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Abstract

Investigations of learning in case-based reasoning
(CBR) have traditionally focused on learning two
types of knowledge: new cases and new indexing cri-
teria for case retrieval. However, there is increasing
recognition that other types of knowledge also play
crucial roles in the case-based reasoning process. The
effectiveness of a CBR system depends not only on
having and retrieving relevant cases, but also on se-
lecting which retrieved cases to apply and determin-
ing how to adapt them to fit new situations. Conse-
quently, case-based reasoning can benefit from using
multiple learning strategies to acquire, in addition to
new cases and indices, new case adaptation strategies
and similarity criteria. This paper describes ongoing
research that studies how multiple types of learning
can improve the case-based reasoning process and ex-
amines their interrelationship in contributing to the
overall performance of a CBR. system.

Introduction

Case-based reasoning (CBR) solves new problems by
retrieving records of similar prior problem-solving
episodes and adapting their solutions to fit new needs.
Learning by acquiring new cases is a fundamental part
of case-based reasoning, and the process of learning
by case acquisition has been a central focus of CBR
research. Recently, however, there has been increasing
awareness of the importance of multiple types of knowl-
edge to guide the CBR process. For example, Richter
(1995) points out that the knowledge of a case-based
reasoner is contained not only in its case base and in-
dexing scheme, but also in the reasoner’s similarity
metric and in its case adaptation knowledge. Thus
an important question is how these types of knowledge
may be acquired.

The need to acquire multiple types of knowledge in
CBR provides a natural opportunity for multistrategy
learning (e.g., Michalski & Tecuci, 1994). Multistrat-
egy learning can enable CBR systems to learn not only
new cases, but also how to retrieve cases more reliably,

how to judge the relevance of candidate cases more per-
spicaciously, and how to adapt cases to new situations
more effectively. Using different learning strategies for
each type of knowledge enables a CBR system to tai-
lor its learning according to the task requirements of
different parts of its reasoning process.

Because the component steps of CBR are strongly
related, multistrategy learning has an added benefit as
well: learning that improves one component may help
overcome deficiencies in others. For example, better
retrieval can reduce the need for adaptation knowl-
edge, by providing more relevant cases; conversely, bet-
ter adaptation knowledge can decrease the need for
high-quality retrieval, by generating successful solu-
tions even if less than ideal cases are retrieved.

QOur research studies how multiple types of learn-
ing can improve the case-based reasoning process and
examines their interrelationship in contributing to the
overall performance of a CBR system. We are inves-
tigating how introspective reasoning during CBR can
identify needs for information during case adaptation
and satisfy them by introspective question transfor-
mation, a memory search process involving strategi-
cally redescribing needed information to guide mem-
ory search. We are also studying how memory search
strategies, case adaptation strategies, and similarity
criteria can be learned from experience.

Tkis paper first describes our task domain and the
basic structure of our testbed system, and summarizes
our system’s learning strategies and their relationships.
It then describes how the system learns to improve its
case adaptation process, discusses the effects of case
adaptation learning for a small initial set of test exam-
ples, and describes how adaptation learning determines
new similarity criteria. The paper closes by placing our
approach in context of other research on learning from
multiple parts of the CBR process.
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QOur system’s task domain is disaster response plan-
ning. Disaster response planning is the initial strate-
gic planning used to determine how to assess damage,
evacuate victims, etc., in response to natural and man-
made disasters such as earthquakes and chemical spills.
There are no hard-and-fast rules for disaster response
planning, and human disaster response planners ap-
pear to depend heavily on prior experiences when they
address new problem situations (Rosenthal, Charles,
& Hart 1989).

Our testbed system, DIAL,! processes a conceptual
representation of a news story describing the initial
events in a disaster, and proposes a response plan by
retrieving and adapting the response plan for a sim-
ilar prior disaster. DIAL includes a simple schema-
based story understander, a response plan retriever
and instantiator, a simple evaluator for candidate re-
sponse plans, and an adaptation component to adapt
plans when problems are found. Its basic processing
sequence is as follows:

e A story is input to the system.

o Candidate response plan cases for similar problem
situations are retrieved, using coarse-grained static
similarity assessment criteria.

e A finer-grained similarity assessment process uses
learned information about difficulty of adaptation
to select the candidate case whose response plan is
expected to be easiest to adapt.

e Problems in the response plan of the selected case
are repaired by case adaptation. During adaptation,
DIAL learns by storing traces of its case adaptation
process and of the memory search process used to
find needed information. If its adaptation attempt
fails, DIAL can also learn by recording a trace of a
user-guided adaptation process.

o The resulting response plan case is stored for future
reuse by transformational analogy.

The system’s case-based planning framework is based
in a straightforward way on previous case-based plan-
ners using transformational analogy, such as CHEF
(Hammond 1989). Consequently, we will not discuss
DIAL’s planning process per se, but instead will fo-
cus on how it learns to improve its case adaptation,
memory search, and similarity assessment.

Learning Methods and Relationships

Five steps of DIAL’s reasoning process involve knowl-
edge transmutations (Michalski 1994) and learning, us-

!For Disaster response with Introspective Adaptation
Learning.
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1. Response plan learning: The “baseline” learn-
ing method for DIAL is learning by case acquisition,
the normal learning of case-based reasoning systems.
Response plans are reapplied by transformational
analogy (Carbonell 1983).

2. Memory search: When information is needed

from memory (e.g., to adapt a case to a new situa-
tion), DIAL identifies the needed information and
generates explicit knowledge goals (Hunter 1990;
Ram 1987) for that information. Its memory search
process transforms descriptions of needed informa-
tion and of known information in memory, using
self-knowledge about the system’s memory organi-
zation, in order to satisfy its knowledge goals. This
introspective question transformation process
is based on the goal-driven learning principle of rea-
soning strategically about how to satisfy needs for
information (desJardins 1992; Ram & Leake 1995).

3. Memory search strategy learning: When DIAL

generates a memory search plan, it stores a trace
of that plan as a memory search case for reuse by
derivational analogy (Carbonell 1986).

4. Adaptation learning: DIAL adapts cases by

an introspective reasoning process that determines
which transformations to apply and which knowl-
edge goals must be satisfied to apply them. If DIAL
cannot generate an acceptable adaptation, it asks
a user to guide the case adaptation process inter-
actively. Traces of internally-generated adaptations
and of user adaptations are stored as adaptation
cases for reuse by derivational analogy.

5. Similarity learning: When a case-based reason-

ing system performs similarity assessment to deter-
mine which case is most similar to a new situa-
tion, the goal is to select the case that will be eas-
iest to adapt (Birnbaum et al. 1991; Leake 1995a;
Smyth & Keane 1995). DIAL’s similarity assessment
process uses prior experiences with case adaptation
to estimate case adaptation cost for new problems,
by a transformational analogy process. Conse-
quently, adaptation learning and similarity learning
are coupled: when adaptation cases are learned, that
learning provides not only knowledge to use during
future case adaptation, but to use during similarity
assessment as well.

Table 1 summarizes DIAL’s learning processes and
the mechanisms used. DIAL’s response plan cases,
memory search cases, and case adaptation cases can be
reused independently, allowing different lessons drawn
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Response plan learning

Memory search process

Memory search strategy learning
Adaptation learning

CBR/transformational analogy
Introspective question transformation
CBR/derivational analogy
CBR/derivational analogy, applied to traces

of internal processing or user adaptations

Similarity learning

CBR/transformational analogy

Table 1: DIAL’s processes and learning mechanisms.

from a single episode to be reapplied where most appro-
priate in the future. DIAL’s close coupling of adapta-
tion cases and similarity criteria enables the selection
of response plan cases based on the state of its case
adaptation knowledge. Each aspect of learning com-
plements the others in supporting the CBR process as
a whole. The following sections discuss specific aspects
of DIAL’s learning in more detail.

Learning to Adapt Cases
to New Situations

Case adaptation is important to CBR because the abil-
ity of CBR systems to solve novel problems depends
on adapting prior solutions to fit new circumstances.
Unfortunately, hand-coding appropriate case adapta-
tion knowledge has proven to be very difficult, to the
point that experts in both CBR research (e.g., Kolod-
ner, 1991) and applications (e.g., Barletta, 1994; Mark
et al,, 1996) agree that it is not currently practical
to deploy CBR applications with automatic adapta-
tion. Thus there is strong practical motivation for de-
veloping effective methods for learning to improve case
adaptation.

Our approach to case adaptation learning models a
transition from general (but non-operational) adapta-
tion knowledge to more specific and operational knowl-
edge. The initial knowledge for our approach is a
small set of abstract transformation rules and memory
search methods. When presented with a new adapta-
tion problem, our system first selects a transformation
rule to apply and then performs memory search to find
the information needed to operationalize the transfor-
mation rule and apply it to the problem at hand (e.g.,
if a substitution transformation is selected, to find what
to substitute). The system learns to improve its adap-
tation capabilities by case-based reasoning applied to
the case adaptation process itself: a trace of the
steps used in solving an adaptation problem is saved
to be reused by derivational analogy when similar
adaptation problems arise in the future (Leake 1995b;
Leake, Kinley, & Wilson 1995). In this way, a CBR sys-
tem doing adaptation can acquire specific adaptation

procedures starting from domain-independent “weak
methods” for adaptation when no specific knowledge
is available., At the same time, traces of the memory
search process are stored for future reuse, to facilitate
building up new adaptations in the future.

DIAL’s adaptation component takes two inputs: an
instantiated disaster response plan and a description
of the problems in the response plan that must be re-
paired. When presented with an adaptation problem,
DIAL’s adaptation component performs the following
steps:

1. Case-based adaptation: DIAL first attempts to
retrieve an adaptation case that applied successfully
to a similar adaptation problem. If retrieval is suc-
cessful, the adaptation process traced by that case
is re-applied and processing continues with step 3.

2. Rule-based adaptation: When no relevant prior
case is retrieved, DIAL selects a transformation as-
sociated with the type of problem that is being
adapted. (E.g., it may decide to substitute a new
plan step for one that does not apply.) Given the
transformation, the program generates a knowledge
goal for the information needed to apply the trans-
formation. (E.g., when performing a substitution,
the knowledge goal is to find an object that satisfies
all the case’s constraints on the component being
replaced.)

The knowledge goal is then passed to an introspec-
tive planning component that reasons about possi-
ble memory search strategies (Leake 1995c) to guide
search for the needed information. This search pro-
cess generates a memory search plan whose opera-
tors may include both operators from an initial set of
memory search strategies and memory search cases
stored after solving previous adaptation problems. If
the needed information is found, it is used to apply
the selected transformation to the retrieved response
plan. X it is not found, the process continues with
step 4, manual adaptation.

3. Plan evaluation: The adapted response plan is
evaluated by a simple evaluator that checks the
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compatibility of the current plan wit 1c1t con-
straints from the response plan A human user per-
forms backup evaluation. If the new response plan
is not acceptable, other adaptations are tried.

4. Manual adaptation: If the previous autonomous
case adaptation steps fail to generate an acceptable
solution, an interface allows the user to guide the
adaptation process, selecting a transformation and
suggesting memory search paths to consider. Dur-
ing the adaptation, the system records a trace of the
adaptation process. The trace is represented in the
same form as the traces of system-generated adap-
tations, so that the system can learn an adaptation
case from the interactive episode.

5. Storage: When DIAL successfully adapts a re-
sponse plan, it learns by storing (1) the new re-
sponse plan case, (2) memory search cases encap-
sulating the memory search steps performed during
case adaptation, and (3) adaptation cases, which en-
capsulate information about the adaptation problem
as a whole—the transformations and memory search
cases used when solving the adaptation problem—
and its solution.

Thus the system learns not only new response plan
cases but also new ways of adapting existing cases to
new situations. In addition, new adaptation cases that
are learned are used not only to perform new adapta-
tions, but also to estimate adaptation cost during the
similarity assessment process for retrieving new cases;
learning adaptation cases corresponds to learning new
similarity criteria as well.

The Basis of DIAL’s
Adaptation Learning

DIAL’s learning is based on introspective reasoning
about requirements for solving adaptation problems.
To support reasoning about adaptation problems, a
uniform framework is needed for characterizing case
adaptation. Following the framework of adaptation
strategies (Kass 1990), DIAL’s rule-based case adap-
tation treats the case adaptation process as involving
two parts: selecting structurel transformations (e.g.,
additions, substitutions, and deletions) and performing
memory search to find the information needed to apply
the transformations. Accordingly, two types of case
adaptation knowledge are needed: abstract transfor-
mations and memory search strategies. It is widely ac-
cepted that a small set of transformations is sufficient
to characterize a wide range of adaptations (Carbonell
1983; Kolodner 1993), but a large amount of domain-
specific reasoning may be required to find the informa-
tion needed to apply those transformations. The fol-
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tion process represents the information it needs in the
form of knowledge goals, uses the knowledge goals to
guide the formation of memory search plans, and pack-
ages a trace of its memory search process and other
reasoning during adaptation for future use.

Knowledge Goals

Knowledge goals provide explicit descriptions of
needed information. DIAL’s knowledge goals are sat-
isfied by a planning process for how to carry out mem-
ory search. Memory search plans are built from sim-
ple primitive memory search operators (e.g., to extract
slot values or find abstractions) and traces of successful
memory searches satisfying similar previous knowledge
goals. Knowledge goals represent information about
the type of knowledge needed, about the context of the
search, about the reasoning giving rise to the knowl-
edge goal, and about what to do with the knowledge,
once found. Thus they reflect the basic principle of
goal-driven learning, applied to information search in
memory: decisions about the knowledge to acquire and
how to acquire it should be based on goal-derived cri-
teria and satisfied by a strategic planning process.

In DIAL, initial knowledge goals are generated to
obtain information necessary for a specific adaptation,
in response to a problem or inconsistency in applying a
retrieved response plan to a current disaster situation.
For example, a problem applying the response plan for
a flood in Bainbridge, Georgia to a flood in Allakaket,
Alaska, is that the Salvation Army provided shelter
during the Bainbridge flood, but does not exist in Al-
lakaket. A new relief group local to Allakaket must be
found. Consequently, a knowledge goal is generated
to find a substitute for the Salvation Army that can
provide shelter.

Memory search cases

A memory search case consists of a trace of primitive
memory search operators (or previously-stored mem-
ory search cases) that were used in a successful previ-
ous memory search. Initial memory search cases may
be built up by applying “weak methods” of memory
search, such as “local search,” that are built into the
system. (Local search is a common strategy for find-
ing substitutions (Kolodner 1993); it attempts to find
concepts that are “near-by” in the system’s memory,
and progressively widens the search until a suitable
substitution is found). Memory search cases may also
be built up interactively, by recording traces of a user-
guided memory search process.

Retrieved memory search cases provide an initial
strategy for finding needed information. Memory
search cases are indexed both under the adaptation
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cases t ave successtully used them, and under the
knowledge goals they satisfy.

Adaptation cases

Adaptation cases package the results of a success-
ful adaptation. An adaptation case consists of three
parts: indexing information, adaptation information,
and evaluation information. The indexing informa-
tion includes a representation of the type of problem
to adapt and information about the response plan for
which the adaptation case was generated. This in-
formation guides selection of the adaptation cases to
use for new adaptation problems. The adaptation in-
formation packages both a transformation type (e.g.,
substitute, add, delete) and the memory search steps
used to find the information needed to apply the trans-
formation. Evaluation information records the cost of
applying the adaptation.

Stored adaptation cases are organized in memory by
the types of problems they address. The vocabulary
of problem types is similar in spirit to the problem
vocabularies used to guide adaptation in other CBR
systems (e.g., Hammond, 1989; Leake, 1992). For ex-
ample, a role-filler in a candidate response plan may
be inappropriate, and a new role-filler needed, because
of problems such as:

FILLER-PROBLEM:UNAVAILABLE-FILLER
The role filler specified in the plan is unavailable.
For example, a police commissioner may be out of
town and urable to be reached in an emergency
situation.

FILLER-PROBLEM:ROLE-MISMATCH

The role filler specified in the plan is incompatible
with the given role. For example, a mismatch oc-
curs when a plar for dealing with an industrial dis-
aster is applied to a school disaster (whose victims
are children rather than workers), and the industrial
response plan calls for notifying the victim’s union
(instead of parents).

FILLER-PROBLEM:FILLER-UNSPECIFIED

. The role specification may be incomplete, simply
because of missing information that must be filled
in. For example, a plan might call for a rescue
without specifying who should carry it out.

The Effects of Learning Plan Cases and
Adaptation Cases

An important question is the benefit of augmenting the

traditional learning strategy of case-based reasoning—

case acquisition—with case adaptation learning. To

obtain initial indications of the effects of adaptation

learning in }bf A AL, we performed ablation tests of the
system with initial test examples. The system’s initial
memory included nodes for 800 concepts; the initial
case library included 3 disaster response plan cases,
and the test examples involved performing a total of
26 adaptations to develop response plans for 6 stories.

Stored cases and new stories were based on the
Clarinet News Service newswire and the INvironment
newsletter for air quality consultants. Stored cases in-
volved an earthquake in Los Angeles, an air quality
disaster at a manufacturing plant, and a fiood in Bain-
bridge, Georgia. The tests considered only the effi-
ciency of performing an adaptation, but as described
later in this paper, efficiency is only one possible di-
mension for measuring the value of case adaptation
learning.

In the baseline condition, the system performed no
learning of either cases or adaptations. In addition,
it performed all memory search during case adapta-
tion by “local search.” The second condition added
learning of response plan cases, but no learning of
adaptations; this reflected the “standard” configura-
tion of most CBR systems. The third condition in-
cluded learning of adaptation cases, but not of response
plan cases. The fourth condition included learning of
both response plan cases and adaptation cases. The
fifth and sixth conditions replaced “local search” with
other memory search strategies, such as attempting
to extract constraints on acceptable role-fillers of a
schema and using them to defire knowledge goals to
be satisfied by a knowledge planning process. The
fifth condition involved response plan learning only,
and the sixth involved learning of both response plans
and adaptation cases. We expected that either learn-
ing of response plan cases alone (conditions 2 and 5)
or adaptation cases alone (condition 3) would improve
performance over no learning (condition 1), and that
the performance would be better with both types of
learning (conditions 4 and 6) than with either individ-
ually.

Because most of the system’s adaptation cost comes
from memory search, efficiency was estimated by two
different criteria reflecting memory search cost: the
number of primitive memory operations performed and
the number of memory nodes visited. In each case,
lower values suggest less effort expended, but the two
numbers can vary significantly as multiple operations
can be applied to a single memory node, and, con-
versely, many nodes may be examined but never have
operations applied directly to them. In general, varia-
tions in the order of presenting the problems may also
have an effect on overall performance, but for the sam-
ple set changes in problem order did not appear to
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Max Min Avg Med Dev | Max Min Avg Med Dev
Using “"local search” to find needed information
1. No learning 252 8 77 41 41 164 6 45 28 40
2. Plan learning only 252 8 55 36 64 164 6 32 22 38
3. Adaptation learning only 159 5 45 14 50 86 2 25 10 27
4. Plan + Adaptation learning 159 5 38 11 49 86 2 22 6 27
Using multiple strategies to find needed information

5. Plan learning 1270 111 369 217 360 | 284 72 119 90 65
6. Plan + Adaptation Learning 1268 5 147 42 281 § 238 1 36 4 59

Table 2: Effort expended

have a significant effect. Table 2 shows the results for
a single problem order. The table shows the maximum,
minimum, average, median and standard deviations of
the number of operations applied when processing the
test stories in each condition.

In trials using local search, results were as predicted,
with a combination of response plan learning and adap-
tation learning performing best overall. When multiple
search strategies were used as opposed to local search,
similar results were achieved, however, both the num-
ber of memory nodes visited and the number of opera-
tions performed were significantly higher than in tests
using only local search. While initially surprising, this
result can be explained by the fact that initial selection
of the multiple search strategies is largely arbitrary.
The dramatic decrease of the median in condition 6
suggests that adaptation learning is resulting in much
more effective strategy selection.

The benefit of using multiple search strategies is ev-
ident in problems which are very difficult using lo-
cal search methods alone. For example, adapting a
Los Angeles earthquake response plan to generate a
response plan for an earthquake in Liwa, Indonesia,
requires adapting the means of transportation for re-
lief supplies: The Los Angeles response plan involves
the Red Cross sending supplies in by truck, but the
roads to Liwa are impassable. In the real episode, the
solution was a military airlift. The Red Cross and
the military are distant in the system’s memory and
are each characterized by different constraints, making
local search extremely costly, but performing a more
strategic search process, characterizing the problem as
“lack of access” and searching for actions to overcome
that impediment and actors who could carry out those
actions, suggests a more direct solution. In the tests,
such problems did not arise often, however. When
adaptation cases based on both local search and other
strategies are saved and reused, average performance
is better than for either method individually.

We note that, consistent with predictions, response
plan learning did improve performance, as did adapta-
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adapting the five sample cases.

tion learning. Interestingly, adaptation learning alone
was somewhat more effective than case learning alone.
As was also expected, when no adaptation cases are
learned, learning additional response plan cases en-
ables the system to solve new problems with less adap-
tation effort—more similar cases are available. This is
the foundation for the benefits of learning found in
most CBR systems. Adding adaptation learning to re-
sponse plan learning produced a moderate drop in cost
when memory search during adaptations was based on
local search. There was much greater benefit when
response plan learning was combined with adaptation
learning using other memory search strategies.

These data are only suggestive; they involve a very
small set of examples and the typicality of the examples
is unclear. We plan to follow up on these initial data by
performing a more controlled analysis of the effects of
learning for a larger set of problem examples, and also
to examine the potential utility problem (Francis &
Ram 1993; Minton 1988) as the number of adaptation
cases grows.

Learning similarity from adaptability

Adaptation learning provides the motivation for an-
other type of learning, learning to refine similarity cri-
teria. A central role of similarity judgments in case-
based reasoning is to determine which cases to apply
to a new situation and how to adapt them to fit new cir-
cumstances. As Smyth & Keane (1995) observe, CBR
systems often base similarity judgments on semantic
similarity, but the real goal of their “similarity assess-
ment” is to determine adaptability: how easily an old
case can be adapted to fit the requirements of a new sit-
uation. If new adaptation strategies are learned, static
similarity criteria do not keep pace with new capa-
bilities for performing adaptations. When adaptation
learning makes it easier to apply particular cases, those
cases should be judged more relevant to a new situa-
tion. Thus similarity assessment criteria should change
as new adaptation knowledge is acquired.

We have begun to study methods aimed at enabling
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using learned adaptation cases to provide estimates of
the cost of adapting particular types of problems. Af-
ter retrieving an initial set of candidate response plan
cases using traditional indexing techniques, DIAL com-
pares their adaptability. For each problem to be re-
paired by adaptation, DIAL retrieves the adaptation
case for the most similar prior problem (using the de-
scription of the adaptation problem). If the adapta-
tion case was generated to solve an identical adapta-
tion problem, the solution to that previous adaptation
can be reapplied directly, resulting in very low adap-
tation cost: the cost is simply the cost to perform the
needed transformation. I the adaptation case dealt
with an adaptation problem that was similar but not
identical, the cost of applying it to the new problem
is estimated as the cost of the transformation used,
plus the cost of the primitive memory search opera-
tions used in the prior adaptation. The rationale is
based on the principle of derivational analogy: If a pre-
vious adaptation for a similar problem had to extract
certain features and constraints, and transform them
in certain ways to generate an appropriate adaptation,
the process for the current situation should follow the
same basic steps, even if the specifics of the situation
are different.

If no similar adaptation case is found, DIAL uses
a crude estimate of the cost: it maintains a record of
the average cost (measured in primitive memory search
operations) of adapting problems in each problem cat-
egory, starting from scratch, and estimates the cost
of the current problem using that average. By basing
similarity assessment directly on the current state of
its changing adaptation knowledge, DIAL’s similarity
assessment process reflects its adaptation knowledge.
The aim is to improve the overall CBR process by fa-
voring cases that are likely to be easier to adapt.

Perspective

Motivations for multistrategy learning
during case-based reasoning

Our application of multistrategy learning to CBR is
motivated by a number of potential benefits. One of
these is that learning new similarity criteria and storing
and “replaying” adaptations, by derivational analogy,
will make it possible both to select better (more easily
adaptable) prior cases and to expedite the adaptations
that are performed, providing speedup learning,.

In domains such as disaster response planning, for
which no hard-and-fast rules are available to charac-
terize what constitutes a good plan, an equally impor-
tant potential benefit is increasing the quality of the
solutions generated. Part of the appeal of reasoning
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that may not be explicitly represented in a reasoner’s
domain theory. Thus storing and replaying successful
adaptations may help to generate better adaptations
than would be generated by reasoning from scratch.
In the examples we have considered so far, the results
generated by reusing adaptation cases are reasonable,
and much more reliable than the results of, for exam-
ple, simply selecting candidate substitutions by “local
search.” However, although we see this as an impor-
tant potential benefit, the comparative effects on qual-
ity remain to be tested.

A final motivation for studying this multistrategy
learning during CBR comes from cognitive modeling.
Although the previous discussion provides functional
arguments for learning to improve case adaptation
skills and for adjusting similarity criteria as adapta-
tion knowledge is learned, some psychological studies
point to related aspects of human reasoning. Gentner
& Toupin (1986), for example, demonstrate a devel-
opmental shift in the similarity criteria used by chil-
dren for analogical reasoning, and show that the shift
is manifested in how they adapt stories to apply to
new characters. Experiments by Suzuki et al. (1992),
studying adults’ similarity judgments for the Towers
of Hanoi problem, show that novices’ judgments about
the similarity of problem states can be characterized
by the number of shared surface features, but that ex-
perts’ judgments are best characterized by the goal-
relevant criterion of the number of operators required
to transform each problem state to the goal state. Chi
et al. (1981) note a dramatic difference between the
similarity criteria of novice physics problem-solvers,
who rely on surface features, and physics experts, who
classify problems according to the underlying meth-
ods needed to solve them. Finally, Keane (1994) has
shown that when selecting analogues for an analogical
problem-solving task, subjects favor analogues that are
more readily adaptable to the new problem situation.

Relationship to other computer models

A number of previous CBR systems learn by both case
acquisition and refining their indexing criteria (e.g.,
Hammond, 1989; Veloso & Carbonell, 1994). A few in-
clude restricted mechanisms for learning limited forms
of adaptation knowledge. For example, CHEF (Ham-
mond 1989) bases its adaptations on both a static li-
brary of domain-independent plan repair strategies and
a library of special-purpose ingredient critics, which
suggest steps that must be added to any recipe us-
ing particular ingredients (e.g., that shrimp should be
shelled before being added to a recipe). CHEF uses
special-purpose procedures to learn new ingredient
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to fail. However, the learned adaptations can only be
reused in very similar situations, while the adaptation
cases learned by DIAL can be reused more flexibly be-
cause they are derivational traces of the results of a
general introspective reasoning mechanism.

Learning to refine similarity criteria has been in-
vestigated in Prodigy/Analogy (Veloso & Carbonell
1994). That system’s “foot-print” similarity metric
focuses consideration on goal-relevant portions of the
initial state, in order to retrieve cases that refer to
the prior problem situations with the most relevant
similarities. Our adaptability-based similarity method
focuses on a different issue, estimating the costs of re-
pairing relevant differences that have been found. Qur
emphasis on adaptation cost is shared by Smyth and
Keane (1995) , who have developed 2 CBR system that
ties similarity judgments directly to adaptability, using
heuristics coded to recognize the difficulty of perform-
ing particular types of adaptations. In their system,
adaptation-guided retrieval results in significant im-
provements in overall problem-solving cost. In their
work, however, similarity and adaptation knowledge
are static. As our method learns new adaptations, it
derives similarity criteria directly from its own expe-
rience with adaptation problems, changing both as it
acquires adaptation experience.

DIAL’s approach to memory search by question
transformation is inspired by the memory search pro-
cess of CYRUS (Kolodner 1984), and is similar to re-
cent research on applying heuristic search to gather-
ing information for argumentation (Rissland, Skalak,
& Friedman 1994) and on strategic methods for infor-
mation retrieval (Baudin, Pell, & Kedar 1994). Nei-
ther of these methods, however, learns from the search
process. Our use of analogical techniques for internal
reasoning is related to Ram and Cox’s (1994) theory of
meta ezplanation patterns, Kennedy’s (1995) internal
analogy, and Oehlmann's (1995) metacognitive adapta-
tion.

QOur use of transformational analogy for case-based
planning, and derivational analogy for case-based rea-
soning applied to case adaptation, combines benefits
of both learning strategies. Transformational CBR ap-
proaches store and adapt a solution to a problem, while
derivational approaches store and replay a derivational
trace of the problem-solving steps used to generate a
previous solution. For CBR tasks such as disaster re-
sponse planning, derivations of solutions are not gen-
erally available, and planning from scratch is not sat-
isfactory because domain theories are inaccurate and
intractable. However, examples of prior solutions are
readily available in news stories and casebooks used
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al., 1989). This favors a transformational approach to
reusing disaster response plans. On the other hand,
derivational approaches can simplify the reapplication
of a case to a new situation, and the rationale for the
system’s choice of particular steps during adaptation
of prior cases is available. This makes it possible to
use derivational analogy for learning about case adap-
tation and memory search.

Conclusion

We have described ongoing research on multistrategy
learning within a case-based reasoning context, focus-
ing on how case-based reasoners can learn to apply
cases more effectively, both by learning how to adapt
prior cases to new situations and by learning which
types of adaptations are difficult to perform. Our
approach to learning response plan cases uses trans-
formational analogy; our approach to learning about
case adaptation uses derivational analogy, which it ap-
plies both to memory search during adaptation and
to the adaptation process as a whole. Qur approach
to learning similarity criteria builds on the adaptation
learning process, to consider cases “usefully similar” if
they are expected to be easy to adapt, given experience
with prior adaptations. Preliminary trials of the effects
of adaptation learning on our system are encouraging
for decreasing memory search cost, but more thorough
tests are needed, both to study how the process “scales
up” when large numbers of adaptations are learned and
to determine effects on the quality of the response plans
generated. Tests are also needed to examine how well
current estimates of adaptation cost predict the diffi-
culty of future adaptations. Qur model is now being
refined in preparation for more extensive tests of the
system as 2 whole and the effects of its multiple forms
of learning.
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