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Abstract

We present a settting in which one can discuss problems
of design, synthesis, analysis and control ofcomplex sys-
tems by adaptive teams of intelligent distributed agents.
We point to learning problems of this approach related
to the necesity of extracting from the empirical data of
constructs allowing the agents to negotiate their co -
operative actions. We put our analysis into the frame-
work of multistrategy learning (Michalski 1994) which
combines empirical induction, abduction and reasoning
by analogy in a hierarchical setting (Michalski 1994).

Introduction
We propose a discussion of synthesis schemes for syn-
thesis of complex objects defined by uncertain or in-
completely understood requirements. Our synthesis
schemes are constructed over sets of intelligent an-
tonomons agents which co - operate and negotiate their
goals towards synthesis of an appropriate artifact from
some simple prescribed inventory objects. A require-
ment which approximately specifies a complex object
comes to the agents from the external world and can be
expree~3ed in a language not fully understandable by the
agents. See in this respect Example I below. The main
result of the uncertainty caused by the language is that
the agents are able to describe the complex object in
their internal language approximately only; however,
they strive to produce a complex artifact which saris-
ties the external requirement in satisfactory degree i.e.
the external customer will accept this artifact as satis-
fying the requirement. To achieve this end, the agents
form teams which co - operate towards creating the fi-
nal artifact. The links among local teams of agents are
formed as a result of negotiations among agents which
result in a synthesis scheme; the scheme is locally ro-
bust i.e. each team of agents in the scheme has certain
bounds of uncertainty within which to operate. The
adaptiveness of the scheme is the result of its form-
ing technique: when the external conditions change,
the agents may re - negotiate their local uncertainty
bounds as well as links among local teams which may
lead to a new scheme with new boundary conditions.

One may also admit the possibility of re -negotiating
local goals which may lead to a new cl~ of schemes.

Our principal aim is to give a formal model for ac-
counting for uncertainty and approximative character
of our schemes. We propose to this end to apply
our recently developed (Polkowski & Skowron 1994a),
(Polkowski & Skowron 1994b), (Skowron & Polkowski
1995), (Polkowski & Skowron 1995), (Polkowski 
Skowron 1996a), (Polkowski & Skowron 1996b), the-
ory of rough mereology. Rough mereology is a theory
of a relation of being a part in a degree which can
be traced back to mereology of Ldmiewski (Le~niewski
1992). This theory allows for introducing a logic of
approximative reasoning about complex objects (Ko-
morowski, Polkowski, & Skowron 1996) in which, in
particular, we are able to express the fact that a given
artifact satisfies a given property in certain degree. Let
us stress also that rough mereology encompasses fuzzy
set theory: the notions of an element and the sub-
set coincide in rough mereology (Polkowski & Skowron
1994), (Polkowski & Skowron 1996a) hence the rela-
tion of being a part in a degree can be regarded as a
fuzzy membership function.

In our approach rough mereologies are a-qsigned to
individual agents in a distributed way: to each agent a
rough inclusion (see below) is assigned which permits
the agent to measure degrees of similarity among ob-
jects manipulated by it, and local mereologies of co -
operating agents are related by means of propagating
functors (mereological connectives) extracted (learned)
from data.

Forming a synthesis scheme proceeds in two stelx~;
first - the external requircment is absorbed as a con-
straint in a language of agents and it is decomposed
into simpler constraints; any constraint is associated
with an agent or a local team of agents which are able
to fulfill it. The process of decomposition involves ne-
gotiations among agents which result in assignment to
the agents of local constraints, assembling operations
(decomposition rules) as well as uncertainty bounds.
Constraints may be expressed in an informal la~nguage
and they are rendered in logical languages of agents
as approximate formulas in the form of a pair (~,~)
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where (b is a predicate in the logic of the agent and 
is an uncertainty bound. In positive cases constraints
reach the level of inventory (primitive) agents which
are able to convert’their approximate formulas into ob-
jects satisfying them.

The second step consists in assembling a complex
artifact from primitive objects by means of negotiated
operations.

Our approach is analytic: all constructs are learned
from data tables which constitute the agents knowl-
edge.

We present in what follows: preliminaries on mereol-
ogy and rough mereology, logic for approximative rea-
soning (satisfactory fulfillment of a requlrement)l de-
sign and synthesis schemes, and the learning aspects of
our approach. We conclude with a discussion of poten-
tial applications to problems of design, synthesis and
control of complex systems.

Preliminaries: Mereology of
Le.4niewskl

We recall here the basic notions of the mereological
system of Le~nlewski (Le~niewski 1992); in the next
section the mereological system of Le~niewsld will be
extended to the system of approximate mereological
calculus called rough mereology.

We consider a finite non - empty set U. A binary
relation lr on the set [7 will be called the relation of
being a (proper) part in the case when the following
conditions are fulfilled

(P1) (irreflezivity) for any z E UI it is not true that
z~rz;

(P2) (transitivity) for any triple z, ylz E U, if z~y
and ylrzl then zlrz.

It follows obviously from (P1) and (P2) that the 
lowing property holds

(P3) for any pair zl y E U, if zlry then it is not true
that y~rz.

In the case when Z’Ky we say that the object z is
a (proper) part of the object y. The notion of being
(possibly) an improper part is rendered by the notion
of an ingredient; for objects Zl y E UI we say that the
object x is a ~r-ingredient of the object y when either
z~ry or z --- y. We denote the relation of being a ~r-
ingredient by the symbol ingr(~r); hence we can write

(I1) for Zl y G UI z ingr(Ir) if f zlry orz =y.
It follows immediately from the definition that the

relation of being an ingredient has the following prop-
erties:

(I2) (reflezivity) for any z E UI we have z ingr(~)
z;

(I3) (weak antisymmetry) for any pair z, y E U, if
z ingr(lr) and y ingr(lr) z then z -- y;

(I4) (transitivity) for any triple zly, z E U, if z
ingr(Ir) and y ingr(~r) z then z ingr(Ir) z.

We will call any pair (U! ~r) where U is a finite set
and lra binary relation on the set U which satisfies the
conditions (P1) and (P2) pre-model ofmereology.

We now recall the notions of a set of objects and
of a class of objects. For a given pre-model (U11r) 
mereology and a property m which can be attributed
to objects in UI we will say that an object z is an
object m (z object m, for short) when the object z has
the property m. The property m will be said to be
non-void when there exists an object z E U such that
z object m. Consider a non-void property m of objects
in a set U where (U1 lr) is a pre-model of mereology.

An object z E U is said to be a set of objects wflh
the property m when the following condition is ful-
filled:

(SETm) for any y E UI ify object m and y ingr(Ir) 
then there exist z, t E U with the properties: z ingr(~r)
Yl z ingr(1r) tl t ingr(~r) z and t object 

We will use the symbol z set m to denote the fact
that an object z is a set of objects with the property
m,

Assume that z set m; if, in addition, the object z
satisfies the condition

(CLm) for any y E U, if y object m then y ingr(~r)
z then we say that the object z is a class of objects
with the property m and we denote this fact by the
symbol z class m. We will say that a pair (U, It) is 
model of mereology when the pair (Ul~r) is a pre-model
of mereology and the condition

(EUC) for any non-void property m of objects in the
set U, there exists a unique object z such that z class
m holds.

The notions of a set and a class permit to regard
collections of objects as objects; the intuitive, mathe-
matical idea related to them is that of a set theoretical
union. Our application of these notions is explained
below, e.g., in design theory.

Rough mereology
An approximate mereological calculus called rough
mereology has been proposed (Polkowski & Skowron
1994), (Polkowski & Skowron 1996a) as a formal treat-
ment of the hierarchy of relations of being a part in a
degree. We begin with an exposition of rough mereo-
logical calculus in the form of a logic Lrm.

Syntax of L,~
It will be the standard syntax of the predicate calculus
in which we will have the following basic ingredients:

Variables: ZlZl,X~,...I y, yl,Y2,..., ZlZl, z21.., of
type seLelement and rl rl i r21...1 Slsl, S~l ... of type lat-
tice_element;

Constants: w of type lattice_element;

Predicate symbols, function symbols. _< of
type (lattice_element, lattice_element) and p of type
(set.element, set_element, lattice_element);

Auxiliary symbols: propositional connectives: V,
^, ==~, "~1 quantifier symbols: V, 3 and commas, paren-
theses.
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Formulae: atomic formulae are of the form
#(z,y,r), s < r and formulae are built from atomic
formulae as in the predicate calculus.

Axioms: the following are axioms of Lrm
(A1) Vz.u(x, s, o,);
(A2) Vx.Vtt.{#(x,V,w) ==*. Vs.Vr.Vz.[#(z,x, 8) 

u(~,y, r) --~ Ca _< r)]};
(A3) Vx.Vy.{p(x,y,~) ^ #(y,x,w) ;.

vs.vr.w.[#(~, ~,,,) ̂  u(~, ~, r) =, (s _<_ 
(A4) ax.Vy.u(x, I/, w);

(AS) W.Vt~.(lW,.l[au.-~(u(~, u,,,,)) ̂  u(z, 
at.(a~.(--,uCt, ~,,.9) ^ uCt, ~,,,,) ̂  #(t, v, 

#(=, ~, ~)};
and the axiom schemata (A6), for n = 2,3, .... where

(A6),
Vxl.Vx2....V~,.3y.(a, (sl, x~, ..., x,, !t)^

~(~, ~, ..., ~,,, y) ̂  7.C=~, =2, ..., x.. v))
where

a~ (xa, x2,..: x,, y) 

w.{ [at.(--,u(~, t, ~)) ̂  u(~, ~,,,,)] 

a=,.a~.[Cau. (-,uCw. u, ,,,))) ̂  ~Cu,, ~. ,,,) ̂  u(,,,, =,, ,,,)]};
0,a, x2..., x., ~):

u(~, ~, ~) ̂  u(~, y, ~) ̂  ... ^ u(~,, ~);
7,(si, s~, ..,s,,v) 

w. {[,~.(~, x~, .., x., z) ̂ /~.(~1, z2, .., :~,, z)]
uCu, ~,, ,,,)}.

The formal introduction to rough mereology is ex-
panded below when we discuss rough inclusions.

Semantics of L~m

We will call an interpretation of Lrm a triple M =
(UM, LM, FM) where UM is a finite set, LM is a (com-

Mplete) lattice with the lattice partial order < and with
the greatest element tM ~.nd FM is a map’-ping which
assigns to constants and predicate symbols of Lr= their
denotations in M in the followingmanner: FM(w) 
tim FM(<) =<Wand FM(#) = pM C M xUM xLM,

M ~ M Mwhere therelafion ~ C U x U xL is a function
i.e. Iz M : [IM x Un ~’LM.

An M-value assignment g is a mapping which as-
signs to any variable x of Lr= of type set_element
the element g(x) E Uu and to any variable r of L~m
of type lattice_element the element g(r) E M. For
an M-value assignment g, a variable z of Lrm of type
set_element and an element u E UM, we denote by
the symbol g[u/x] the M-value assignment defined by
the conditions: g[u/z](v) = g(v) in case v # z and
g[u/x](x) -= u; the same convention will define g~o/r]
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in case of a variable r of type lattice_element and
pELu.

For a formula t, of Lrm, we denote by the symbol
[t~] Ma the meaning of the formula t~ in the model M
relative to an M-value assignment g by the following
conditions

(M1) [p(~, r)] Ma = t rue iff uM(gCx), g(y)) = p for
some p >_ Mg(r);

(M2) [s < r] Ma = true iff g(s) <_U g(r);
(MS) [a V/5]Ma ---- true iff [a]Ma = true or [filMs _-

true;

(M4) [-~a]M* ---- true iff [a]M’g ---- false;
(M5) [3x.a] Ma = true iff there exists u E UM such

that [a]M~[u/~] = true;
(M6) [3r.a] M~q = true iff there exists p E LM such

that [a]M.g~/r] = true.
It follows that the intended meaning of a formula

#(x,y,r) is that "the object x ia a part of the object
y in degree at least r".

A formula a is true in an interpretation M iff a is
Al, g-true (i.e. [a]M-* ---- true) for any M-value assign-
ment g. An interpretation M is a model of Lrm iff all
axioms (A1)-(A6) truein M.

Rough inclusions. A real function #M(x, Y) on a
universe of objects U~ with values in the interval [0, 1]
is called a rough inclusion. It satisfies the following
conditions which are translations of respective axioms
(AI) - (A6),~.

(A) #M{X, X) = 1 for any 
.{B) #m(X,Y) = 1 implies that pM(z,Y) 

pM(z, X) for any triple X, Y, Z;
(C) there is N such that pM(N, X) ----- 1 for any X.

An object N satisfying (C) is a p-null object: such
objects are excluded in mereology of Le~niewski.

We let X =~, Y iff pM(x, Y) = 1 = pM(y, X) 
X #~ Y iff non(X =~ Y).

We have other conditions for rough inclusion:
(D) if objects X, Y have the property 

if Z #~ N and #M(z, X) = 
then there is T #t, N

with ?~M (T, Z) = 11 #M (T, 
then it follows that: #re(X, Y) - 

(D) is an inference rule: it is applied to infer the
relation of being a part from the relation of being a
subpart.

(E) For any collection F of objects there is an object
X with the properties:

(i) if Z #~ N and pM(z,x) ---- 1 then there are
T ~ N, W E F such that

uM(T, Z) = ~,M (T, IV) = #M(w, X) 

(ii) if W ~ F then #M(W,X) ---- 1;
.(iii) ff Y satisfies the above two conditions then

#M(X, Y) ---- 1.
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(E) will be applied below to show the existence and
uniqueness of classes of objects.

We now outline the way in which mereology of
Le~aiewskl follows oUt of rough mereology.

Rough inclusions: reduced models and
Le~nlewski’s mereology

Given a model M of Lrra, M = (UM,LM, FM), we
will call the function/jM : UM × UM .__. LM the M-
rough inclusion. We define a relation congr(pM) on
the set UM by letting for u, w E 0"M : u congr(pM) w
iff pZ/(u, w) = M = pM(w, u). Thefoll owing propo-
sition, whose proof follows immediately by (A2) and
(A3) and is therefore omitted, establishes the basic
properties of the relation congr(pM) and demonstrates
it to be a pM-congruence.

Proposition 1 The relation congr(pM) is an equiv-
alence relation on the set UM and we have

(i) if congr(pM.) w then pM(v, w) ----pM(v, u)
(.) if u nor( M) w thert p’%,,
for arty triple u, v, w E UM.

Q

We denote by us the dnss of congr(pM) which con-
tains u. It follows that the rough inclusion can be
factored throughout the relation congr(pM}i.e, we de-
fine the quotient set UM ----- UU/congr(pM) and the
quotient function

:r:: ×u: , LM
by letting ~(%,’w~) -- /~M(u,w); clearly, the 
(U~,pM) introduces a model M~ of Lm. In the se-
quel we will always work with a fixed reduced model
M~. We denote by the symbol n~ the null object
i.e. the object existing in virtue of (A4) and such that
pM(n#,w#) = M for an y w~, E U..~. Wewil l wri te
us ~ nt, to denote the fact that the object us is not
the null object. Let us recall that the existence of a
null object in a model of mereology of Le~iewski re-
duces the model to a singleton, as observed by Tarski.
In the sequelt.for simplicity of notation, we will write p
in place of/as~, U in place of U.u, u in place of ut~ etc.p
We will call the rough inclusion p a strict rough in-
clusion when it satisfies the condition p(z, n) = 0 for
any non-null object z; we observe that any standard
rough inclusion is strict.

We now show how the rough inclusion p introduces
in U a model of mereology of Le~niewski. To this end,
we define a binary relation part(p) on the set U by
letting

u part(p) if f p( u, w)= f M and it i s not truethat
p(w, u) = tiM.

Then we have the following proposition whose
straightforward proof is omitted.

Proposition 9. (i) the relation part(p) satisfies the
conditions (Pl) and (P2);

(fi) the relation ingr(part(p) satisfies th e following
for any pair u, w E U:

ingr(r rt(p)) ifr p(u, u

D

We now define in the model M~ for any collection
of objects in U, the notions of a set of objects in

and of a class of objects in ~. We will say then that
u E U is a set of objects in ~1, u set ¯ for short, when

(S1) for any w -~ such that w in gr~art(p) ) 
there exist v ~ n and t E ql such that v ingr(part(p) 
w, 1, in ,’(part(p)) t, t ingr(part(p) 

if in addition, we have

($2) ingr(partOa) ) u for any t E ̄  ;
($3) for any t, ift satisfies ($1) and ($2) with 

. ingrQ,art(p) ) 
then we say that u is a class of objects irt ~1, u

class ¢~ for short. It follows from (A6) that for any
collection ~ there exists a unique object u such that u
class ~/and there exists objects of the form set ql. We
have therefore

Proposition 3. The pair ( U - (n), part(p) 
{n}) × (U - {n)) is a model of mereology.

[]

We apply the above theoretical scheme to the task of
formalization of design, synthesis and control of com-
plex systems on the basis of knowledge learned from
data tables.

Approximate logic of design and

synthesis

Design agents. Requirements. The designer op-
erates on the set Des_Ag of design agents; any de-
sign agent da9 is equipped with an information system
Adag =(Udag, Ad~) and a rough inclusion Paag. The
table Adag describes objects (possibly complex) from
a universe Uda0 in the language of attributes in Ad, a.
The variable bdag runs over objects in Uda~. A valua-
tion vx where X is a set of design agents is a func-
tion which ~signs to any bdag for dog E X an element
vx(bdag) E Uda~. A (designer) requirement ~(ag) at
ag is a formula in the logic C(Ad~, V) of conditional at-
tributes (Skowron 1995); the symbol ~ will denote a re-
quirement at some design agent. The symbol z ~ d~d
will denote that z satisfies ~.

Synthesis agents. Any synthesis agent ag is assigned
a label
lab(a ) ffi

da ),
St(ag), L(ag), po(ag), F(ag) 

where
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U(ag) is the universe of objects at ag;

for any synthesis agent ag there exists a design agent
dag and a mapping ~f(ag, dag) U(ag) , Ud~9;

D(ag) = {U(ag), A(ag), d(ag) is thedecision sys-
tem (Pawlak 1991) of ag; A(ag) is the set of con-
ditional attributes of ag. The value d(ag)(z) is a
designer requirement ~ satisfied by lr(ag, dag)(z);

St(ag) C U(ag) is the set of standard objects (stan-
dards) at ag;

L(ag) is a set of unary predicates at ag (specifying
properties of objects in U(ag)). Predicates of L(ag)
are constructed as formulas in C(A(ag), V) 

po(ag) C_ U(ag) x U(ag) x [0, 1] is a pre-rough inclu-
sion at ag (Polkowski & Skowron 1996a); usually 
is defined from the information system of the agent
ag by the formula

cardinality{a E a(ag) : a(z) a(y)}.
P°(z’ Y) cardinalityA(ag) ’

F(ag) is a set of mereological connectives at ag
(Polkowski & Skowron 1995), (Skowron & Polkowski
1995), (Polkowski & Skowron 1996b).

Met¯elegy PDS. Synthesis agents classify their ob-
jects by means of pre - rough inclusions; any pre -
rough inclusion l~o(ag) can be extendcd (Polkowskl
& Skowron 1996a) to a rough inclusion p(ag) on the
set 2u0s) of subsets of U(ag). The D_S - mereology
laDS (the design - synthesis mereology) is a family
{p(ag) agE Ag}where l~(ag) is a fix edextension of
po(ag) for any ag E .49. Met¯elegy I~DS defines design
objects (categories of real objects): design object z
is a class(p(ag))r where r c_. U(ag). Thus, design ob-
jects are mereological classes of synthesis objects.
On these classes the mereologies of design agents act
decomposing them into simpler classes.

The communication between synthesis spaces and
design spaces is provided by mappings 7r(ag, dag) : for
z E U(ag), the value ~r(ag, dag)(z) E U(dag) is 
sign object . Let us observe that while ~r(ag, dag)(x)
is unique, the object z may belong to more than
one design object. This causes the ambiguity in
communication among design agents and synthesis
agents: while a synthesis agent ag classifies z as
cat(z) = ~r(ag, dag)(z), the design agent dag can re-
gard z as an element of a category cat’(x) distinct from
~r(ag, dag)(z). However, categories cat(x), cat’(z) con-
taining z should be regarded as similar. We express
this similarity on the higher level of requirements by
means of a tolerance relation Des_sat.

Satisfactory satisflability of requirements. The
requirements of the designer specify classes of ideal ob-
jects but thc ultimate purpose of design is a reed object
whose category would satisfy ip. It can happen that an
object whose category satisfies a requirement ~P’ ~
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is accepted as satisfying ¯ in a degree satisfactory to
the designer. We denote by Des_rcq the set of designer
requirements; the vagueness of designer requirements
will be formalized by means of a tolerance relation
des.sat on the set Dcs.req; for q~, ~’ E Des_req, ~P
desist qP will read "any object satisfying ~’ (reap.
ql) satisfies ql (reap. ql’) in degree satisfactory to 
designer ". We denote by the symbol [ql] the tolerance
class des_sat(~). We denote by the symbol qlv the dis-
junction of formulas in [ql] i.e. ~v is V{qf: ~’ E [~P]}.
Clearly, if z ~d qlv then z satisfies ip in the satisfac-
tory degree.

Mereological compatibility of requirements. We
assume that Pd~g is compatible with des_sat i.e. if

Yi ~d qlv, y = class(l~dag) {Yl, Y2, .., Yk} then y ~d ~pv.
The compatibility condition means that the designer
schemes are designed as insensitive to local communi-
cation ambiguities.

Approximate logic of synthesis. The symbol bag
will denote the ~riable which runs over objects in U,g.
A valuation vx where X is a set of synthesis agents
is a function which assigns to any b,g for ag E X an
element vx(b,g) E U,g. The symbol v~g denotes v{~g}
with viag} (b.a) = aa.

We now define synta~ of a logic of approximate for-
mulas L (Komorowski, Polkowski, & Skowron 1996).
The atomic fomnulaa of L are of the form <
st(ag), ~(ag), E(ag) > where st(ag) E St(ag), ~p(ag) 
L(ag), e(ag) [0, 1] forag EA9.The forn~ulas of L
are built from atomic formulas by means of classical
propositional connectives -~, V, A, =~, ~=~ and of modal
unary propositional connective O (cf. Sect.4 for se-
mantics of O). The semantics of L is defined aa fol-
lows. For ag = Root(C), v E Vc, we say that v
satisfies a formula. =< st(ag), ~(ag), e(ag) >, sym-
bolically v ~ ~, in case Eu(,g)(v(b,g),st(ag)) 
and v(b~g) ~ ~P(ag)o(aa) (see Appendix). We let
v~aA/3incasev~aandv~;v ~-~aincase
no,z(v ~ c~). For a formula < st(ag),~P(ag),e(ag) 
of L, we write z ~< st(ag), dP(ag),~(ag) > iff %
< stCag), ̄ (ag) 
Decision rules of synthesis agents. From the triple
(D(ag),L(ag),p(ag)), the agent ag generates by the
standaxd techniques (Skowron 1995) the decision rules
of the form

< .,t(ag), ¯(aa)
The meaning of this rule is:

(< st(ag), ~(ag), ¯(ag) >~ ~v) 
if[

(.(ag, d g)(st(ag)) ^ [ =
< st(a.q), ~(ag), ̄ (ag) > =~ ~r(ag, dag)(~c) ~a ~pv].

Informally, this means that the design class of the
standard st(ag) satisfies the requirement ~ and design
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classes of objects satisfactory close to stCog) (closeness
measured by eCag) satisfy qlv i.e. they satisfy ~ in a
satisfactory degree.

Synthesis schemes

Local decomposition schemes. By means of the
rough inclusion/Jd~ the agent dog induces on the uni-
verse U.~9 the mereological relation part~ in the sense
of Le~niewski (Le~niewski 1992). The relation partdag
establishes a local decomposition scheme of some
complex objects in the universe Ud~ into simpler ob-
jects i.e. the relation x class(pd~) {xl, x2, .., at} means
that x is designed (built) from parts xl, x2,..,xk. In
this way the designer establishes a hierarchy {partdag}
of local decomposition schemes on the set of possi-
ble complex objects. Local decomposition schemes
can be composed in the sense that whenever the rela-
tion partda~ expresses an object x as built from parts
zl, z2, .., z~ and the relation partd~/ expr~s, say, zl
as built from parts all,x]2, ..,x]m then the composi-
tion/mrt#~ o partdag, expresses x as built from parts
all, X12~ ..., Xlm, X2} .., Xk.

The designer language Linkd. The designer task is
now to establish for a given complex object x, speci-
fied by a requirement ql, a scheme of design agents
(for simplicity we assume this scheme to be a tree)
such that the object x can be decomposed over the
scheme by means of a composition of local decompo-
sition schemes into primitive objects which belong to
the universes of leaf agents of the scheme. We de-
fine a language Linkd C_ Des_Ag+ where Des_Ag+ is
the set of all finite non-empty strings over Des_4g.
For a string dag = dagldags...dagkdog, where dog
is the root agent and doghdog~,..,dog~ are leaf
agents, we have dag --- dagldog~...dog~dag E Linkd iff
there exist x, xl,x2, ..,z~, x such that z class~artdas)
{xl,x2, ..,xk} where xi E Ud~ for i < k, z E Udas.
We let set{dag) ffi {dog~,dog~...,dog~,dag}. For L C_
Linkd, we define Des.Ag(L) ~- U{set(dag) : dag E 
and we denote by _< a relation on Des_Ag(L) defined
by: dog <_ dag’ if and only if there exists dag E L such
that dag, dagt E set{dag) and dogI is the dag-target.
A set L C_ Linkd is a construction support in case
(Des_Ag{L), <) is a tree. From now on L will denote
a construction support.

Constructibility mapping and design oper-
ations. For dag = dagldag~. ..dagkdag E
L, we define the dag-constructibility relation
pCdag) C_ U(dagl) x U(dog~) × ... x U(dagt) 
U(dag) by letting {Xh x~,..., x~, x) E p{dag) iff 
dass(p rtd g){= , =2,.., =k}.

The constructibility mapping con(dag), associ-
ated with the relation p(dag), will be defined 
con{dag)(xl,x~,...,x~) ---- x iff (xl,x2,...,zt,x)
p(dag).

The existence of the mapping con{dag) follows
from the uniqueness of classes in mereology generated
by the relation partd~s. The constructibility mapping
con{dag) is in general a many - to -one mapping. We
select from con(dag) one -to -one mappings called de-
sign operations defined as follows: a design operation
o(dag) associated with dag is a one - to -one partial
mapping such that if o{dag){x~,x2, ..,xk) ffi x then
con{dag)(z], z2, .., x~) ffi x and range o(dag) ~- range
co (dag).

We denote by the symbol O(dag) the collection 
design operations associated with dag. We will write
o(dag) instead of o(dag), where dag -~ root(dag).

We observe that the relation p(dag), the mapping
con(dag) and design operations o(dag) are compatible
with requirements with respect to the tolerance des_sat
viz. the condition

v(x~, x2, ..., z~, x) 6 p{dag), x~ ~d ~/i, x ~d ~I/, YS ~d
~ and {y~, y~, ..., Yt, y) E p(dag)

implies y ~d q~v and similar conditions hold for
con{dag) and o{dag).

Design schemes. Now, given a requirement ¯ (a
formula in the conditional logic of the designer), the
designer initiates the communication and negotiation
process among design agents. This process results
eventually in a design scheme which is able to design
an object satisfying ~ in the satisfactory degree. We
describe this initializing process in the following steps.

Step 1. The designer selects a design agent dogo
such that there exists an object zo ~ Ud~#~ which sat-
isfies the requirement q~v and there exists dago ---
dago, ldago.~...dogo,~dago ~ Linkd such that the condi-
tion

con(dago)Cxl, as, ..., at) ---- 

holds for some vector argument {xl, x], ..., at).

Step 2. Agents dago, dago,l,dago,],..,dago, i ne-
requlrements q:o,~, q~o,~,..., q~o,tgotiate the choice of " v v v

and a vector argument (x~,z~,...,z~) such that any
xi satisfies the requirement qH. this choice deter-oj,

mines the design operation o(dago) with the prop-
erty that o(dago)(xl,x~,..,xt ) = x. The negotiated
condition is the following: if (Yl,Y~, .., Y~) ~ domain
o(dago) and any y~ satisfies the requirement q~v# then
o( dago)(y] , y~, .., yt) satisfies the requirement q~v.

Factors involved in negotiations and influencing
them may be e.g. the complexity of o(dag), the cost
of assembling via o(dag), the accessibility of xl, .., zk
etc.

Next, the designer repeats steps 1 and 2 with the
agents dogo.hdago.~,.., dogo.t and the respective re-
quirements q~v v

o,1 ,’", ~o,k ̄
The negotiation process continues with new require-

ments. The process stops when all branches terminate
with strings in Linkd whose all leaf agents can satisfy
the chosen requirements with inventory objects.
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We observe that the result of negotiations for any
non-inventory agent dag in L can be described by
means of the pair iab(dag) ffi (oiV(dag),o(dag)); the
singleton lab(dag) (~V(dag)) summarizes the ne
gotiation outcome for any inventory agent dag in L.
We will call the tuple lab(dag) the design label of
the agent dag. The construction support L along
with the set {lab(dag)} of design labels of its agents
will be called the design scheme and denoted by
D_a = (L, (lab(dag) : dag E L}). The agent dago will
be called the root .agent of D_s; dag(1), .., dag(m) are
leaf agents of D.a. We write D-s(dago, dagl .... dagm)
when dago, dag1, ..,dag m are all strings used to con-
struct D_a. D-a(dagi) is called an elementary deaign
8chetTte.

The operation term of D_s, denoted by the symbol
T(D_a) will be defined by induction on the number of
strings from Link in L:

(i) if L ---- {dago} then we let T(D_s) 
o (dago) (bd~.t, bd~..z .... , bd~,);

(ii) if L ---- {dago, dagl, ..., dagk},
an agent dag is a leaf agent of D~%
dag,+~ = dagldag2...dagndag,
T(D_s) : o(dago)(...(...(..., bda~, ...)...)

then D_a’ results from D_s by attaching agt+1
to D_a at dag i.e.

T(D_a)’ 
o( dago)(...(...(..., o( dag)(bdagi, bda~ , bdaa.) ....)...).

The term T(D_q) represents the composition of op-
erations along the construction support L. This compo-
sition is a global operation which assigns to argument
vectors of objects at leaf agents of D_s the value which
is an object in the universe of the root agent of D_s.

The following proposition resumes the upshot of the
negotiation process.

Proposition 4. For any valuation vx on the set X
of leaf agents dag(1), .., dag(m) of the design scheme
D_s where v(bd4g(O) satisfies qlV(dag(i)) and lab(ag))
-- (~V(dagi)) for i = 1,2 ..... m, the uniquely defined
object

T( D-q) (v(bdaa0)), V(bdag(2)), ..., V(bdag(k)) ) 
satisfies Oy V ( dago 

where labC dago ) --- COYv (dago), oC da go ) ) 

[]

The projection

og = .., Cag,,), *"(ago))
of the design scheme D~ onto the requirement space
will be called a designer goal; the designer goal Dg
expresses the existence of a design scheme which can
design an object satis .fying olV(ago) from objects satis-
fying ̄  V(ag~), i ----- 1,2 .... k, respectively.

In the synthesis stage the synthesis agents are or-
ganized into a synthesis scheme modelled on a given
design scheme.
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Synthesis (of approximate reasoning
scheme)

We begin with a set Ag of aynthesis ager~ta (called
simply agents in what follows) and a set I of primitive
objects (the inventory). Elements of lab(ag) consti-
tute the baaie knowledge of a synthesis agent ag; other
elements are worked out in negotiations among syn-
thesis agents and in their interactions with the design
agents. We now describe this process.

The synthesis language Link. We recall that the
designer creates a language Linkd C_ Des_Ag+; the
language Linkd is a pattern according to which a lan-
guage Link C_ Ag+ is defined in the process of com-
munication among synthesis agents. To this end, the
agents aga , ag2, .., agk, ago form the string ag =aglag~.
¯ .agkago ̄ Link if and only if there exist design agents
dagl, da~z, . .., dagk, dago such that

dag = dagl dag~...dagkdago ̄ Linkd,

and ~r(agl, dagi) is defined for each i,
and there exist objects xl ¯ [)’(agO, ...,zt ¯ U(agk),

x ̄  t.r(ago)
such that

(Tr (agl, dagl) (xl), .., ~r(agk, dagt)(xt), ~r(ago, dago)(:c) 
p(dag).

For ag =ag~ag~...agtago ̄ Link, an operation o(ag)
is a partial one-to-one mapping with domain o(ag) 

× U(ag ) × ... and ,’ang o(ag) 
U(ago) such that

if o(ago)(Zl, ~, .., ~) --- then

od(dag)(~r(agz, dag~)(zl), .., ~r(agt, dag~)(z~)) 
~r (ago, dago) (z)

for some unique design operation oe(dag); let us ob-
serve that to a design operation od(dag) there may
correspond more than one operation o(ag). We let dag
= lI(ag) and od(dag) ---- II(o(ag)). The operation 
extends in the natural way to compositions of opera-
tions.

Elementary constructions. We define an elcmcn~
tary construction c: if ag =ag~ag~..agtago ̄ Link,
then an expression

c ----" (ag, p-~ign(agt), p_sign(ag2),.
., p_sign( ag~ ), p-,ign( ago) 

will be called an elementary construction with pre-
signaturea

p_~ignCago) ---- (stCago), ~P(ago), eCago), oCago) 

and p~iqn(agi) = (.~t(agi), ~P(ag,),¢(agi)) if there ex-
ists a D~(dag) with

dag = dagidag2...dagtdago ---- II(ag),
Od( dago ) l’ I(o(ag)),
lab(dago) = (OlV (dago), Od(dago)),
labC dag,)=(~Pv C dag,) 
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such that < ~(~,), ~(~g,),~C~g,) >~ 
true for d ffi O, 1,2, .. k.

We will sa~v that c projects onto D.s. To
stress the relationship between ag and c we will
write c(ag) instead of c and ag(c) instead of 
We net ago = Root(c), {-91, =~, .., =g~) = L~=/Cc),
{=g,, ~, .., .g,, a~) ffi AgCc).
Constructions. For elementary constructions c, d
with Ag(c) N AgCd) = {ag) where ag = Root(c) 
Leaf(d), we define the ag-composition c *as d of c
and d with Root(c,, s d) -- Root(d), Leaf(c*, s d) 
(Leaf(e) {ag}) y (Leaf(d), Ag (c*~ d) = A
Ag(d). The composition c,ag d is called a construc-
tion if there exists a D.s(dago, dagz) such that 
projects onto dago and d projects onto dag]; we say
then that c *=e d projects onto D_s(dago, dagz). 
construction is e~y expression C obtained from a set
of elementary constructions by applying the compo-
sition operation a finite number of times. By Vc we
denote the set of partial valuations v~t~(cg. By T(C) we
denote the unique term composed of operations o(ag)
such that II(T(C)) T(D~s) where C pro jects ont o
D..s.

(C, 4>, e)-schemes. For an elementary construc-
tion c = c(ag) as above, with p.~ign(ag) ---- (st(ag)l
4>(ag), e(ag), o(ag)), we define a (c, 4>, e) - scheme as a
pair (c(ag), sign( ag) where sign(ag) = p_sign(ag) U
{/(a9)},4> 4>(ag),e = e(a9) and fCag) E FCag)

satisfies the condition:
(Unc(c))if po(ag,)(zi, st(ag,)) >_ ~(ag,) for i = 1,2, .., k

then po(ag)(o(ag)(zl, z2, .., z~), st(ag)) 
/k(agl), eCag2), .., ~(ag~)) _> e(ag).

The construction c is said to be the support of the
(c, 4>, c) - scheme.

A construction C composed of elementary construc-
tions cz, .., c~, co wi.’th Root(C) -- Root(co) agois t he
support of a (C, ~, e)-scheme when each c~ is the sup-
port of a (c,, 4>i, ~i)-scheme, where 4>i = 4>(Root(c~)),
e, ---- eCRoot(cl)), 4> = 4>(ago) and ̄  = e(ago). For
valuations v ---- VL~=l(~, ~ ---- Unoo~(C) EVc, we write
u "c v~ iff T(C)(v) = We have a proposition.

Proposition 5. Approximate synthesis theorem
For any valuation vx on the set X of leaf agents ag(l),.
.,ag(m) of the (C, 4>,e)-scheme with ago -- Root(C)
such that

v(bo~(0) satisfies st(ag(i)), 4>(ag(i)), ~(a> for
i = 1,2 .... ,m

where p.signC agC i) ) --- ( stC agC i) ), 4>( agC i) ), ~( ,
the uniquely defined object z E U(ago) such that

’Vx -’-’-~c v~,, satisfies

< ~(=go), 4>(~go), c(~go) >

where p-sign(ago) = (st(ago), 4>(ago), ~(ago), 

[]

Projections of (C, 4>, e)-schemes onto design
schemes. We say that a (C, 4>, ~) - scheme projects
onto ,, design scheme D.~ when the support C
projects onto D..s.

Negotiation (top-down) of a scheme for satis-
fying a requirement. Consider now a designer goal
~g = (~vCd~), ~(d~), ..., ~(d~g~), ~(d~go))
alized by a design scheme D.z(dago, dagl, ...,dagm).
The realization by synthesis agents of the designer goal
Dg must begin with finding a ((7, 4>, ~)-scheme S such
that S projects onto D.s. We describe this process.

Stage 1. A string ago ---- agzag~..agtago ~ Ag is
chosen such that a construction c(ago) projects onto
D~s(dago); let the uncertainty coefficients of agents 
s’(ag1), ..., e’(ag~), e’(ago).

Stage 2. Agents ag~, ag2, .., ag~, ago negotiate a con-
nective f(ago) E F(ago) and uncertainty bounds

¯ (~) _> e’(~),..,~(~) _> ~’(=~).., ~(a~o) ~’(ago)
such that (UncCago)) sat isfied wit h f(a go) and
¯ (-~), .., ~(~g~), ¯ (=go).

Stages ~, 2 gi~e, when succors, a Cc(=~o), 4>, ~) 
scheme which projects onto D.~(dago).

Stages 3 and following. Agents agz,ag~,..,ag~
repeat stages 1,2 with new coefficients ¢(agd), and 
on.

The successful result of negotiations means that
a (C, 4>(ago),s(ago)) scheme isconstructed whi ch
projects onto D.s(dago, dagz, ...,dagm). We state 
theorem which follows from Propositions 4 and 5.

Theorem 6. (the su.O~clcncy criterium of correct-
ness)

Assume that a (C, 4>, e)-scheme projects onto a de-
sign scheme D_s realizing a designer goal Dg =
(~V(dagz), ~V(dag2), .., ~V(dag~), ~V(dago)). 
any valuation vx on the set X of leaf agents
ag(1), .., ag(m) of the (C, 4>, ~)-scheme with

ago = Root(C)

such that v(b,~(0) satisfies

< st(ag(i)), 4>(ag(i)),~(ag(i)) >

where p_sign( ag( i) 

CatChy(i)), 4>(~(0), ~(~(~), oC~go))
for i = 1,2, ...,m,
the Uniquely defined object z E U(ago) such that
ux --"c raze. satisfies the condition

~(=go, d~go)(=) ~d ~v Cd~go)
i.e. z satisfies the designer requirement ~ in the satis-
factory degree.

[]
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We extend the satisfiability relation ~ to the con-
nective O by v ~ O < st(ag), 4o(ag),e(ag) if there
exists C such that

v,r,.~(~, ~ < ,tCag), ~(ag), ~Cag) 

where v --*c vlnootCC)l.
The connective <> expresses the existence of a scheme

which can satisfy (~, e) over a given input v. In partic-
ular, Theorem 6 gives a sufficient condition for finding
such C.

Let us emphasize the fact that the functions f(ag),
called mereological connectives above, are expected to
be extracted from experiments with samples of objects.
The above property allows for an easy to justify cor-
rectness criterium of a given (C, ~, e)-scheme provided
that all parameters in this scheme have been chosen
properly. The searching proceqs for these parameters
and synthesis of an uncertainty propagation scheme
satisfying the formulated conditions constitutes the
main and not easy part of design and synthesis.

Bottom-up communication. The bottom-up com-
munication process is started by the leaf agents of C;
the leaf agents select a valuation vx compatible with
C and valy leaf agent ag sends to its parent agent ago
the object vx (bag) and the value Ev(ag)(vx (bag), .qt(ag)).
This process is repeated with yon-leaf agents: any
non-leaf agent ag applies the operation o(a9) to the
objects xl,x2,...,x~ sent by its children ~tgents, syn-
thesizes the object x --- o(ag)(xl,x2, ...,x~) and finds
the value Eu(ag)(x, at(ag)). This communication pro-
cess ends at the root agent of C with tire objcct xc.
In the case when the assembling process proceeds cor-
rectly, the object xc satisfies the requirement ~P in the
satisfactory degree; the correctne2~s of the assembling
process is checked by means of the negotiated com,ec-
tires f(ag) and the found values E~(~g)(x, st(at)).

Learning
In synthesis stage discussed abo~, the crucial factor is
presented by mereological connectives (r-mc) of uncer-
tainty rules. In practical cases, we can infer from the
given data tables an approximation f to the appropri-
ate rmc F. We include an example which ilhtstrates
our approach.

~xample 1. Learning mereologieal connective*
from data table8. We present a tiny fragment of a
distributed system consisting of agents B, L, Af. XYe
may imagine thet B, L, M form a part of the a.s.sembly
line for assembling lege-likc toys. The agent B submits
bodies and L submits a leg (right) which ,~[ fits to-
gether to be sent further up. The information system
of the agent B is given in Table 1.

a b c d e f g h
B1 1 1 1 1 1 1 1 0
B2 1 0 1 0 0 1 0 0
B3 0 0 0 1 0 0 0 0
B4 1 1 1 0 0 1 0 0

62 MSL-96

where a, b, c, d, e, f, g, h stand for pis, cut, bei, kni,
par, co, crl, err, respectively (these boolean attributes
represent here, respectively presence of pistols, a cut-
lass, a belt, a knife, a parot, a coat, a crutch on left, a
crutch on right).

Table 1

Information system of agent L is given in Table 2.
a b c d e f g h i j

L1 1 1 1 1 1 1 1 1 0 1
L2 1 1 1 1 1 1 1 1 1 0
L3 1 0 1 1 0 0 0 0 1 1

where a, b, c, d, e, f, g, h, i, j stand for fobj, fpa,
fsof, mesl, wou, kck, fcol, fwet, frsl, flsl, respectively.
The attributes discerning a wooden artificial leg from
a "natural" one are like fobj (feel objects), fpa (feel
pain), frsl (fit the right aide), flsi (fit the left aide).

Table 2

Information system of agent M is given in Table 3.
har mar iar crl err par co

BIL2 1 0 0 1 0 1 1
B2L2 0 1 0 0 0 1 1
B2L3 0 1 0 0 1 1 1
B3L2 0 0 1 0 0 0 0
B3L3 0 0 1 0 1 0 0
B4L2 1 0 0 0 0 0 1
B4L3 1 0 0 0 1 0 1

Attributes here describe the complex object ob-
tained by attaching a leg submitted by L to a body
submitted by B. New attributes: hat, mar lar, mean
rspectively heavily (medium, lightly) armed.

Table 3

In the three followivg tables we present values of
similarity functions based on initial rough inclusion

cardinality{a E A : a(x) a(y)}
l~°(x’ Y) = cardinality(A)

where A is the set of all attributes.
Values of the function Iz~ of objects at B are given

in Table 4.
B1 B2 B3 B4

B1 1 0.5 0.25 0.62
B2 0.5 1 0.5 0.87
B3 0.25 0.5 1 0.37

B4 0.62 0.87 0.37 1

Table 4

Values of the function p~ at agent L are collected in
Table 5.

LI L2 L3
L1 1 0.8 0.4
L2 0.8 1 0.4
L3 0.4 0.4 1

Table 5
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In Table 6, we collect values of/~o at the agent M.
a b c d e f g

a 1 0.57 0A3 0.28 0.14 0.71 0.57
b 0.57 1 0.86 0.43 0.14 0.57 0.43
c 0.43 0.86 1 0.28 0.43 0.43 0.57
d 0.28 0.43 0.28 1 0.86 0.57 0.43
e 0.14 0.86 0.43 0.86 1 0.43 0.57
f 0.71 0.57 0A3 0.57 0.43 1 0.86
g 0.57 0.43 0.57 0.43 0.57 0.86 1

where a, b, c, d, e, f, g stand for BIL2, B2L2, B2L3,
B3L2, B3L3, B4L2, B4L3, respectively.

Table 6

Now, the agent M synthesizes complex objects of the
form XY from objects X sent by B and objects Y sent
by L. The mereologicai connective F proper for this
case should satisfy the condition : if p°(X*, X) _> 
and pO(y,,y) > e~ then IJ°~(X’Y~,XY-) > F(ehe2).
However, we cannot know F exactly as we do not know
all pomible objects at agents (at least, in principle,
we cannot state so). What we may learn from the
data is then a local approximation to F; it turns out
in practice that F can be highly inhomogeneous and
may merely be a relation which however can be locally
approximated by functions. We say therefore that a
function f is an approximation of F at the object
X°Y° when the condition holds: if lt°(X ~, X°) > el
and p°L(Y~, yo) > e~ then p~(XfY~, X°Y°) > f(et, e2).
It is not necess~.-y to learn the whole function f: we
cMl a set T of vectors of the form [el, e2, el the thresh-
old set of vectors for f at X°Y° whenever T is a
minimal set of vectors such that: f(el,e2) > ¯ for any
[et,e2,s] E T implies that f is an approximation to F
at X°Y°.

The following table shows a threshold vector set for
an approximation at B1L2.

el e2 e
1 0.25 1 0.28

Table ~" 2 0.25 0.4 0.14
3 0.62 1 0.71
4 0.62 0.4 0.57

Imagine now that M recei~s a requirement (in in-
formal, quasi-natural language) for instance: ql: nan
artifact is needed which will serve for a toy model
of an heavily armed invalid pirate n. Taking BIL2
as a standard, M transforms ql into the approximate
formula: (BIL2, (a = 1) A (b ---- 1) ^ (c = 1) A 

^(e = 1) ̂  (/= 1) ̂  (g = 1) ̂  (h = 0), 
From Table 7 it follows that B1L2 satisfies q~. Thus L
submits L2 and B submits either B1 or B4.

The learning p~ocess is concerned primarily with
learning threshold sets of vectors at complex objects.
The complexity of this process will be studied else-
where o

Learning processes on higher level are concerned
with learning the dynamics of synthesis schemes. This

leads to knowledge concerning the necessity of chang-
ing the topology of the scheme i.e. links among local
teams or changing the goals of local teams.

Applications: Learning rules of a
mereological controller

The approximate specification (~, e) can be regarded
as the invariant to be kept over the universe of global .
states (complex objects) of the distributed system.

The basic problems. Now we can formulate some
basic problems related to control in te~ms of proper-
ties of a construction C. The control problems can be
divided into several classes depending on the model of
controlled object. In this work we deal with the sim-
plest case. In this case, the model of a controlled object
is the (C, ~, e) -scheme c which can be treated as 
model of the unperturbed by noise controlled object
whose states axe satisfying the approximate specifica-
tion (~,e).

The (C, ~, e) -scheme defines c a function Fc called
the output function of the (C, ~, e) -scheme c given
by Fc(v) -- z iff ,7 ’c v~gc where agc = Root(C).
Let agl, ...,agr be leaf agents of C. Any object x from
the set Fc(U(agl) x ... x U(agr)) f3 {x E U(ag) 
(st(age), e)}is called the (o, e)-i nvariant object of

C.
We assume the leaf agents of the (C, ~, e) -scheme

c are partitioned into two disjoint sets, namely the set
Us.control(c) of uncontrollable (noise) agents and
the set Control(c) of controllable agents.

We present now two examples of a control problem
for a given (C, O, e) -scheme.

(OCP) OPTIMAL CONTROL PROBLEM:
Input: (C,O, e) -scheme c; information about ac-

tual valuation v of leaf agents i.e. the values v(baa)
for any ag E Control(c) and a value d such that
FcCv) CstCagc), o, e).

Output: A new valuation v~ such that v’(bag) 
v’(b~) for ag E Us_control(c) and Fc(v’)
(stCagc), 0, Co)

where
eo = sup{ : Fc(w) (a(agc), 

for some to such that
to(bag) = v(bag) for ag E Un_centrolCc) }.

These requirements on the output can be to hard to
satisfy directly. One can search for changes of a given
uncertainty scheme allowing to construct an object not
closest to a given specification ¯ but for an object sat-
isfying a given specification in a degree higher than the
sum of a given threshold and the degree defined by the
current object. In this way we obtain

(CP) W-CONTROL PROBLEM
Input: (C, ~, e) -scheme c; information about ac-

tual valuation v of leaf agents (i.e. the values v(boa)
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for any ag E Control(c)) and a value ~’ such that
rc( ) (st(agc), 

Output: A new valuation vl such that ~l(b~) 
v(bag) for ag E Un_controi(c) and Fc(vS)
(st(age), ~, so) where so > e’q-V for some given thresh-
old V.

The controller. We will describe now the basic idea
on which our controllers of complex dynamic objects
represented by distributed systems of intelligent agents
are built. The main component of controllers are A-
ru/es describing how local changes (i.e. changes at
agents of a given distributed system) Ae(ag) of un-
certainty coefficients e(ag) can be compensated by lo-
cal changes Ae(agl), ..., /Xe(agk) of uncertainty coef-
ficients at children agl, ..., agk of ag for agents in a
given scheme. By composing A-rules one can calculate
the ne~ssary changes of uncertainty coefficients for all
agents ag E Control(c) and in this way to predict pos-
sible changes of controllable parameters (i.e. elemen-
tary objects being values of bag for ag E Control(c)).

The A-rules have the following structure:

..., A Cag,.)) 
h( Cag), -A Cag), (agl), 

where ag~t, ..., ag~. are all controllable children of ag
(i.e. children of ag having descendents in Control(c)),
h : Rk+2 ---* J~ and R is the set of reals.

The description of the function h is extracted from
experimental dat~. In the process of extracting h
from data rough set and boolean reasoning methods
(Polkowski & Skowron 1996b) can be applied.

The semantics of the A-rule for ag --- agla92 ...
agtago E Link in c is defined by uncertainty coef-
ficients s(ag),e(agl),...,e(agk) attached to agents in
c in the following way: if an object ~ issued by
the agent ag is satisfying ~ ~ (st(ag), ~P(ag), e~(ag))
where ~(ag) = s(ag) + Ae(ag) then if the controllable
children ag,, ...,agi. of ag will issue objects yi~, ..., yi.
satisfying yi~ ~ (st(agi~), ~p(agij),~(agij) + Ae(ag,j))
for j -- 1,...,r where (Ae(ag, t),...,Az(agi.) ) =
h(e(ag), -A~(ag), s(agl) ..... e(agk)) then the agent
ag will construct an object y such that y
(st(ag), ~P(ag), where e ~_ ~(ag).

In the above formula we assume A~(ag) <_ and
Ae(ag~ ) > O, .... Ae(ag~.) > O. The above sema~tics| ~ ~

¯covers the case when A-rules allow to compensate in
one step the influence of a noise. Other cases will be
treated in our next paper.

If agzag~...ag~ago, a~ag~...a~ag" ~ Link, {ag,, ,...,
ag~.}, {ag~t ,..., ag~.} are disjoint sets of controllab]e
children of ago, ag/o, respectively, then two A-rules

..., A Cag,.)) 

..., =
h2( Ca#’o), A (ag’o), ,
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can be composed at a~ if ago = a~ for some t. The
result of the composition is defined by

(A~ (ag,,), ..., ~ (~g,,-t),
A¢(agy,), ..., As(agd,),
A Cag,,, ),...,

Hence the composition of A-rules leads to the dis-
tribution of changes of uncertainty coefficients among
agents¯

It is easy to observe that the composition of the A-
rules leads to a new labelling {~(ag)} where for all
non-root controllable agents of c we have ~,~(ag) 
~(ag)+ A~(ag) and A~(ag) obt ained as the
result of negotiations among agents about possible
changes defined by compositions of A-rules. For the
root agent of c and all non-controllable agents in c we
assume ~,~(ag) = ~(ag).

We obtain the following proposition establishing a
basic property related to the correctness of mereologi-
cal controllers.

Proposition 7. (the su.O~ciency er/ter/um of cor-
rectness of the controller)

Let Fc(v) (st(age), ~,¢(agc)) where v is theval-
uation of leaf agents of the (C, ~, s) -scheme c and
let (st(ngc), e(agc)) where 
ation of leaf agents of c such that v’(b~#) = v(ba~)
for ag ~ Control(c), ~’(agc) < e(~gc). If {~w(ag~}
is a new labelling of agents defined by composition
of some A-rules such that ~m(ag) = ~(ag) for ag
Un_control(c), e~ffi(agc) = s(agc) = ¯ and {z, ag
Control(c)} is the set of control parameters (inventory
objects) satisfying ~ ~ (st(ag), ~(ag), ~(ag)) for
ag ~ Control(c) then for the object z,m~ --- Fc(v~)
constructed over the valuation v~ of leaf agents in c
such that v~(ba~) = J(ba~) for ag ~ Un_eontrol(c)
and v~(bau) = z,~ for ag ~ Control(c) holds z~,

(st(age), ~, s (age)).

[]

It is not difficult to extract from Tables 1,2,3 of Ex-
ample 1 the A - rules for controlling the system of
complex objects at M.

Multistrategy learning in our approach

It has been emphasised (Jenkins 1993), (Michalski
1994) that a multistrategy learning is achieved when-
ever knowledge sources (agents) are turned into inde-
pendent learning units (agents). In our approach this
effect is achieved by learning appropriate constructs
from data tables of independent agents. In the learn-
ing process the agents use empirical induction (in or-
der to extract rules from data tables), abduction (to
fit objects satisfying the conclusions of the rules when
premises are known and selected) and reasoning by
analogy (when carrying the synthesis along routes out-
lined by standards at consecutive agents).
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The above approach can be treated as a first step
towards modelling complex distributed dynamical sys-
tems. We expect that it can be extended to solve con-
trol problem for complex dynamical systems i.e. dy-
namical systems which are distributed, highly nonlin-
ear, with vague concepts involved in their description.
It is hardly to expect that the classical methods of con-
trol theory can be successfully applied for such complex
systems.

Analysis

The process of analysis is split into the design and syn-
thesis spaces. Given an object z, its analysis can be
realized in the following sequence of steps.

Step 1. An agent ag E .49 such that z E U(ag) 
chosen

Step 2. An agent dag such that 7r(ag, dag)(z) is
defined chooses its decomposition.

Step 3. The decomposition continues, resulting in
the analysis tree for ~(ag, dag)(z).

Step 4. A design scheme for lr(ag, dag)(z) is de-
signed.

Step 5. A (C, 4), ~)-scheme for synthesis of z 
found.

This constitutesthe analysis of constructibility of z.
Further analysis includes e.g. the analysis of stabil-

ity as well as robustness of (C, ~, e).
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