeling and knowledge presentation; in short,
on the student’s perspective within the learning
environment. As pointed out in the ISD project, the
educator, while attempting to develop instructional
curricula for an ITS environment, is often left with a
significant amount of development work (HQ
AETC/XORR, 1984). .What is needed, before
attempting to design an ITS, is a methodology for
defining and developing student curricula in a form
directly suitable to ITS implementation. This
methodology needs to be quantifiable both in terms of
content and applicability, and able to accept feedback
metrics on a given student’s progress in order to modify
the lessons and the curriculum plan as needed. In
addition, any tool providing this capability should be
useful without requiring excessive training.

Our research introduces a respected and long-
standing method of representing complex knowledge
domains in the classroom, concept mapping, and
illustrates a system for mapping that representation into
computer-readable form. We developed a prototype
system, based on that form, which is able to accept
relatively simple inputs from an educator via a simple
world wide web (WWW) interface to Java-enabled
WWW browsing software and return a dynamic lesson
plan.

This paper will begin by providing background on
concept mapping, with an illustrative example of a
concept map, and then show how this map is used by a
knowledge engineer to define teaching materials within
a sample domain. We will introduce concept vectors,
motivate their usefulness in representing concepts in
computer-readable form, and provide theoretical
grounding for an effective algorithm for creating a
dynamic curriculum. We will also discuss the
prototype system and conclude with a discussion of
how the prototype could be enhanced via future
research, including automated interfaces between the
curriculum builder and an actual ITS.
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Concept Mapping

To begin any knowledge-based system, one first needs
a workable system for representing that knowledge
(Winston, 1993). One very good representation for
even potentially abstract knowledge domains was
developed in the mid-eighties by Joseph Novak and
Bob Gowin (Novak & Gowin, 1984). Not only does
this representation, called concept mapping, enable a
domain expert to map knowledge in a hierarchical tree
structure amenable to computer processing, it has the
additional virtue of being a respected and powerful tool
in the classroom environment itself (Regis, Giorgio-
Albertazzi, & Roletto, 1996).

Concept maps represent an approximation of the
relevant concepts and propositions of a given
knowledge domain (Novak & Gowin, 1984), and their
creation requires both domain expertise and experience

with the concept mapping process. Figure 1 provides
an illustrative concept map created by a domain expert;
in this case, an expert on the topic of Meat Science
(Novak & Gowin, 1984). The first step is to identify
the major topic to be mapped; in the case of the
example, the domain expert has decided that the
overarching consideration for this domain is meat
quality. This concept of quality leads to the concepts
of metrics by which to determine this quality, hence the
concepts of judging, and then criteria. From this
beginning the relevant criteria follow, and below them
are identified the various conditions under which those
criteria are affected, such as an animal’s age,
environment, and feeding habits. In the final form, the
domain has been subdivided into a map of 29 nodes,
each node representing an atomic concept in the
knowledge domain as determined by the domain expert.

Figure 1. Complete Concept Map of Meat Science Course (Novak & Gowin, 1984)
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Mapping Knowledge to Concept Vectors

The f’trst step of our methodology for defining and
developing student curricula in a form directly suitable
to ITS implementation was to quantify the expression
of knowledge within the concept map. This
quantification process took the form of mapping the
knowledge from the concept map into a vector space,
hence the name concept vectors. This section first
covers the relationship of concept maps to vector space
and then details our concept vector representation.

Relating Concept Maps to Vector Space
The methodical breaking down of a potentially complex
domain into progressively smaller conceptual
components used in concept mapping is key to the idea
of representing knowledge as vectors. A vector is made
of components, each representing a magnitude along a
single dimension in n-dimensional space (Auer, 1991).
In order for the vector to be meaningful, each
component must exist entirely within its dimension,
having no contribution to the magnitudes of other
components in that vector. Carrying this analogue to
the concept mapping domain, if a vector represents the
entire knowledge domain then each concept within the
overall concept map can be thought of as a component
of that vector. Further, the knowledge engineer must
take pains to ensure the concepts are broken down as
much as possible to prevent overlap between them---
just as vector components provide contribution only in
their dimension.

Once a given concept is identified to the desired
level of simplicity, the domain expert must draw on
available experience to determine what constitutes
mastery of that concept. In the meat science case, for
example, there exists the concept of"grass" as relates to
feeding of meat animals (Novak & Gowin, 1984). The
domain expert might conclude that there are a finite
number of types of grass an herbivore can encounter,
and that mastery of "grass" means that a student can
correctly identify each type and relate its effect on an
animal’s health in relation to the other types.

Given this conclusion, a metric has been established
wherein knowledge of "grass" can be measured on a
scale from total ignorance to complete mastery. Once
such a metric has been established for each concept in
the domain, it is normalized so that complete ignorance
is represented by zero, and total mastery by one.
Applying such a numerical measure to each of the
concepts makes it possible to represent the concepts in
a machine-readable form, and to do computations based
on levels of mastery of the knowledge domain. Further,
the ability to represent any given level of knowledge
within the domain by a string of numbers--a vector--
which follows known properties becomes a powerful
tool for knowledge representation.

Concept Vectors
Once a concept map has been established for a given
domain, the available teaching material must be
reviewed and defined within that context. The key to
this process is again to visualize the n nodes of the
concept map as dimensions in a vector space. The
teaching material available---be it a pamphlet, a section
of a chapter from a textbook, or a previously-coded
instructional module from an existing ITS---must be
matched against which node(s) of the concept map 
which it relates. For example, in the meat science case,
there might exist in the curriculum a textbook on
animal nutrition. Within that text might be found a
chapter on herbivores, with one section discussing grass
and another detailing various grain feeds. In this case
the chapter would be treated as two distinct units of
instructional material, each relating to a different
concept.

The second step is to determine how much of the
appropriate concept a given unit covers. Recall that for
each concept in the domain, the span from complete
ignorance to full mastery is represented as a normalized
scale from 0.0 to 1.0. As a unit is evaluated against a
given concept, the domain expert determines what
degree the concept is covered and assigns appropriate
start and end values. It is important to reiterate here
that teaching material is assumed to follow a
progression from ignorance to mastery. The act of
defining a unit of teaching material in this context
assumes contiguous coverage from lower to upper
bound within the span--the smallest unit of teaching
material in this context. If a unit does, in fact, have
gaps in coverage as defined by the domain expert, that
unit should be further divided into smaller units until
no gaps exist in a single unit. This additional division
of the concepts into smaller units further illustrates the
importance of making the initial concept map as
granular as possible.

As an illustrative example, consider Figure 2, a
subset drawn from Figure 1. Of the seven concepts
depicted, the four highlighted represent the concepts of
interest.

Figure 3 shows three lesson modules represented as
three concept vectors that address the four concepts of
Figure 2. Said another way, Figure 3 presents three
concept vectors, each containing four ordered pairs of
numbers expressing the amount of each concept covered
by the lesson module. The first ordered pair of each
concept vector represents the amount of coverage for the
first concept of Figure 2, the second ordered pair
represents the amount of coverage for the second concept
of Figure 2, etc. In this case, the three vectors each
only address concept one; the first represents an entry-
level module covering the concept from no prior
knowledge to a point defined to be three-tenths of the
entire range. The second module covers the range from
two-tenths to eight-tenths, representing an intermediate
level of information, while the third is the most
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advanced of the three, beginning seven-tenths of the way
along the scale and covering the material up to total
master of the concept. Note that, while no one of the
three vectors shown covers the whole concept, the three
taken together do provide complete coverage.

INDICATES

FEEDING

BOTH

GRASS GRAIN

Figure 2. Subset Concept Map of Meat Science Course
(Novak & Gowin, 1984)
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Figure 3. Three Def’med Concept Vectors

There is some overlap in the depicted vectors; not
all lesson materials available to an educator can be
assumed to fit together without some overlap in how
they cover a concept. Further, given effective
granularity in the concept map definition, one can
reasonably expect to see the typical vector providing a

contribution in only one concept; in the case of the
provided example the three units of material defined as
vectors might represent three subsections of a textbook
chapter on feeding techniques, with overlap reflecting
review and cross-referencing by the author.

With the knowledge domain defined as an n-
dimensional vector space, and with the available
teaching materials defined within that space, the power
of this representation becomes clear: the units of.
teaching material can be summed as vectors either to
evaluate the completeness of available material within
the context of the overall domain, or in order to reach a
desired target vector. In the latter case, the units
selected to sum to the target vector map directly to the
teaching materials the educator needs to comprise a
lesson plan designed to teach given concepts to a
desired level.

At this point it is useful to re-visit the forms that
lesson modules could take. Previous discussions have
mentioned such items as pamphlets and sections from
textbooks, but in practice such sources might be
difficult to quantify as precisely as described here; they
are mentioned mainly for illustrative purposes. It is
expected that the design methodology presented will
most useful when interfacing with an established ITS,
presumably with a database of lesson modules already
defined and coded. In such a case the knowledge
domain is already defined by the material the ITS is
designed to teach, and lesson modules will already be
defined in terms which the ITS can use to differentiate
between them for selection. Given this situation the
knowledge engineering effort becomes less daunting,
and the goal of defining discreet concepts that map back
to specific subsets of lesson modules intuitively
becomes an easier one to attain.

Using Concept Vectors: The Dynamic
Curriculum Builder

After completing concept vector defimition, we then
require a technique for utilizing the concept vectors to
produce an ITS student curriculum. The choice and
implementation of this technique is the next step in our
methodology for dynamically developing ITS student
curricula. This section presents the considerations
necessary in the choice of a technique, our use of the
matriod structure to benefit this algorithm choice, and
the implementation of both the representation and
manipulation algorithm for the dynamic curriculum
builder.

Dynamic Curriculum Generation
The fLrst step was to identify the general form of the
problem. As with many schemes involving search,
search space pruning and early arrival at optimal
solutions is both desirable and often difficult (Winston,
1993). Within the context of this research,
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"optimality" is defined as the curriculum generator
consistently selecting a lesson module providing the
largest overall amount of coverage (which still lies
completely within the target range) whenever such 
choice exists. Such choices will have the side benefit of
tending to cover the target range using the fewest
number of lesson modules possible, though in the
implementation presented situations can be contrived
wherein the number of modules selected is not
minimal. The decision as to what is "optimal" is
variable; a desired result might be to use as many
modules as possible, so long as each provides at least
some unique coverage within the range. The definition
might be based on some metric defining quality of the
lesson modules, or recency, or something else entirely.
The important point to keep in mind is that
"optimality" must be defined using some metric, and
that a given solution can be called "optimal" only
within the context of that metric. In our work the term
"optimal" is assumed to conform to this restrictive
context.

One approach to finding optimal solutions is the so-
called greedy approach (Kozen, 1992) (Neapolitan 
Naimipour, 1996) (Cormen, Leiserson, & Rivest,
1995). A greedy algorithm selects the "best" choice
(based on some metric) from the list of feasible
candidates in a list until arriving at a solution. The
selection is typically made by sorting the candidates by
the optimality metric, in non-increasing order of
desirability, so that the selection process is reduced to
examining the list in order and selecting viable
members until the solution is satisfied or found to be
unreachable. By the definition of the desirability
metric, each candidate so examined is the most valuable
one yet unexamined. The benefit of this approach is
that once a solution is found the algorithm terminates
without searching for alternative solutions.
Unfortunately, although greedy algorithms tend to
converge to workable solutions, they can’t always be
guaranteed to find an optimal solution (Cormen,
Leiserson, & Rivest, 1995). The key to insuring
optimal solutions with a greedy algorithm is in using
the matroid property, which Kozen defines as follows
(Kozen, 1992):

matroid A pair (S, S) where S is a finite set
and 3 is a family of subsets of S such that

(i) ifJe3 andlc_J, thenI~3;

(ii) if/, J e 3 and 111 < IJI, then there
exists an x e J - I such that 1 u
{x} ~ 3.

In less rigorous terms, matroids are set structures
having the property that subsets can be further broken
down into smaller subsets that are still members of the
original set, and it is possible to transfer members ~om
one subset to another without leaving the original set
(Cormen, Leiserson, & Rivest, 1995). The chief

benefit from a search space being a matroid is that there
exist numerous cases of greedy algorithms proven to
fred optimal solutions for matroids (Cormen, Leiserson,
& Rivest, 1995).

To show that concept vectors are, in fact, matroids,
one needs to demonstrate that both properties from the
definition above hold (Kozen, 1992):

oProperty (i) is straightforward to demonstrate: take
the family of subsets of vectors from the database of
concept vectors, S, and call it ~q. From that ..q take a
subset J, and then from J draw a subset L It’s clear to
see that 1 was drawn directly from the family~q and
therefore le ~q holds.

,,Property (ii) is similarly straightforward: since/, 
are both drawn from ~q, then if I has a smaller
cardinality (fewer number of vectors) than J, then there
will exist some vector x from S which is in J but not in
L If you add that x to the set/, the resulting set will
still be a subset of vectors drawn from S, and therefore 1

{x} c ~q holds.
In summary, concept vectors are in the family of

combinatorial structures known as matroids and an
optimal solution can be guaranteed (within the context
of how the greedy selection is made) using a greedy
algorithm.

Once we determined that a greedy approach was
suitable, the choice of the specific algorithm to use was
based on insight into the problem and its
representation. The system is being presented a desired
target vector with components constrained within a
finite range, has knowledge of a set of candidates each of
which can provide some degree of contribution towards
meeting the target vector, and asked to compose an
optimal subset of those candidates vectors which will
sum to that target vector. However, rather than
visualizing the target vector as a container into which
lesson modules are stored, the true nature of the
problem is closer to attempting to cover a given set
with as few subsets as possible. In this manner, we
chosethe set covering algorithm to provide the ability
for our system to dynamically construct curriculum
plans based upon the concept vector representation.

Dynamic Curriculum Generation
Implementation and Results
The implementation vehicle selected for this research is
the Java programming language. The intent was to
insure portability of the implemented code across
multiple platforms, and open up the possibility for
creating an intuitive user interface to reduce the burden
of learning to use the system. WWW browsers are in
widespread use, provide a familiar graphical user
interface (GUI), and Java-compatible versions are
available for nearly every computer system available to
today’s educator. In a full implementation, an educator
would be able to visit a lesson plan resource page with
a Java-enabled WWW browser and select a desired
knowledge domain. An example of the initial interface
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of our dynamic curriculum generator is shown in Figure
4.

The educator would then be offered a representation
of the concept map defined for that domain, and be
allowed to select desired concepts from the map, as well
as the desired lower- and upper bound for the coverage
level for each concept to be taught. This selection
would then define a "target vector’’ representing the
level of knowledge the educator desires to impart in
each of the appropriate concepts. Using the summation
property of component vectors (Auer, 1991), the system
would return a set of titles listing the appropriate lesson
materials, in order, which will cover the topics in
question---in other words, a subset of the vectors in the
database which will sums to the target vector.

In this context where the idea of a "best" (or
optimal) solution is of interest. The educator might be
interested in finding the smallest set of modules which
cover the desired material, or might be operating under
a set of constraints wherein modules from a certain
source or possessing some other attribute are deemed
more desirable than others.

Responding to feedback derived from test scores is
also possible using this system. Since the teaching
materials are already defined in terms of the domain’s
concept map, it is straightforward to map testing results
against the original lesson plan. By adjusting the
lower bound of the coverage of a given concept upward
(for example) to exclude material successfully tested, the
educator can create an updated lesson plan covering
only that material the student failed to demonstrate
mastery of, based on the test results.

Our prototype system was developed using tested
using a notional database of twenty lesson modules,
five per concept. The interested reader is directed to
Dyson (Dyson, 1997) for an annotated transcript and
details of each of the following sessions using the
prototype system and further details of actual module
implementations.

The first sample execution was a trivial one,
designed to insure no spurious modules were accepted
outside of the selected range. The system correctly
rejected all candidate modules. The next execution was
designed to select a range wherein the opportunity arose
to select two modules or a single one covering the same
range. The system correctly selected the single, larger
module that matched the target range and rejected the
two module solution. The next execution was
designed to show that one of the modules rejected in
the previous execution would, in fact, be selected under
the proper circumstances. In this case, the previously
rejected module was selected demonstrating that the
sole criterion for the earlier rejection was, in fact, its
suitability to cover the target range within the
programmed selection criteria. The next example
reinforces the selection of an optimal cover by
introducing another case where multiple smaller vectors
cover the same range as a larger one, only this time

with some overlap. In addition, the expected selection
should be two lesson modules instead of just one (if the
dual coverage of the same range is incorrectly handled
by rejecting all modules in that range) or three (if the
system incorrectly selects the two smaller, overlapping
vectors instead of the single one covering more of the
range). The system rejected the smaller modules and
correctly covered the target range with only two lesson
modules; the optimal solution.

Lesson Plan Creator Interface Page

Figure 4. Prototypical WWW Interface

Future Work and Enhancements

One of the most interesting avenues of outgrowth for
this system is the possibility of direct integration into
an ITS. As discussed in previous chapters, units of
instructional material can easily be lesson modules
coded into an existing ITS. Using this system, it is
entirely possible to have the lesson plan feed directly
into the module selection for an ITS session. Further,
with the close coupling this system enforces between
lessons and concepts, test results could be fed back to
the lesson plan generator directly, resulting in dynamic
updating of the plan to accommodate needed remedial
lessons in the next session.

Additionally, during the course of this research,
numerous avenues for prototype enhancements came to
mind, or were pointed out during discussions.

Graphics
Ideally, the user interface could present a graphic of the
concept map for the desired domain, allowing the
educator to click directly on the depicted nodes as
desired and enhancing the intuitive feel of interacting
with the system. In addition, generating graphical,
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flowchart-like output bearing some relation to the
original concept map could be useful.

Quality of Instructional Material
Each concept vector could carry an additional field of
information" an evaluation of quality. Awarded when
evaluated for inclusion into the database of concept
vectors, this measurement would allow for qualitative
selection of superior lesson materials in cases where
more than one unit would otherwise provide the same
coverage.

Nonlinear Coverage Within a Concept
Our research assumes blocks of coverage to be selected
via an upper and lower bound, with every "bin" in
between included. Our method of assigning numeric
values through the quantification used in this system
would easily permit selecting non-contiguous bins for
coverage, but would introduce added complexity in
terms of the user interface. Not only would the educator
be required to click each individual bin desired, the
interface itself would be tied to the number of bins---
which might not remain constant between knowledge
domains and must be considered.

Regis, A., Giorgio-Albertazzi, P., and Roletto, E.
(1996). "Concept Maps in Chemistry Education,"
Journal of Chemical Education, 73(11).

Winston, P.H. (1993). Artificial Intelligence (Third
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