
A Multistrategy Approach to Relational Knowledge Discovery in
Databases

Katharina Morik and Peter Brockhausen
Univ. Dortnmnd, Computer Science Department, LS VIII

D-44221 Dortmund
{morik, brockh } (d,’ls8.inforntatik.uni-dortnmnd.de

Abstract

When learning froIn very large databases, the reduc-
tion of complexity is of highest importance. Two ex-
tremes of making knowledge discovery in databases
(KDD) feasible have been put forward. One extreme
is to choose a most simple hypothesis language and so
to be capable of very fast learning on real-world data-
bases. The opposite extreme is to select a small data
set and be capable of learning very expressive (first-
order logic) hypotheses. A multistrategy approach al-
lows to combine most of the advantages and exclude
most of the disadvantages. More simple learning al-
gorithms detect hierarchies that are used in order to
structure the hypothesis space for a more complex
learning algorithm. The better structured the hypo-
thesis space is, the better can learning prune away
uninteresting or losing hypotheses and the faster it
becomes.
We have combined inductive logic programming (ILP)
directly with a relational database. The ILP algorithm
is controlled in a model-driven way by the user and in
a data-driven way by structures that are induced by
three simple learning algorithms.

Introduction

Knowledge discovery in databases (KDD) is all applic-
ation challenging machine learnh~g because it h,~ high
efficiency requirements with yet high understmldab-
ility and reliability requirements. First, the learning
task is to find all valid and non-redundmlt rules (rule
learning). This learning task is more complex them
the concet)t leaa’ning ta~k as was shown by Uwe Kietz
(Kietz 1996). To make it even worse, second, tim data
sets for h,arning are. very large.

Two extremes of making KDD fe~Lsible have been put
forward. One extreme is to choose a most simple hypo-
thesis l~mguage mid to be capable of very fa.st learning
on re~d-world datal)ases. Fast algorithms have been
developed that. generalize attribttte vahles and find (le-
pendencies betwe.en attributes. These algorithms m’e
capable of directly accessing a datable, i.e. the rep-
resentation language £:c is the language of the data-

i)a.se. The APRIORI azxd APRIORITID algorithms find
association rules that determine subsets of correlated
attribute values. Attribute values are represented such
that cad1 attribute value becontes a Boolean attribute,
indicating whether the value is true or f~flse for a cer-
tain entity (Agrawal et al. 1996). Rules are formed
that state

If a set of attributes is trne, then Mso ;mother set of
attributes is true.

As all combinations of Boole,’m attributes have to
be considered, the time complexity of the "algorithm is
exponential in the number of attributes. However, in
practice the algorithm takes only 20 seconds for 100
000 tuples t

Other fast learning algorithms exploit given hier-
axchies and generalize attribute walues by (’limbing the
hierarchy (Michalski 1983).. merging tuples that be-.
come identical, and drop attributes with too many
distinct values that cannot be generalized. The res-
ult a.re rules that chm’acterize "all tuples that have a
(’ertain wdue of attribute A in terms of generalized
vahms of other attributes (Cai, Cercone, & Hart 1991).
Sinlilarly, the KID3 algorithm discovers dependencies
between v’,flues of two attributes using hierarchies from
background knowledge (Piatetsky-Shapiro 1991). The
result is a set of rules of the form

A = d ~ cond(B)
wherc d is a generalized attribute value (i.e,. it cov-

ers a set of attribute wdues) of at.tribute A.
It is easy to see that more complex dependencies

between sew~ral attributes e~mnot be expressed (and,
hence, cannot bc learned) by these fa.ut algorithms. In
particular, relations between attribute values of differ*
ent attributes emmet be learned. For instance, learn-
ing a rule. stating that

If the ralue of A <_ tho vM.e of B
then the v~dne of C = r: (1)

1In (Agrawal el aL 1996) the authors present a series
of experiments with the algorithms and give a lower bound
for finding an association rnle.

16 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

requires the capability of handling relations. Hence,
these fast learning algorithms trade in expressiveness
for tile capability of dealing with very large data sets.

The other extreme of how to make KDD feasible is to
select a small subset from the data set and learn com-
plex rules. This option is chosen by most algorithms
of inductive logic programming (ILP), which are ap-
plied to the KDD problem. The rule learning task has
been stated within the ILP paradigm by Nicolas Helft
(Helft 1987) using the logic notion of minimal models
of a theory .~A+(Th5 C_ Ad(ThS:
Given observations £ in a representation language £E
and background knowledge B in a representation lan-
guage £B,
find the set of hypotheses 7~ in/:n, which is a (restric-
ted) first-order logic, such that

(1) ~.~+(~ u c) c_ -~(H)

(25 for each h E 74 there exists e E £ such that B, £
{e) ~= e and B, £ - te}, h ~ e (necessity of 5

(3 5 for each h E /:n satisfying (1) and (2), it is
that 74 ~ h (completeness of 7/)

(4) 74 is minimal.

This learning task is solved by some systems (e.g.,
RDT (Kietz & Wrobel 1992), CLAUDIEN (De Raedt
Bruynooghe 1993)), LINUS (Lavrac & Dzeroski 1994)
and ~NDEX (Flach 199355. For the application to data-
bases the selected tuples are re-represented as (Prolog)
ground facts. In general, ILP algorithms trade in the
capability to handle large data sets for increased ex-
pressiveness of the learning result.

Given the trade-off between feasibility and express-
iveness, we propose a multistrategy approach. The
idea is to combine different computational strategies
for the same inferential strategy (here: induction) 2.
The overall learning task is decomposed into a se-
quence of learning tasks. Simpler subtasks of learning
can then be performed by simpler (and faster) learning
methods. The simpler algorithms induce hierarchies of
attributes and attribute values that structure the hy-
pothesis space for the ILP learner. The ILP learning
algorithm uses this structure for its level-wise refine-
ment strategy. The architecture of our MSL-system
for KDD is shown in figure 1.

The learning algorithms and their transmutations
(Michalski 1994) are:

2According to (Michalski 1994) the computational
strategy means the type of knowledge representation atLd
the associated methods for modifying it in the process of
learning. The inferential strategy means the primary type
of inference underlying a learning process.

FDD: learning functional dependencies between
database attributes by an association transmutation.
The functional dependencies constitute a more. gen-
eral relationship of database attributes. This rela-
tionship determines a sequence of more trod more
detailed hypothesis languages.

NUM_INT : learning a hierarchy of intervals of lin-
ear (numerical) attribute values by an agglomera-
tion transmutation. Front this hierarchy, the user
selects the most interesting intervals which are then
introduced as more abstract attribute values into the
hypothesis language.

STT : learning a hierarchy of nominal attribute val-
ues from background knowledge by an agglomera-
tion transmutation. More abstract attribute values
are introduced into the database (database aggreg-
ation).

RDT/DB : learning rules in a restricted first-order
logic by a generalization transmutation. RDT/DB
searches in a hypothesis space that is tailored to the
application by the user and the preceding three al-
gorithms.

The paper is organized as follows. First, the RDT
algorithm is summarized and it is shown how we en-
hanced it to become RDT/DB which directly accesses
relational databases via SQL. The time complexity of
RD’r/DB is presented in terms of the size of its hy-
pothesis space. The analysis of the hypothesis space
indicates, where to further structure the hypothesis
space in order to make learning from very large data
sets feasible. Second, the algorithms that prepro-
cess data for RDT/DB are characterized, nmnely FDD,

NUM_INT, STT. Third, we discuss our approach with
respect to related work and applications. We argue
that multistrategy learning is important for KDD ap-
plications.

Applying ILP to Databases
ILP rule learning algorithms are of particular interest
in the franmwork of KDD because they allow the detec-
tion of more complex rules such as the one presented
above. Until now, however, they have not been ap-
plied to commonly used relational database systems.
Since the demand of KDD is to analyze the databases
that are in use, a~ have now enhanced RDT to be-
come RDT/DB, the first ILP rule learner that directly
interacts with a database management system.

RDT/DB

RDT/DB uses the same declarative specification of the
hypothesis language as RDT does in order to restrict

Morik 17

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

--

i

........

acceptance target rule

criterion predicates schemata

f I "m" ~- .~

:"~" - RDTIDB

representational

mapping type

hierarchy hierarchy hierarchy

of attributes of numerical v’,dues of nominal values

~
’~

mapping
ILP
represent.
on
database
represent.

l..

relational database background knowledge data
dictionary

Figure 1: A multistrategy framework for KDD

the hypothesis space (see for details (Kietz & Wrobel
1992)). The specification is given by the user in terms
of rule schemata. A rule scJaema is a rule with predicate
variables (instead of predicatc symbols). In axldition,
arguments of tim literals can be designated for learning
constant values. A simple example of a rule sdaema is:
mp_two_c(C, P1, P2, P3)
PI(X1, C)&.P2(Y.. X1)&P3(Y, X2) --+ P l (X2,

Here, the second argument of the conclusion tux¢l the
second ~rgument of tile first prenfise liter~d is a partic-
ular constant vahle that is to be learned.

For hypothesis generation, R.o’r/Dn inst~ltiates the
predicate variables and the arguments that are marked
for constant learning. A fully instantiated nile schema
is a rule. An instantiation is, for inst~mce,
regi~m.(X 1, c.u.rope)&lire)~.sed(] ; X 1)&produ.ced(l’, X2)

--4 re.qion(X 2, europe)
In the exmnple, it was found that the cars which are

licensed within Europe have ;dso been produced within
Europe.

Tile rule schemata are ordered by generality: for
every instantiation of a more general rule st:helna there
exist more special rules as instasltiations of a inore

special rule schema, if the more special rule schema
can be instaxltiated at all. Hence, the ordering reflects
the generality ordering of sets of rules. This structure
of the hypothesis space is used when doing breadth-
first search for learning. Breadth-first scardx allows to
safely prunc branches of sets of hypotheses that already
have too few support in order to be accepted.

Another user-given control knowledge is the accept-
mace criterion. The user composes it of pos(H), the
number of supporting tuples, hog(H), the mmlber of
contradicting tul)les, and c(me:l(H), the mmd)er of aU
tuples for which rhe conclusion predicate of the hy-
1)othesis hohts. The user can enforce ,lifferent de-
grees of reliahility of the learning result, or, to put
it the other way around, tolenm’ different degrees of
noise. A typic’,d accel)tance criterion is, for inst~mce,
{l,K~s(H)/ron.el(H) - (ne.q(H)/cem.el(H))

For RI)’I/DB we have developed a.n interaction model
between the learning tool ~md the ()I~A(’I.E data]’),’kq{~
system. The data dictionary of the database system
informs about relations and attributes of t.he database.
This information is used in order to automatically
map database relations ,’uld attributes t() pn,dieates

18 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

R.DT’S hypothesis language. Note, that only predicate
names and arity are stored in RDT/DB as predicate de-
clarations, xmt., a transformed version of the database
entries! Hypothesis generation is then performed by
the learning tool, instantiating rule schemata top-down
breadth-first. For hypothesis testing, SQL queries are
generated by the learning tool and are sent to the data-
base system. For instance, the number of supporting
tuples, pos(H), for the rule above is determined by the
following statement:

SELECT COUNT (*)
FROM vehicles vehl, vehicles veh2,

regions regl, regions reg2
WHERE regl.place = vehl.produced_at

and vehl.ID = veh2.1D
and veh2.1icensed = reg2.place
and regl.region = ’europe’
and reg2.region = ’europe’ ;

The number of contradicting tuples, neg(H), is de-
termined by the negation of the condition which cx)r-
respond to the rule’s conclusion:

SELECT COUNT (*)
FROM vehicles vehl, vehicles veh2,

regions regl, regions reg2
WHERE regl.place = vehl.produced_at

and vehl.ID = veh2. ID
and veh2.1icensed = reg2.place
and reg2.region ffi ’europe’
and not regl.region = ’europe’ ;

The database with two relations being:
vehicles:

lID [produced_at I licensed
fin_123 stuttgart ulm
fin_456 kyoto stuttgart

regions:

place

stuttgart europe
ulm europe
kyoto asia

The counts for pos(H),neg(H), and concl(H) are
used for calculating tim acceptance criterion for hilly
instantiated rule schemata.

Analysis of the Hypothesis Space

The size of the hypothesis space of RDT/DB does not
depend on the number of tuples, but on the number
of rule schemata, r, the number of predicates that are
available for instantiations, p, the maximal number of

literals of a rule schema, k. For each literal, all pre-
dicates have to be tried. Without constant learning,
the number of hypotheses is r ¯ pk in the worst case.
As k is usually a small number in order to obtain un-
derstandable results, this polynom is acceptable. Con-
stants to be learned are very similar to predicates. For
each argument marked for constant learning, ’all pos-
sible values of the argument. (the respective database
attribute) must be tried. Let i be the maxim~fl number
of possible values of an ar&~ment marked for constant
learning, and let c be the number of different constants
to be learned. Then the hypothesis space is limited by

(p. o)k.
The size of tim hypothesis space determines the cost

of hypothesis generation. For each hypothesis, two SQL
statements have to be executed by the database sys-
tem. These determine the cost of hypothesis testing.

Here, the size of the hypothesis space is described
in terms of the representation RDT/DB uses for hy-
pothesis generation. The particular figures for given
databases depend on the mapping from RDT/DB’S rep-
resentation to relations and attributes of the database.
An immediate mapping would be to let each database
relation become a predicate, the attributes of the rela-
tion becoming the predicate’s arguments.

Mapping 1: For each relation R with attributes
AI,...,A,, a predicate r(AI,...,A,) is formed,
being the string of R’s name.

Learning would then be constant learning, because it
is very unlikely that a complete database relation de-.
termines another one. Hence, p would be the number
of relations in the database. This is often a quite small
mlmber. However, c would be the maximal number of
attributes of a relation! All constants in "all combina-
tions would have to be tried. Hence, this first mapping
is not a good idea.

If we map each attribute of each relation to a pre-
dicate, we enlarge the number of predicates, trot we
reduce constant learning.

Mapping 2: For each relation R with attributes

Ai,..., A,, where the attributes Ai,..., A! are the
primary key, for each x E [1,... ,n]\[j,...,l] a pre-
dicate r_AX(Aj,..., Al, A~) is formed, where AX is
the string of the attribute name.

If the primary key of the relation is a single attribute,
we get two-place predicates. The number of predic-
ates is bounded by the number of relations times the
maximal number of attributes of a relation (subtract-
ing the number of key attributes). Since the number
of constants to be learned cannot exceed the arity of
predicates, and because we never mark a key attribute

Morik 19

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

fi)r constant learning, c will be at most 1. This second
mapping reduces the learning ta.sk to learning k place
combinations of constant v;dues.

A third mapping achieves tile s~une effect. Attrib-
ute values of the database are mapped to predicates of
RD’I’/I)r).

Mapping 3: For each attribute Ai which is not
a primary key and has the values al ,a,, a
set of predicates r_..lI_ai(Ai It) ~e fornmd,
A2:..., At being tile primary key.

It becomes clear that the restriction of the hypo-
thesis space as it is given by RDT/Dn’S hypothesis
generation can lead to very different hyt)othesis spaces
depending on the mapping from dat.aba-se attributes
to predicates. Only when reducing the learning t~k
from finding all valid combinations of attribute val-
ues to finding k-place combinations, learning becomes
fe.a.sible on large databases.

Tile analysis of tile hypothesis space gives good hints
for how to write rule sdmmata: the most general ones
should have only one premise literal and tlm most spe-
cial ones not more than 3 as this keeps k small; there
should be as few schemata as possible in order to keep
r small; at most one constant should be nmrked for
learning in order to keel) c small.

Further Control of Complexity

Given the declarative syntactic bias in terms of rule
schemata, the hypothesis space in a real-world applic-
ation can still be very high, because tile immber of
attributes (determining p) and attrilmte vahms i
usually high. This leads to the demand of restrict-
ing tile number of attributes and attribute values used
for learning.

Some attributes are of parti(adar interest for the user
of the KDD system. For instance, in an analysis of war-
ranty ca.~es, the attribute that expresses, whether an
item w;m a warranty case or not, is the most relcvmlt
one. The user cml spet’ify this attribute as the target
for learning. However, the attrii)utes that determine
a warranty case emmet be specified by the user. It
is the t~mk of learning to identify them! This is the
point where FDD ctnnes into play. FDD h;arns a par-
tial generality ordering on attributes. A sequent(, of
lem’ning passes of Rr)’t’/l)~) is started, each pass using
only the nmst general and not yet explored attributes
of the attribute hierarc.hy ti)r characterizing; the user-
giw:n target attrilmtes. The sequence is stopped as
soon ,~ hypotheses are fomut that obey the acceptance
criterion. That means, after sut’t:essfiflly learning in
language r-.)4.,, no new learning pass with/L.~¢,+, is star-
ted. Of course, tim user may start R r)T/I)B with the

2O MSL-96

next language and continue the sequence of learning
passes. Most important is. howev(~r, that the user gets
an output of learned ruh:s, in time, because p decre~mes
remarkably. Note, that the representati, nml bias in
terms of the sequence of r4t, is a semantic declarative
bia.~ (as opposed to the syntactic rule st’hr,mata or the
language setpmnces of CI,INT (De R:mdt 1992)). It
domaJn-del)endent. Using the output of FI)!), I) T/DB
adapts its behavior to a new data set.

Reducing the nunlber of attribute valu(.s of an at-
tribute c,’m b(’ done by climbing a hierarchy of more
and more abstract attrilmte values. If this bat’kground
knowledge is not available, it has to be learned. For
numerical vahms.. NI:MIN’I" finds a hierm’chy of inter-
vals. Since this is a learning result in its own right, it
is presented to the user who selects relevant intt~rvals:
These m’e transformed by RDT/I)B into t)redit:at,~s that
are used instead of the ones t.hat wtml(t trove be,~n
formed on the basis of the original datal).’tse attrit)-
ute values (according to the third mapping). Hent’e.
slightly increases, but i decreases a lot.

For nominal values, any f,~qt learning algorithm ttlat
is capable of finding clusters within the values of one
attribute (i.e. finds sets of attrilmte wflues) could
be plugged into our multistrategy fi’am,,work. The
clusters ~ure nalned and these names In,t:tmm mr)re ab-
stract attribute vahms replacing the original values. In
our current application (see below), we have chosen
a different approach. We have background knowledge
about three different aspects of the attribute values
of a given attribute A in the databa.se. The back-
ground knowledge is used for learning a graph, where
the nodes contain attribute values of the given attrib-
utes and tile links estal)lish a subset ordering. Note,
that the graph forms clusters that combine two dif-
ferent a.spects. Since the sets of attribute values are
meaningful for the user, he can select a level of the
graph. Each node of the chosen level beconles a I)in-
;~ry attribute of the database. The new attributes r~
place tlle original datai)~me attribute A in £u.. Ag;dn,
p slightly increases, but i (h,crea~es a lot.

Detecting ~mctional Dependencies --
FDD

In the following we a.ssumo some fimtiliarity with ch,fin-
itions of relational database theory (sot,, e.g., (Kant,1-
lakis 1990)). Capital letters like A, B,C d(,not(, at-
tributes and X, l’, Z sets of attributes. A flutctional
dependency (FD) X ~ Y is valid, if ,,very pair
tuples, which agrees in its X values, ~dst) agrees in its
Y values. According to Armstrongs’s Axioms (Ullmml
1988) and without loss of generality we only regard
FDs with one attribute on the right hmld side. The

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

discovery of FDs may be visualized as a searda in semi
lattices. The nodes are labeled with data dependencies
and the edges correspond to the more general than re-
lationship as in (Savnik & Flach 1993), which implies
the partial ordering.

Definition 1 (More general FD) Let X and Y be sets
of attributes such that X C Y, then the FD X -+ A is
rno~r~ general than the dependency Y ~ A, or Y ~ A
is more specific than X --+ A.

In contrast to the notion of a minimal cover in data-
base theory, the algorithm FDD computes a most gen-
eral cover. The difference is shown by the following
example: The set {A ~ B,B ~ C,A -~ C} is nmst
general in our sense, but not minimal according to
database theory, since the transitivity rule is applic-
able.

Definition 2 (Most general cover) The set of func-
tional dependencies F of relation R (El ~ F) is a most
.qeneral cover, if for eve~71 dependency X ~ A E F,
there does not exist any Y with Y C X and Y ~ A £

F.

The hypothesis generation is a top-down, breadth-
first seardl through the semi lattice imposed by the
more general than relationship as in (Mannila & Pdiih~i
1994). In order to speed up computation, we use a sub-
set of the complete axiomatization of functional and
unary inclusion dependencies and independencies (Bell
1995). Fttrthermore, FDD computes a partition of all
attributes into three classes. The first class contains
candidate key attributes, the second contains attrib-
utes with null ~lues and only the attributes of the
third class (the rest) are needed for discovery. Before
actually starting the top-down search, the most spe-
cific hypothesis will be tested. If this hypothesis does
not hold, then the whole semi lattice can be discarded.

FDD uses the interaction model that was described
above, i.e. FDD generates SQL queries (i.e. hypo-
theses) and the database system computes the an-
swer (i.e. tests the hypothesis). Figure 2 lists this
kind of statements and the condition which must hold.
The clue is the GROUP BY instruction. The com-
putational costs of this operation are dependent on
the database system, but it can be done in time
O(m * log m).

We define a hierarchy on the involved attributes of
one-place FDs in the following way:

Definition 3 (More general attribute) Given a set
one-place functional dependencies F. The attribute C
is more general than A, if A -} C is an element of the
transitive closure, of F and C --~ A is not an element
of the transitive closure of F.

¯ SELECT MAX (COUNT (DISTINCT B))
FROM R
GROUPBY A1 An

¯ al =I~AI...A.--~B

=:al

Figure 2: A SQL query for the computation of fimc-
tional dependencies, (B ¢ {Al ... A~))

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACDACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Figure 3: Search lattice for FDD.

We present a simple example to illustrate this. Let
the only valid FDs in R be the following: {A ~ B, B
C}. Then we will get a hierarchy of attributes, where
C is more general than B, and B more general than A.
Since the three attributes are from the same relation
and the FDs hold, there must be more tuples with the
same value for C than for B. This follows immediately
from the definition of FDs. The same is trim h)r
and A. Furthermore, if there are cycles in the transit-
ive closure of these one-place FDs, then all attributes
within the cycle are of equal generality. Attributes en-
tering the cycle are more general than the. ones within
it. Attributes leaving the cycle are more specific than
attributes within it.

Although the time complexity of FDD is exponen-
tial in the worst case (Beeriet al. 1984), in practice,
FDD successfiflly learned from several databases of the
size of 65 000 tuples, up to 18 relations, and up to 7
attributes each. Even without any depth restriction
although most of the FDs actually were one-place de-
pendencies - FDD takes 3.5 minutes for learning 113
FDs from 18 relations with up to 6 attributes each.

Morik 21

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

We exploit this morc gcnc.ral relationship on at.trib-
utes for the develolmmnt of a sequent,, of hypothesis
languages. Each stays within the santo syntactical
structure as given by the rule schemata, but has only a
subset of the attributes. Given, for instance, the FDs
{A .--¢, B, B ~ C, A --+ C}, the first, set, of predicates in

/;nt includes C and neither A nor B,/2n., includes B
and neither A nor C, and £n.~ includes A and neither
B nor C. As a result, we have a level-wise refinement
strategy as in (Mannila & Toivonen 1996), that means,
we start, the search with hypotheses consisting of most
general attributes. If these hypotlmscs are too generM,
continue with nmre specific attributes only.

Discretization of Numerical Attributes --
NUM_INT

Numerical values offer an ordering that can be ex-
ploited. Hence, these vahms can be grouped with less
complexity than nominal vahms, even if no classifica-
tion is available. The idea behind NtWM_IN’r is tO order
the numbers and to search for "gaps"’ in the strcean
of values. The biggest gap is supposed to be the best
point fi)r splitting up the in|tiM interval [min, nmx].
The next gaps ea’e taken to continue splitting ill a top
down fashion. The result is a tree with the initial in-
terval [min, max] as the root, split intervals as inner
nodes and unsplit intervals as leaves. Tim depth of this
tree is determined by a paraineter (d) which is set.
the user.

The result is obtained by three conceptual steps:
First, order the numbers (using the statement "seh,ct
...order fly ..." via embedded SQL); second, fetch
tuple by tuple (via embedded SQL) gathering "all in-
formation needed for splitting; and third, build up the
tree of intervals. The complexity of the three steps is
as follows: Step (1) should be O(N log N), N being the
number of tuples, because we select only one attribute
(this is done hy the database system and therefore bey-
end our control). In stcp (2) each gap has to be sorted
hlto an ~rray of depth d which leads to O(N ̄ d). Fi-
nally in step(3) we have to insert O(d) v~dues into
ordered array of depth O(d) resulting in complexity of
O(d~).

Most time is consumed by simply fetching the tuples
one by one via SQL. We tested Nt.;M_IN’I’ on a data-
base containing ~d~out 750.001} tuples: the algorithm
ran 35 minutes on a St:x SPAR(; for a depth of 100:2
in|mites were taken for ordering, 8 nfinutes for internal
processing and about 25 mixmtes h~r waiting on tim
database system to deliver the tuples. This also shows
that it is essential that wt’ touch eat’h tuple only once
and collect ",ill information (rain, max, found intervals..
nunib{’~r of tuples in each interval) "on tim fly".

22 MSL-96

?
19 281
[1

19 1590

I q 742 797

3/..< ,
19 512 553 742

553 654 694

553 602 632 654
[1 [I

309 512

~(}94?24~25121

742
I

15911
]

Fi~tre 4: Hicrardkv of intervMs found by NU.X.I_INT

Of course we are aware of the fact that this "gap"--
approea’ll is a quite simple one and that more sophistic-
ated approaches h)r learning intervMs arc: known (e.g.,
(Wettscherek & Diettc.rich 1995), (Pazzani 1995)).
However, these algorithms rare either more conxplcx (in
particular, ,:lustering "algorithms although being much
more elegea~t are too complex to be applit’abl(,), or re-
quire a classification.

Pazzeali, for instance, presented an iterative im-
provement approach for finding discretizations, i.e. in-
tervals, of numeric attrilmtes. His algorithm starts
with a partition into a small numt)er of seed intervals
with equM size, eald then iteratively uses split or merge
,)peratitms on the intervals based on error or misclas-
sification costs. In most c;mes, eat appropriate number
of intervMs is unknown in advance, resulting in some
loops of the Mgorithm eaid therefi)re tie has to recon-
sider Ml values of the. attribute. This is unfoa.~ible in
large, databases. Howevc, r, these algorithms are tither
more complex (in parti(’ular, clustering algorithms al-
though being mut’h more clegm~t arc, too romtilex to
be alJplicable), ,)r require a classification.

Forming a hierarchy of nominal attribute
values-- STT

Background knowh,dge is most often used in a KDD
framework in order to structure sets of attribut(: vMues..
that is, the background knowledge offers a hierarchy of

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

more and more abstract attribute values. However,
background material is often unstructured. In this
case, it needs some structuring before it can he used
for learning from the database. For this task, we use
STT, a tool for acquiring taxonomies from facts (Kietz
1988)3. For all predicates it forms sets for each argu-
ment position consisting of the constant values which
occur at that position. The subset relations between
the sets is comlmted. It may turn out, for instance,
that all values that. occur as second argument of a pre-
dicate Pl also occur as first argument of predicate p2,
but not the other w~v around. In this case, the first
set of values is a subset of the second one. We omit
the presentation of other features of STT. Here, we ap-
ply it as a fast tool for finding sets of entities that are
described by several predicates in background know-
ledge.

We have represented textual background material
as one-ary ground facts. The predicates express in-
dependent aspects of attribute valucs of an attribute
of the database. These attribute values are at argu-
ment position. Different predicates hold for the same
attribute value. For 738 predicates and 14 828 facts,
STT delivered a graph with 273 nodes4. The graph
combines the different aspects. Selecting a layer with
4 nodes, we introduced 4 new Boolean predicates into
the database. This increases p by 3, lint decreases i by
almost 10 000, since we disregard the original database
attribute in L;7~.

Discussion

The rule learning algorithm RDT is particularly well
suited for KDD tasks, because its complexity is not
bound with reference to the number of tuples but with
reference to the representation of hypotheses. Its top-
down, breadth-first search allows to safely prune large
parts of the hypothesis space. The declarative syn-
tactic bias is extremely useful in order to restrict the
hypothesis space in case of learning from very large
data sets. In order to directly access database man-
agement systems, RDT was enhanced such that hypo-
thesis testing is executed via SQL queries. However,
the syntactic lazlguage bias is not enough for apply-
ing RDT to real-world databases without reducing it
to the expressiveness of an algorithm such as KID3,
for instance. If we want to keep the capability of rela-
tional learning but also want to learn from all tuples
of a large database, we need more restrictions. They

3A detailed description can be found in (Morik et al.
1993).

4Since STT took about 8 hours, it cannot be subsumed
under the fast algorithms. However, its result is computed
only once from the background material which otherwise
would have been ignored.

should lead to a reduction of the number p of pre-
dicates or the maximal number i of attribute values
for an attribute. The restriction should be domain-
dependent. The task of structuring the set of attrib-
utes as well as the task of structuring sets of attrib-
ute values is performed by more specialized learning
algorithms. While we are convinced that this work-
share between specialized and a more general learning
algorithm is a powerful idea, we do not claim that the
algorithms for structuring attribute values are in gen-
eral the best choice. However, our architecture allows
to plug in other (better) algorithms, if available.

It is an issue for discussion, whether tlm user should
select appropriate levels from the learned hierarchies of
the "service algorithms", or not. Wc have adopted the
position of (Brachman & Anand 1996) that the user
should be inwdved in the KDD process. On the one
hand, the selection of one layer as opposed to trying all
combinations of all hierarchies makes learning feasible
also on very large databases. On the other hand, the
user is interested in preliminary results and wants to
have control of the data mining process. The user is
interested in some classes of hypotheses and does not
want to specify this interest precisely as yet another
declarative bias. Note, however, that the user in our
framework does not need to implement the interaction
between the learning result of one algorithm and its im-
pact on the other algorithm. Our multistrategy frmne-
work for KDD is a closed-loop learning approach with
the user being involved as an oracle. This is a particu~
lar difference regarding the KEPLER KDD workbench,
which offers a variety of ILP algorithms together with a
set-oriented layer for data management (Wrobel et al.
1996). KEPLER allows the user to call various learning
tools and use the results of one as input to another one.
It is a loosely coupled system, where our framework is
a tightly coupled one. Another difference, is that we
have moved to directly accessing databases via SQL.

In the course of an on- going project at Daimler Benz
AG on the analysis of their data about vehicles, we
have applied our multistrategy learning. The database
with all vehicles of a certain type of Mercedes -- among
them some cases of warranty is about 2.6 Gigabytcs
large. It consists of 40 relations with about 40 attrib-
utes each. The main topic of interest for the users is to
find rules that characterize warranty cases ~md struc-
ture them into meaningful classes. In a monostrategy
approach, RDT/DB could well find rules: among them
ones that are about 100% correct. Howcver, these
rules were not interesting, since they e, xpressed what
is known to all mechanics.

Morik 23

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Graphic-1 (sclass)

Figure 5: Part of the sort lattice comImted by STT.

engine_variant(V I N, 123) -¢ engine_type(V IN, 456)

More interesting rules could only be found, when
preprocessing the data and so focusing R.DT/DB on in-
teresting parts of the hypothesis space. Preprocessing
achieved even results that were interesting in their own
right. Fr)D found, for instance, that not all variants de-
termine the correspox,ding type, but only the transmis-
sion type determines the transmission variant ’~. Other
interesting results are those where the vehicle identific-
ation determines a particular vehicle part. Of course,
we all know that a car has only one engine. Itowever,
for other parts (especially outfit or small technical
parts) it is interesting to see, whether they arc determ-
ined by the vehi(:le variant, or not.

Also the introduction of the new attributes on the
Inmis of STT’S output led to learning more interest-
ing ruh:s. The background material is the mech-
anic’s workbook of vel,icle parts, classified by fimc-
tional (t:aus’,d) groups of parts, spatial groupings
part is close to another part, though possibly belong-
ing to another flm(’tional group), and possil)le, faults
or damages of a part. ’rhe vehicle parts are nunfl)ered.

’~ As FDs do not allow one single value of the determining
attribute to have two values in the determined attribute,
the rule Ibun,I by RI)T/DB and shown abow, is t,ot a FI).

t54486, for instance, is a certaht eh,ctric switch within ¯
the, autonmtic locking device. The functional groups
of I)arts are Mso mmmrically encoded. #8257, for in-
stance, refers to the lo(~ing device of the w,hich,. The
fact #8257(t54486) tells that the switch t54486 belongs
to the locking device. The spatial grouping is given
by pictures that show closely related parts. The i)i("-

t.ures are, again, numerically encode.d, p8257201, for
instance, refers to a picture with parts of the elec-
tronic locking device that are closely related to the
injection comple.x, p8257201(t54486) tells that the
switch belongs to tim spati;fl group of the injection.
Possible damages or faults depend, of course, rather
on the material of the part tha.n its flm(:tional group.
All different types of damages are denotetl by diifer-
ent predicates (e.g.. s04 indicates that tlm part might
leak). These three aspects ar(, each repres(,nted
several (:lasses and subclasses. Each part belongs at
lemst to thr(.~, groups (to a fun(:tional one, to a spatial
()tie, and a type of possible error), frequently to s(,v-
eral subclasses of the same group. The (’oml)ination
these three aspects h,m led to surprising classes found
by STT. Looking at Figure 5. class_61 (’omprisvs two
switches, t54486 and ~54585. They are the intersection
of three meaningfifl clauses:

elass_169 : here, several parts of th(’ injection d(,vice

24 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

are clustered. These are parts such as tubes or gasol-
ine tank. Up in the hierarchy, parts of the functional
group of iujection and then (class_13) parts of gas-
oline supply in general are clustered.

class_12 : here, parts of the dashboard are clustered,
among them the display of the locking device (pro-
tection from theft).

class_8 : here, operating parts of the engine are
clustered that, serve the injection function.

The illustration shows that mechanics can easily inter-
pret the clusters of parts, and the hierarct~v learned by
STT is meaningful. The intersection classes are very
selective where classes such as, e.g., class_13 cover all
parts of a functional group (here: gasoline supply).

The intervMs found by NUM_INT in the cost attrib-
ute of warranty cases allowed RDT/DB to find 23 rules
with an accuracy within the range of 79% to 84%.

Experiments on the data are all ongoing effort ~. We
arc planning systematic tests that compare quality mid
time spent on learning for the various combinations
of learning algorithms. Right now, we can state that.
without using various methods in concert, we achieved
valid but not interesting results. Sonic types of rela-
tions could not at ,all be learned without preprocessing.
For instance, no relations with costs of warranty cases
could be found before NUM_INT delivered the intervals.
Moreover, without the further restrictions by learning
results of other lem’ning algorithms, RDT/DB could not
use all the tuples. Hence, the advantage of applying
the multistrategy approach is not an enhancement of
a method that works already, but is that of making
relational learning work on real-world databases at all.
Since this break-through has been achieved, we can
now enhance the algorithms.

Acknowledgments

VVork presented in this paper has been partially funded
by Daimler-Benz AG, Research Center Ulm, Contrm’t
No.: 094 965 129 7/0191. We thank G. Nakhaeizadeh
and R. Wirth for indicating practicM needs a~ld encour-
aging us to fulfill these needs using relational learn-
ing. Christian Franzel has developed the NUM_INT al-
gorithm. Mark Siebert has acquired background know-
ledge about vehicle parts and has applied STT to it.
We "also thank J. U. Kietz for fruitful discussions.

References

Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.;
and Ver "kamo, A. I. 1996. Fast discovery of associ-
ation rules. In Fayyad, U. M.; Piatetsky-Shapiro, G.;

~Since the data axe strictly confidential, we cannot il-
lustrate the increase of interestingness here.

Smyth, P.; and Uthurusamy, R., eds., Advances in
Knowledge Discovery and Data Mining, AAAI Press
Series in Computer Science. Cambridge M~sachu-
setts, London England: A Bradford Book. The MIT
Press. chapter 12, 277-296.

Beeri, C.; Dowd, M.; Fagin, R.; and Statman,
R. 1984. On the structure of Armstrong relations
for functional dependencies. Journal of the ACM
31(1):30-46.

Bell, S. 1995. Discovery and maintenance of fun(:-
tional dependencies by independencies. In First Int..
Conference on Knowledge Discovery in Databases.

Brachmazl, R. J., and Anand, T. 1996. The pro(:ess of
knowledge discovery in databases: A human-centered
approach. In Fayyad, U. M.; Piatetsky-Shapiro, G.;
Smyth, P.; mid Uthurusamy, R., eds., Advances in
Knowledge Discovery and Data Mining, AAAI Press
Series in Computer Science. Cambridge Massachu-
setts, London England: A Bradford Book, The MIT
Press. chapter 2, 33---51.

Cai, Y.; Cercone, N.; and Han, J. 1991. Attribute-
oriented induction in relational databases. In
Piatetsky-Shapiro, G., and Frawley, W., eds., Know-
ledge Discovery in Databases. Cambridge, Mass.:
AAAI/MIT Press. 213 - 228.

De Raedt, L., and Bruynooghe, M. 1993. A theory of
clausal discovery. In Muggleton, S., ed., Procs. o/the
3rd International Workshop on Inductive Logic Pro-
gmmming, number IJS-DP-6707 in J. Stefan Institute
Technical Reports, 25-.40.

De Raedt, L. 1992. Interactive Theory Revision: an
Inductive Logic Programming Approach. Academic
Press.

Flach, P. 1993. Predicate invention in inductive data
engineering. In Brazdil, P., ed., Machine Learning -
ECML’93, volume 667 of Lecture Notcs in Artificial
Intelligence, 83-94.

Helft, N. 1987. Inductive generalisation: A logical
framework. In Proes. o/ the 2nd European Working
Session on Learning.

Kanellakis, P. 1990. Elements of Relational Database
Theory. Formal Models and Semantics, Handbook of
Theoretical Computer Science. Elsevier. chapter 12,
1074-1156.

Kietz, J.-U., mid Wrobel, S. 1992. Controlling the
complexity of learning in logic through syntactic and
task-oriented models. In Muggleton, S., ed., Induct-
ire Logic Programming. London: Acadcmic Press.
chapter 16, 335--360.

Morik 25

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Kictz, J.-U. 1988. Incremcnt~fl and rcversibh: tw-
quisition of taxonomies. In Proceedings o/EKA W-88.
c]mpter 24, 1-11. Also as KIT-Report 66, Tec, hnical
University Berlin.

Kietz, J. U. 1996. Indukti’,e Analyse rrdationah:r
Daten. Ph.D. Dissertation. to appear, in german.

Lavrac, N., axul Dzeroski, S. 1994. Induct, ira: Lo-
gic ProgrammiT~g - Techniqu~s and Applications. New
York: Ellis Horwood.

Mannila, H., a~ld RJ~iih~i, K.-J. 1994. Algorithms fi~r
inferring functional dependencies from relations. Data
and Knowledge Engineering 12:83-99.

Mannila, H., and Toivonen, H. 1996. On an algorithm
for finding all interesting sentences. In Trappl, R.., ed.,
Cybernetics and Systems ’96 (EMCSR 1996).

Michalski, R. S. 1983. A theory and methodology of
inductive learning. In Machine Learning -- An Arti-
ficial Intelligence Approach. Los Altos, CA: Morgan
Kmffman. 83--134.

Midmlski, R. 1994. Inferential theory of learning:
Developing foundations for multistrategy learning. In
Miclmlski, R., and Tccuci, G., eds., Machine Leaven-
ing A Multistrategy Approach (IV). San Francisco:
Morgan Kaufimmn.

Morik, K.; Wrobel, S., Kietz, 3.-U.; and Erode, W.
1993. Knowledge Acquisition and Machine Learning
- Theory, Methods, and Applications. London: Aca-
demic Press.

Pazzani, M. J. 1995. An iterative improvement ap-
pro,~h for the discrctization of numeric attributes in
Bayesian classifiers. In Fayyad, U. M., and Uthur-
usamy, R., eds., The First International Conference
on Knowledge Discovery. and Data Mining, 228-233.
AAAI Press.

Piatetsky-Shapiro, G. 1991. Discovery, analysis., and
presentation of strong rules. In Piatetsky-Shapiro,
G., and Frawh,y, W., eds., Knowledge Disem:evq in
Databases. Cambridge, Mass.: AAAI/MIT Press. 229
-248.

Savnik, I., and Flaeh, P. A. 1993. Bottom-up in-
duction of functional dependencies from relations. In
Piatetsky-Shapiro, G., ed., Proceedings of the AAAI-
93 Workshop o7~ Knowledge Discovery in Databases,
174--185. Menlo Park, California: The American As-
sociation for Artificitd Intelligence.

Ulhnan, J.D. 1988. PrJnciples of database and
knowledge--base systems, vohune 1. Rockville, MD:
Comlmter Science Press.

26 MSL-96

Wettschcrek, D., and Dietterich, T. G. 1995. AI, ex-
perimentM comparison of the nearest-m,ighbour and
nearest-hyperre(’tangle algorithms. Machiru: Learn.in..q
19(1):5 - 27.

Wrobel, S.; Wettscher~,k, D.; Sommer, E.; and
Erode, W. 1996. Extensibility in ,lata min-
ing systems, submitted paper, available. ~lt
http://nathan.gmd.de/projects/ml/h,~me.htn,l.

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

