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Abstract

A major difficulty in Inductive Logic Program-
ming (ILP) lies in the size of the hypothesis space,
and in the number of possible matchings between
a candidate hypothesis and a training example.
This paper investigates the use of a stochastic
bias in order to make induction a tractable prob-
lem. A goal-directed sampling mechanism of the
matching space is implemented. The exhaus-
tive exploration of the matching space is replaced
by considering a fixed, user-supplied, number of
samples. One thereby constructs a theory which
is oldy approximately consistent, with a polyno-
mial computational complexity in term of the size
of the data.
This approach significantly differs from the ILP
approaches based on genetic algorithms or ge-
netic programming, where stochastic sampling is
directly used to explore the hypothesis space; in
our approach, the sampling mechanism is com-
bined to induction instead of replacing it.
Experiments on the mutngeaicity problem fully
validates the approach in terms of both predictive
accuracy and computational cost.

Introduction

The framework of Inductive Logic Programming (Mug-
gleton & De Raedt 1994) allows induction to handle
problems having relational descriptions. This very ex-
pressive formalism however rises two major questions:
that of dealing with numerical values, and that of
mastering the computational complexity pertaining to
first-order logic.

Handling numbers in ILP has mainly been tackled
in two ways: the first one consists in transforming
the current ILP problem into an attribute-value prob-
lem, as done in the LINUS approach (Lavrac, Dze-
roski, & Grobelnick 1991) or via moriologieal reformu-
lations (Zucker & Ganascia 1994). Another possibil-
ity consists in providing the learner with some kind of
"numerical knowledge" (e.g. the definition of predi-
cate less-thma); this knowledge can either be built in
the learner, as in FOIL (Quinlan 1990), or added 
she domain theory, as in PROGOL (Muggleton 1995).

Yet another approach is based on the use of Constraint
Logic Programming (CLP), which subsumes Logic Pro-
gramming and allows for interpretation of structures,
notably in domains ~t and ~/ (Jaffar & Lassez 1987).
Learner ICP (for lnducti*Je Constraint Programming)
was described in an earlier work (Sebag & Rouveirol
1996); it basically uses constraints to prevent negative
examples from matching candidate hypotheses. Since
all possible (generally numerous) matchings between
a hypothesis and a negative example must be exam-
ined, ICP therefore fully faces with the combinatorial
complexity inherent to First Order based languages.

The complexity issue is addressed in the ILP litera-
ture by using either search biases or syntactic biases;
e.g., FOIL considers one literal at a time (Quinlan
1990); FOCL allows a limited amount of look-ahead
(Pazzani & Kihler 1992); GOLEM and PROGOL re-
spectively set restrictions like/j-determinacy or max-
imal number of literals on the candidate hypotheses
(Muggleton & Feug 1990; Muggleton 1995); restric-
tions on the matching space are also possible (Zucker
& Ganascia 1994).
Adjusting these biases requires a precise a priori
knowledge, which is far from always available.

This is the reason why we preferred a versionspace-
like approach, where the only bias is that of the hy-
pothesis language (Mitchell 1982). Precisely, our in-
duction goal is to characterize the whole set of hypothe-
ses that are consistent with the training examples and
that cover at least one example, denoted Th. In this
sense, this approach is "bias free"; the only problem is
that the explicit characterization of Th is intractable,
even in a propositional language (Haussler 1988). 
therefore developed an approach based on an im-
plicit characterization of Th, which is of polynomial
complexity in attribute-value languages (Sebag 1996).
This approach was extended to ILP (Sebag 1994a;
Sebag & Rouveirol 1994) and then CLP (Sebag 
Rouveirol 1996) but still suffered from the exponen-
tial complexity typical of first order logic. The present
paper describes how an approximate characterization
of Th can be obtained with polynomial cornplezity in
a CLP language.
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This approach is illustrated on the mutagenesis
problem which comes from the field of organic chem-
istry (King, Srinivasan. &" Sternberg 1995). The short-
coming of 1CP on this problem comes from the num-
ber of possible matchings between a hypothesis and
an exarnple of molecule, which is exponential in the
number of atoms in the molecule (up to 40). This
drawback is sidestepped by sampling, rather than ex-
hanstively exploring, the set of such matchin&s: only a
restricted number of samples is considered during in-
duction. These matching samples are produced by a
stochastic goal-driven mechanism. The hybrid learner
obtained by embedding this sampling mechanism in
ICP, termed STILL for Stochastic Inductive Logic
Learner, constructs a theory that is only ensured to
be approximately discriminant, since it only explores
a subset of the matching space. But it does so with a
polynomial computational complexity in terms of the
size of the training set.

In order for this paper to be self contained, ICP is
first briefly described. The complexity issue is exam-
ined, and we present a goal-driveri mechanism that
samples the matching space explored by induction.
This stochastic sampling mechanism yields tractable
algorithms for approximate induction and classifica-
tion. An experimental validation of STILL on the
mutagenicity testbed is last presented; our results are
compared to those of FOIL and PROGOL, reported
from (Srinivasan, Muggleton, & King 1995).

ICP and Mutagenicity

This section illustrates our approach of induction on
the mutagenicity problem which is one well-known
testbed in ILP. A detailed description of ICP, and
a discussion about induction in Constraint Logic Pro-
graxnming can be found in (Sebag & Rouveirol 1996).

Data and language of examples
The mutagenicity problem consists in discriminat-
ing organic molecules (nitroaromatic compounds) with
high mutagenic activity from other organic molecules.
This still open problem is of utmost practical interest,
for these compounds occur in car exhaust fumes, and
high mutagenicity is considered carcinogenic.

The basic description of molecules, referred to as
background knowledge B1 in (Srinivasan & Mugglo-
ton 1995), includes the description of the molecule
atoms and the bonds between these atoms. As the
description of atoms involves numbers (partial elec-
tric charge), "numerical knowledge" (e.g., definition 
predicate less-than) was added to background knowl-
edge B1, to form background knowledge 82. Addi-
tional information is given via five attributes mea-
suring the hydrophobicity of the molecule, the en-
ergy of the molecule lowest unoccupied molecular or-
bital, and so on. Background knowledge B3 stands
for B2 augmented by this non-structural description.
There exists a still more sophisticated description of

the lnolecules (background knowledge B4), that takes
into account elementary structural chemical concepts
(e.g. methyl or benzene groups); but it will not 
considered in this paper.
A molecule a is thus described by a clause, an excerpt
of which is:

re(a) : atom(a, al, carbon. 22. -0.138) .....
atom(a, a26, oxygen, 40. -0.388) ....
bond(a, al, a2, 7), . . ., bond(a, a’z4, a~o, 2),
Iogp(a, 4.23), lurno(a, -1.246) ....

where te stands for the target concept satislied by a,
here active or inactive.
Literal atom(a, al, carbon, 22, -0.138) states that in
compound a, atom al is a carbon, of type 22, with par-
tial charge -0.138. Literal bond(a, al, a2, 7) expresses
that there exists a (unique) bond between atoms 
and a2 in a, the type of which is 7.
This problem thus typically involves numerical and re-
lational features.

Overview of ICP

ICP is a divide-and-conquer algorithm in the line of the
AQ algorithms (Michalski 1983; Michalski ct al. 1986):
it successively generalizes one example Ez, termed
seed, against all examples not satisfying the same tar-
get concept as Ex, termed counter-examples to Ex,
noted Cel: . . . , Ce~.

ICP differs from other divide-and-conquer algo-
rithms in two respects. First, most authors (Michaiski
1983; Muggleton 1995) restrict themselves to learn-
ing one target concept (e.g. the activity), while
ICP learns both the target concept and its negation.
This hopefully allows the effects of noisy positive and
negative examples to counterbalance each other.
Second, ICP considers all training examples instead
of pruning the examples covered by previous hypothe.-
sea. The problem with pruning is that it induces an
additional bias (the eventual theory depends on the
choice of seeds) while increasing the overall complex-
ity of induction (this will be detailed further).

Another key difference between ICP and all other
learners, as far as we know, is that ICP does illvolve
neither search biases nor syntactic biases: it aims at
characterizing the set Th(Ez) of all hypothcses con-
sistent with Ex. Ce.l ..... (.’e~, i.e. the Version Space
discriminating Ez from any Cei {Mitchell 1982).
In opposition, FOIL (Quinlan 1990), FOCL (P~zani
&." Kibler 1992) and PROGOL, among others., aim at
finding "the" best hypothesis covering a training exam-
ple, according to the more or less grecdy optimization
of a numerical criterion (quantity of information for
FOIL and FOCL, MDL principle for PROGOL). To a
lesser extent, ML-,qmart (Bergadano & Giordana 1990;
Botta & Giordana 1993) and REGAL (Giordana 
Saitta 1993) also look for concise theories.
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Formally, ICP builds a theory Th which is the dis-
junction of the versionspaces Th(Ez) for Ex ranging
over the training set. Th(Ez) includes all hypothe-
ses that cover Ez and discriminate counter-examples
to Ez; it is given by the conjunction of the set of hy-
potheses D(Ez, Ce) that cover Ex and discriminate
Ce, for Ce ranging over the counter-examples to Ex:

Disjunctive Version Space Algorithm

Th = false.
For each Ez ~raining example

Yh(Ez) - True
For each Ce counter-example to Ex

Build D(Ex, Ce) (see below)
Th(Ez) =Th(Ez) A D(Ez, 

Th = Th V Th(Ez).

Language of hypotheses
The elementary step of ICP consists in characterizing
the set of hypotheses D(Ex, Ce) that cover the current
seed Ez and discriminate a counter-example Ce to the
seed.

Consider two examples of (simplified and arbitrary)
molecules:

Ex : active(e# :- atom(ez, a, oxygen,-3.38),
atom#x, b, carbon, 1.~4).

Ce : inactive(ce) :- atom(ce, c, carbon, -I~. 75),
alom(ce, d, oxygen, 0.33).

Exaznple Ez is decomposed as C0, where C stores
the structural information of Ez, i.e., that Ez is an
active molecule having two atoms:

C : active(X) : -atom(X’, Y, Z, T), atom(X", U, 

and 0 carries all other information in Ez:

0 = { X/ex, X’/ez, X"lex,
Y/a, Z/oxygen, 7"/- 3.38,
U/b, V/carbon, W/1.24}

This decomposition allows induction to simultane-
ously explore two search spaces:

¯ The space of logical clauses generalizing C. Explor-
ing this space is fairly simple since all variables in
C are distinct: the only way to generalize C is by
dropping literals.

¯ In what. regards 0, we take advantage of the fact
that 0, and more generally any substitution on C, are
special cases of constraints on C. Variable ground-
ing {X/v} amounts to domain constraint (X = v),
which is analogous to a selector (Michalski 1983).
And variable linking {X/Y} amounts to binary con-
straint (X = Y). ICP then explores the set of con-
straints on C generalizing 0. (See (Jaffar & Lassez
1987) for a comprehensive presentation of CLP).

Constructing D(Ez, Ce) amounts to finding out all
pairs (C,p), where C generalizes C (i.e. describes
a molecule satisfying the same target concept as Ex
and including at most the same number of atoms and
bonds) and p is a constraint on C that generalizes 0:
furthermore, C and p must be such that Cp discrimi-
nates Ce.

In the general case. discrimination can be based on
predicates: if C involves a predicate that does not ap-
pear iwCe, C does not generalize Ce. Predicate-based
discrimination amounts to simple boolean discrimina-
tion: presence/absence of a predicate (Sebag & Rou-
veirol 1996). It is not further considered in this paper
since all molecules, whatever the target concept they
satisfy, are described by the same predicates (atom,
bond,..): predicate-based discrimination thus does not
apply here.

Constraint-based discrimination takes place when
the body of C (or of the current hypothesis) generalizes
that of Ce. Then there exists at least one substitution
a matching.the body of C with the body of Ce, called
negative substitution.
}br instance, such a substitution a respectively maps
the first and second atoms in C onto the first and sec-
ond atoms in Ce:

= { Xlce, rice, X"lce,
Y/c, Z/carbon, T/- 2.75,
U/d, V/ozygen, W/0.33}

But if such a a exists, C is inconsistent: its body
generalizes the bodies of both Ez and Ce, which yet
satisfy opposite target concepts by definition.

Constraint-based discrimination prevents such in-
consistencies by specializing C: it adds "conditions"
(that is, constraints) to the body of C such that nega-
tive substitution a does not satisfy these "conditions".
For instance, constraint

p = (V = carbon)

is incompatible with a, since V.a = oxygen. By the
way, p must also generalize the substitution 0 derived
from Ez, in order for Cp to still generalize Ez. For
instance, constraint

f = (V = hydrogen)

is also incompatible with a, but C/does not general-
ize Ez any more. A formal presentation of constraint
entailment and generalization order will be found in
(Jaifar & Lassez 1987); roughly, constraint p, general-
izes P2 (equivalently, p~ entails Pl) iff all substitutions
satisfying P2 also satisfy Pl.

Note that building constraints that generalize 0
and are incompatible with a negative substitution
amounts to an attribute value discrimination prob-
lem. This is particularly clear if we restrict our lan-
guage of constraints to domain constraints (of the form
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(A" = V), where V is a subset of the domain of X ). This
is also true when binary logical and arithmetic con-
straints are considered (e.g. (X ¢ Y). (Z < T-b 
(S > U - 20)).. by introducing auxiliary variables (this
point is detailed in (Sebag & Kouveirol 1996)). How-
ever, binary constraints will not be further considered
here, for two reasons. First of all, introducing binary
constraints does not significantly modify the complex-
ity of induction (it only affects its polynomial part),
which is our primary concern in this paper. Second,
unary constraints turned out to be sufficient to reach
a good level of predictive accuracy on the mutagenesis
problem.

Finally, our language of constraints is restricted to
unary constraints of the form (X = V), where

¯ V is an interval if X is a real or integer-valued vari-
able;

¯ V is a value if X is a nominal variable.

Characterizing D( Ex, Ce)

Let us assume first that there exists a single negative
substitution a derived from Ce.

For any variable X, let PX,o denote the maximally
general constraint on variable X that generalizes 0 and
is incompatible with a. Of evidence, Px.o exists iff X.0
and X.(r are distinct constants. When it is the case,
and when X is an integer or real-valued variable, PX.o
is (X = Y) where V is the maximum interval including
X.0 and excluding X.~. And in case X is a nominal
variable, Px,~, is (X = X.8).
In our toy example, (T =] - or,-2.75)) (or for 
sake of simplicity (T < -2.75)), is the most general
constraint on T that generalizes 0 and is incompatible
with ~; similarly, (Z = oxygen) is the most general
constraint on Z (in our constraint language) that gen-
eralizes 8 and is incompatible with a.

Let Po denote the disjunction of Px.o for X ranging
over the variables in C such that X.O ~ X.a. One easily
shows that any constraint generalizing 0 discriminates
a iff it entails (is generalized by) Po- A clause Cp
therefore belongs to D(Ez, Ce) iff two conditions hold:
Cp must generalize Ex and p must entail p~,.
If ~r were the only negative substitution on C derived
from Ce, any clause Cp generalizing Ex such that p
entails the disjunction

(Z - ozygen)V(T < -2.75)V(V = carbon)V(W > .33)

would discriminate Ce.
But consider the negative substitution a~ mapping the
first atom in C onto the second atom in Ce, and the
second atom in C onto the first atom in Ce:

~’ = { X/ce, X’/ce, X"/ce,
Y/d, Z/oxygen, T/0.33,
U/c, W~a~bo., W~ - 2.~5, }
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Of evidence, constraint p = (Z = o~’ygert) is quite
compatible with ¢r’; hence Up is inconsistent. This
shows that a discrimina~lt constraint p must be incom-
patible with all negative su bstitutions derived from Ce,
in order for Up to be consistent with Ce.

In the general case, let ~Er, Ce be the. set of nega-
tive substitutions on C derived from Ce. The previous
result extends as (Sebag & Kouveirol 1996):

Proposition 1. Cp belongs to D(Ex., Ce) iff Cp gen-
eralizes Ex and p entails po for all ~r in ~, c~.

To sum up, I)(Ex, (..:e) is computationaily described
by C and the set of constraints {Po s.t. a E ~. eel.
The question of explicitly characterizing D(Ez,Ce)
and then the whole theory Th from this computa-
tional characterization was addressed in (Sebag & Rxm-
veirol 1996) and will not be considered in this paper.
Rather, we focus on using the computational descrip-
tion of D(Ex, Ce) in order to classify further instances
of the problem domain.

As a matter of fact, this computational description
enables one to check whether an unseen instance E is
covered by a hypothesis in D(Ez, Ce). or, for short,
belongs ~o D(Ex, Ce). It. is shown (Sebag & Rxmveirol
1996) that:

Proposition 2. E belongs to D(Ex, Ce) iff E can be
expressed as Cr, where C generalize~ C and r entails
po for all e in E~, c,.

Classifying further examples

The important point in the above result, is that it al-
lows one to classify unseen instances of the problem
domain:

¯ From Proposition 2, one can compute whether any
given instance E is covered by a hypothesis in
Th(Ez), or. for short, belongs to Th(Ez): be-
longs to ThfEx) iff E belongs to D(Ex, Ce), for all
Ce counter-example to Ez.

¯ Knowing whether E belongs to Th(E~) for all
training examples Ez gives means to classify E: via
a nearest neighbor-like process. Let E be termed
neighbor of Ez if E belongs to Th(Ex) ; the class of
E can thereafter be determined by a majority vote
among its neighbors in the training set. (see (Sebag
1996) for a discussion about the advantages of this
nearest neighbor-like ciassification process).

Neighbor (E, Ex) : (E belongs to Th(Ex))

For each Ce counter-example to .Ex
if gOT Belongs(E, D(Ex, Ce))

return false’
return truc
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Checking whether E belongs to D(Ex, Ce) is com-
puted as follows. Let EEz, E denote the set of substi-
tutions on C matching E. Then:

Belongs(E, D(Ez, Ce))

For each r in ~Ez, E
If r entails pa for all ~ in ~Ez, Ce,

return true.
return false.

Simply put, ICP rather constructs an oracle than
an explicit theory. This oracle achieves the classifi-
cation of further examples; it is made of theory Til,
stored as the list of

D(Ezi,Ezj) = (&, {Pa s.t. a EEz,,Ez,})

for Ezi in the training set and Ezj counter-example
to Ezi; and this theory is interpreted according to
Proposition 2. Actually, the classifier constructed by
[CP consists of Th and of the standard nearest
neighbor algorithm, calling the above Neighbor boolean
function.

Complexity

Under the standard assumption that the domain of any
variable is explored with a bounded cost, the complex-
ity of building pa is linear in the number of variables
in C. Let X and 8 respectively denote upper-bounds
on the number of variables in C and on the number
of substitutions in EE~,.E~. The characterization of
D(Ez~, Exj) is then in O(X x S).

Let N be the number of training examples. Since all
D(Ezi, Exi) must be characterized, the complexity of
learning in ICP is

O(N2 x X x 8)

And, since checking whether an instance E belongs to
Th(Ez) requires to consider all substitutions 1- on C
(with Ex -- C.0) matching E, the number of which is
upper-bounded by S, the complexity of classification
in ICP is

O(N2 x X x 8~)

In particular, since pruning a training example re-
quires to check whether it is covered by a previous the-
ory Th(Ez), the complexity of learning increases up
to O(Ns x X x 32) if ICP follows a standard divide-
and-conquer strategy.

The crux of complexity lies in factor ~q: in the simple
case of molecules with two atoms, ,.q is 2~ (any atom in
C can match any atom in Ce). This makes the ICP al-
gorithm intractable in the mutagenesis problem, where
molecules involve up to 40 atoms: ~q then amounts to
4040...

Polynomial Approximate Learning

ICP suffers from two major drawbacks: first, it is
intractable for medium-sized truly relational problems,
as shown above. Second, it basically stems from the
Version Space framework, and therefore ill-prepared to
deal with noisy and sparse data.

The tractability limitation is first addressed via a
stochastic bias: the idea consists in sampling, rather
than exhaustively exploring, the set of substitutions
EE~,ce. We again illustrate the stochastic sampling
mechanism on the mutagenesis problem.

Second, two heuristics, taken from the propositional
version of ICP (Sebag 1996), are used to relax the
standard consistency and generality requirements of
Version Spaces, and cope with noise and sparseness.

Stochastic Bias

Let us examine the structure of examples in the muta-
genesis problem. Note that the semantics of a molecule
is not modified by changing the identifiers of the atoms
(nominal constants), provided the change is consistent.

These identifiers can thus be arbitrarily set to
1,2 .... ,n, if. denotes the number of atoms in Ez.
A negative substitution ~ on C is completely defined
by associating each atom i in C to an atom in Ce,
noted or(i) by abuse of notations. The intractability
comes from the fact that, if Ce involves n’ atoms, the
number of such negative substitutions is in .’ "

Basically, discriminating a from 0 requires to

¯ discriminate at least one atom i in Ez from atom
~(i) in Ce; or

¯ discriminate at least one bond in Ex, linking atoms
i and j, from the bond in Ce linking atoms or(i) and
a(j), if such a bond exists.

The more "similar" atoms i in Ex and ~r(i) 
Ce, the more difficult it is to discriminate them, and
the more informative the negative substitution a is:
this notion parallels that of near-misses in attribute-
value languages. Formally, a partial order can be
defined on the substitutions in EE~,ce, and it is
shown that non-minimal substitutions can soundly
be pruned by discriminant induction (Sebag 1994a;
Sebag & Rouveirol 1994): this pruning is analo-
gous to the pruning of non near-misses examples in
the propositional case (Smith & Rosenbloom 1990;
Sebag 1994b). Unfortunately, building the set of such
minimal substitutions turns out to be intractable too.

Another possibility is to consider only one substitu-
tion ~, defined as minimizing some distance to 0, in the
line of the structural similarity developed in (Bisson
1992). The "optimal" substitution in ZE~,c~ would
thus minimize the sum of the distances between atom
i in Ez and atom er(i) in Ce, plus the sum of the dis-
tances between bonds i-j in Ez and bonds a(i)-a(j)
(if such a bond exists) in Ce. The distance between any
two atoms makes no problem: as noted by (Srinivasan
& Muggleton 1995), the description of an atom can be
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handled as a single tree-structured feature since the
element of an atom commands its atom type and its
atom type commands its charge.

However, using such an optimization approach to de-
termine which substitution to consider in ZE~..ce rises
two problems: first of all, we feel that a single substi-
tution, even optimal, cannot bc representative of the
whole set EE~,O~; second, the optimization routine in
itself can be computationally expensive.

Finally, we decided to consider several substitutions,
the number of which to be supplied by the user. These
substitutions are not purely random: as stated above,
substitutions nearer to 0 should be preferred. When
constructing a substitution a, one thus tries to asso-
ciate to any atom i in Ex the atom j in Ce which
is most similar to i, provided that j is not already
associated to another atom in Ex. A substitution a
constructed this way constitutes a local optimum with
respect to the above minimization problem.
Currently, the sampling mechanism of tile substitu-
tions in ]CEz, ce, where Ex and Ce respectively in-
cludes n and n’ atoms, is implemented as follows:

while possible
Select i in {] .... ,n} not yet selected

Select j in {I ..... n’} not yet selected
such that atom j in Ce is as close as
possible to atom i in Ex,
Do a(i) = 

Index j is deterministically selected depending on i:
atom j in Ce has same electric charge as atom i in Ex,
if possible; otherwise, it has same atom type; other-
wise, it is of same element.

Index i is stochastically selected with uniform prob-
ability in {1 ..... n}. This way, any atom i in Ex will in
average be associated to a similar atom in Ce, provided
the sampling mechanism is run a sufficient number of
times.

More precisely, the above stochastic sampling mech-
anism ensures that a set of samples captures an ar-
bitrarily precise representation of E~, c,. with high
probability, provided the number of samples allowed is
"sufficient". Further work is concerned with formal-
izing this intuition, as well as improving the selection
mechanism via taking into account also the bonds be-
tween atoms.

Overview of STILL

The STILL algorithm combines the general approach
of ICP and the above sampling mechanism. This
stochastic bias is used to make both induction and cla,~-
sification tractable.

Approximate Learning. Consider the building of
the set of hypotheses Th(Ex) that cover Ex and axe
consistent. Instead of exploring the whole sets of sub-
stitutions ~ c~ for Ce ranging over the counter-
examples to Ex, STILL only processes I/ substitu-
tions, where 11 is a positive integer supplied by the
user. To give an order of idea. rI was set to 300 in
our experiments on the mutagencsis problem.
This way, it constructs a set of hypotheses
Th,7 (Ex) that cover Ez and are only partially ensured
to be consistent, since only sampled substitutions are
surely discriminated.

Concretely, the set of hypotheses Th, (Ex) is char-
acterized as follows. Let n be the number of counter-
examples to Ex. For each counter-example Ce, ~ sam-
pies of substitutions are selected in EE=, c’e. The com-
putational description of Th~(Ex) consists of clause
C and the set 7~ of discrirninant constraints pq. cor-
responding to the 7/ sampled substitutions a derived
from all counter-examples. This way, the number of
constraints in T~ does not depend on whether Ex be-
longs to the majority or the minority class. Otherwise,
the number of constraints in T~ would be much higher,
and hence Th~ (Ex) much more specific for the minor-
ity class than for the majority class. This heuristics
was adopted for reasons of empirical accuracy: exper-
imentally, this makes a difference in the mutagenesis
problem, where examples are typically two active to
one inactive.

Characterize TI~(Ex) 

n = Number of counter-examples to Ex
For Ce counter-example to Ex

For j= 1 ~-
"’’n’

Select tr in ~BE~. c~,
Build po
Do~.=g U{po }

return (C, R.).

The disjunction Th, of theories Th,(Ez) for Ez
ranging over the training set, is termed approximate
Iheo~?t: the rate of approximation is the number r! of
allowed samples. Note that Th, is more general than
Th; it tends toward Tit as 7/increases.

Approximate classification. The classification
process in ICP is based on checking whether the in-
stance E to classify is neighbor of Ex, i.e. belongs to
Th(Ex), for all training examples Ex. In order to do
so. it still explores the set ~F.~, F. of substitutions on
C (where Ex = C0), matching E. The size of this set
similarly makes classification intractable.

This limitation is addressed in STILL via the sam-
pling mechanism too: instead of exhaustively exploring
E~, E, STILL only considers a lix~’d nunlher K of
substitutions in this s(:t, where h" is a posittv¢, inte-
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get supplied by the user. To give an order of idea, K
was set to 3 in our experiments on the mutagenesis
problem.

The Neighbor function is therefore modified as:

ApproxANeighbor (E, Ex) 

(C, ~) = Charactorize Thn (Ez)
For i = 1...K

Select r in EEz,E
If r entails all p in

return true
return false

As soon as a substitution r among K samples of sub-
stitutions in EE~:.jz entails all discriminant constraints
in the characterization of Th,~ (Ex), is considered an
approximate neighbor of Ez.

Note the above function corresponds to an "inter-
pretation" of Th~(Ez) that is more specific than
TI~ (Ez) itself; this overspecificity decreases as K in-
creases.

Parameter K controls the number of trials allowed
to get an answer from theory T/~; metaphorically
speaking, K corresponds to the "patience" of the con-
structed expert.

Coping with noisy and sparse examples

Th(Ex) (which is the theory TI~I (Ez) tends toward as
~1 increases) includes consistent hypotheses only, and
maximally general consistent hypotheses in particu-
lar. No doubt this approach is ill-suited to real-world
datasets: when erroneous examples are encountered,
strictly consistent hypotheses have few predictive ac-
curacy (Clark & Niblett 1987). And when examples
are sparse, maximally general consistent hypotheses
are too general: most instances come to be covered
by a hypothesis in most TI~ (E~), and therefore get
unclassified, or classified in the majority class.

These limitations were already encountered in the
attribute-value version of ICP, and have been ad-
dressed by two heuristics (Sebag 1996), which simply
extend to first-order logic owing to the computational
characterization of the constructed theory.

The first one addresses the presence of noise in the
data, by allowing one to relax the consistency require-
ment. The originality consists in relaxing this require-
ment and allowing a limited number of inconsistencies
during the classification of an instance rather than dur-
ing induction. In opposition, the number of acceptable
inconsistencies in PROGOL for instance is set before
starting induction; and if one wants to modify this bias,
s/he must restart induction from scratch.
This is done as follows. By definition, E belongs
to Th(Ez) and is considered as neighbor of Ez iff
it belongs to D(Ez, Ce) for all Ce counter-example to
Er. This definition is simply relaxed as: E is from
now on considered as neighbor of Ez iff it belongs to

D(Ez, Ce) for all Ce counter-example to Ez, but at
most e of them, where c is a positive integer supplied
by the user. Of evidence, the greater e, the more gen-
eral the interpretation of Th(Ex) is.

The second heuristics addresses the sparseness of the
data, by allowing one to increase the specificity of the
produced theory. This is done at the level of the dis-
criminant constraints Po. By construction, po is the
maximally general constraint that discriminates a and
generalizes 0; it is the disjunction over the variables X
in C, of domain constraints Px,o. A given substitution
r entails Pa iff there exists at least one variable X such
that X.r satisfies Px,o.
The specificity of the theory is simply modified by in-
terpreting now pq as a M-of-N concept: from now on,
substitution r is considered to entail Po iff there exists
at least M variables X such that X.r satisfies Px.¢,,
where M is a positive integer supplied by the user.
And the greater M, the more specific the interpreta-
tion of Th(Ex) is.

Note that theory Th~ does not depend in any way
on the values of parameter c or M. In particular,
STILL requires no a priori knowledge regarding the
rate of noise and representativity of the data. Param-
eters M and e can be adjusted from the experimental
classification results -- but with no need to restart in-
duction. See (Sebag 1996) for a discussion about the
advantages of such a posteriori biases.

Complexity

As expected, the complexity of STILL is much more
affordable than that of ICP.

Let X still denote an upper-bound on the number of
variables in C. The complexity of building po is still
linear in X. The cost of selecting a is quadratic in X
(this is a large over-estimation). Hence, the complex-
ity of learning Th~ (Ez) is in O(X~ x q). Finally, the
computational complexity of induction in STILL is
linear in the rate of approximation and in the num-
ber of training examples, and cubic in the number of
variables in one example:

O(N x Xs x ~)

In the mutagenicity problem, N is 188, X is less than
200. The rate of approximation r/was set to 300, to be
compared with the typical size of a set EEz. c,, that
is 3030.

The complexity of classification is that of learning,
increased by factor K (which was set to 3 in our ex-
periments):

O(N x X3 x ~ x K)

Note that the heuristics designed to cope with noise
and sparseness do not modify the computational com-
plexity of classification.
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Experimentation

This section presents an experimental validation of our
approximate learning and classification scheme on the
mutagenicity problem, which is presented in details in
(Srinivasan & Muggleton 1995).

The data

The experimentations reported in this section consider
the data set composed of 188 compounds, described
via the background knowledge B1 (including the de-
scription of atoms and bonds in the molecules).. B2
(Bl augmented with definitions of numerical inequali-
ties), and Bs (82 augmented with five non structural
attributes).

For all experiments that follow, the atoms in rele-
vant background theories are partitioned in 188 ground
clauses, each clause describing all information relevant
to a given compound.

The reference results obtained by PROGOL and
FOIL on this problem (reported from (Srinivasan 
Muggleton 1995) and personal communication from A.
Srinivasan), are:

Background knowledge

B1
132
B3

Accuracy
FOIL PROGOL

60 4- 4 76 4- 3
81 4- 3 81 4- 3
83 4- 3 83 4- 3

Table 1: Results of FOIL and PItOGOL on the
188-compound problem:

Average predictive accuracy on the test set

Experimental Settings
The parameter q used to ensure the tractability of in-
duction (rate of approximation) is set to 300. The
parameter K used to ensure the tractability of classi-
fication is set to 3.

Parameter M used to control the specificity of the
theory varies from 1 to 10. Parameter e, used to con-
trol the consistency of the theory, varies from 0 (strictly
consistent hypotheses only) to 15%. The consistency of
a hypothesis is from now on defined in term of percent-
age of inconsistencies, rather than in term of number
of inconsistencies.

All results are averaged over 15 independent runs,
where each run consists in learning from 90~ of the
188 compounds (randomly selected such that the ra-
tio of active/inactive compounds in the training set
is same as in the global data., i.e. about two to one)
and classifying the remaining 10% of the data. This
protocol of validation is similar to the ten-fold cross
validation used in (Srinivasan & Muggleton 1995): the
number of runs is only slightly increased (from 10 to
15), as suggested for stochastic approaches (Kinnear
1994).

STILL is written in C++. The run-time on HP-
735 workstations (including the construction of the
theory and the classification of the test examples),
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varies from 60 to 120 seconds. Despite the difference
in the language of implementation (Language C for
FOIL and Prolog for PROGOL), this demonstrates
that STILL is two or three orders of magnitude faster
than FOIL and PROGOL (respectively 5 000 and
117 000 seconds on HP-735 when handling background
knowledge B1 ).

Experiments with B1

STILL is first experimented in the context of back-
ground knowledge BI; this means that variables de-
scribing the atom type and the partial electric charge
of atoms are handled as nominal variables instead of
respectively integer and real-valued variables. With
those settings, STILL can only learn discriminazlt in-
sfanliations of those variables (e.g., (Chargei : .84)).
Results of these experiinents are therefore to be com-
pared to results of FOIL and PROGOL in the con-
text of background knowledge B1.

Table 2 shows how the average predictive accuracy
on the test set varies with e and M (label Aecur).
It also gives the standard deviation of the accuracy, as
well as the average percentages of unclassified and mis-
classified examples (label Unclass and Misclass). Ex-
amples happen to be unclassified either when they have
no neighbor in the training set, or when the nearest-
neighbor process ends up in a tie.

e M

0

B1
Accur. Unclass. Misclass. Time

1 79 4, 2 1.19 19.8 69
2 84.5 4. 2 3.17 12.3 73
3 77.8 4- 3 7.94 14.3 77
4 76.2 4- 3 11.9 11.9 78
5 68.3 4- 2 21 10.7 79

5

1 80.2:1:2 0 19.8 64
2 81 ± 2 0 19 68
3 82.5 4- 1 1.98 15.5 72
4 79.4 4- 2 1.59 19 75
5 80.6 + 3 2.78 16.7 77

10

1 73 4-.2 0 27 60
2 79.4 4- 3 0.397 20.2 64
3 83.3 + 3 0 16.7 69
4 78.2 4, 2 0.794 21 73
5 75.8 4. 2 3.57 20.6 76

15

1 69.8 4- o.7 0 30.2 59
2 80.6 4- 2 0.794 18.7 63
3 81 4- 2 0.397 18.7 68
4 83.7 q- 2 0.794 15.5 72
5 76.6 4- 2 0.794 22.6 74

Table 2: STILL, Average predictive accuracy on the
test set, wilh background knowledge B1,

z/= 300, K=3

Note that, as M increases, theories "l’h~ (E.x) get more
specific, hence any instance has less and less neighbors
in the training set. This is shown as more and nmre
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examples shift from Accur and Misclass to Unclass
(especially for ¢ = 0).

Note also that for increasing values of ¢, theories
Thn(Ez) get more and more general, and the best
predictive accuracy moves toward larger values of M:
the overspecificity due to large values of M resists the
overgenerality due to large values of ¢.

The predictive accuracy reached for the best adjust-
ment of parametersr andM (¢ =0andM=2) 
significantly better than the results achieved by PRO-
GOL and FOIL for background knowledge 8]. The
question of automatically tuning the learning parame-
ters nevertheless remains open.

Of course, a fair comparison would require to see how
the predictive accuracy of PROGOL similarly varies
depending on the maximum number of inconsistencies
and the maximum number of literals in the clauses,
which are respectively set to 5 and 4 in (Srinivasan 
Muggleton 1995}.

A tentative explanation of the differences between
the performances of PROGOL and that of STILL on
this particular problem is the following. PRO-
GOL and STILL operate in similar search spaces and
use different heuristics to the same end, namely con-
structing partially complete and partially consistent
clauses. This suggests that the better performances
of STILL are due to its inherent redundancy: PRO-
GOL starts from some training examples and con-
structs the "best" hypothesis covering these examples,
while STILL considers all training examples and con-
structs all approximately consistent hypotheses cov-
ering these examples. The redundancy of the con-
structed theory has frequently been viewed as a factor
of robustness and reliability of the classifier: see (Gams
1989; Nok & Gascuel 1995) among others.

Experiments with B2
We then check the added value of using a CLP formal-
ism: variables describing the atom type and electric
charge of atoms are from now on handled as integer
and real-valued variables. The only difference is that
STILL can now learn discriminant domain constraints
such as (Chargei > .143) or (AtomType~ < 22), in-
stead of simple discriminant instantiations (Chargei 
.84) as before.

The results obtained here (’Fable 3) must thus 
compared to those of FOIL and PROGOL in the
context of background knowledge B2.

Unexpectedly, learning constrained clauses only re-
suits in a slight improvement of the overall predictive
accuracy (from 84.5 to 86.5): allowing to set numeri-
cal inequalities on variables Chargei and AtornTypei
makes few difference. In retrospect, B1 mainly involves
structural information and few distinct numerical val-
ues : as noted in (Kohavi 1995), the presence of numer-
ical variables does not mean that a problem is basically
numerical.

One side effect of allowing numerical inequalities, is
that the best predictive accuracy is obtained for higher
values of e and M. This can be explained as follows:
an inequality is more often satisfied than an equality.
This implies that the theories constructed with con-
strained clauses containing inequalities are more gen-
eral than those built with pure Horn clauses. Increas-
ing the value of parameter M allows to resist this over-
generality, while increasing the value of¢ alms at keep-
ing a desirable level of generality.

M

0

Accur. Unclass. Misclass. Time
4 81.5 q- 2 0 18.5 100
5 83.3 + 2 0 16.7 107
6 85.6 q- 2 0.37 14.1 113
7 70.7 q- 2 0.741 28.5 122
8 69.6 + 3 2.59 27.8 128
4 73.7 + 2 0 26.3 89
5 81.1 =t: 2 0.37 18.5 95
6 81.9 q- 2 0.37 17.8 100
7 83.7 :t= 2 0 16.3 106
8 76.3 -b 3 0.741 23 115
4 68.1 + 0.6 0 31.9 88
5 74.8 ~ 2 0 25.2 93

77.8 =t= 2 0.741 21.5 98
86.3 + 2 0 13.7 105
80.4 =t= 2 0.37 19.3 109
70.8:1= 1 0.694 28.5 92
77.4 ::k 2 0.347 22.2 96
79.9 + 2 0.694 19.4 I01
86.5 ± 2 0 13.5 108
83.3 :l: 2 0.741 15.9 115

10 6
7
8
5
6

15 7
8
9

Table 3: STILL, Average predictive accuracy on the
test set, with background knowledge B2,

y = 300, K = 3

Additional experiments show that the predictive ac-
curacy only slightly increases with ~/: e.g. increasing T/
from 300 to 700 improves the best predictive accuracy
by only one point; in counterpart, the computational
cost is nearly twice as much as for y = 300.

Experiments with B3

As noted earlier, the relatively disappointing results
of STILL with background knowledge B2 may be
explained by the little number of distinct numerical
constants involved in the description of atoms.

A third set of experiments has thus considered back-
ground knowledge B3, that is 82 enriched with (truly)
numerical attributes.

The best results, obtained for e = 0 and M = 6,
are impressive (Table 4); as far as we know, they are
significantly better than the results obtained by various
learners using a superset of background knowledge Ba,
and in particular, by ILP learners having numerical
skills (Karalic 1995).
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Experiments with Bs also confirm the trend observed
when experimenting with B2: the optimal accuracy
moves toward higher values of .M ; the produced theory
needs some extra specialization when it is allowed to
include inequality constraints.

Again, the main question here appears that of ad-
justing automatically parameters e and M.

M Ba
Accur. Unclass. Misclass.

6 93.4 ± I 0.347 6.25
7 88.5 4- 2 1.04 10.4
8 89.9 4- I 1.74 8.33
9 88.9 4. 2 3.47 7.64

lO 88.9 4, 2 2.78 8.33
6 89.6 4. 2 0 10.4
7 91 4. I 0 9.03
8 83 4- 2 0.694 16.3
9 83.7 4, 2 0.694 15.6

I0 79.5 4- 2 0.694 19.8

I0

6 85.8 4- 3 0 14.2
7 84.7 4- I 1.04 14.2
8 90.34- 2 0.694 9.03
9 85.8 4- 2 0.347 13.9

I0 77.8 4. 3 1.39 20.8
6 85.1 4- 2 0.347 14.6
7 86.8 4- 2 0.347 12.8

15 8 89.2 4. 2 0 10.8
9 87.5 4- 2 1.04 11.5

10 83.7 4- 2 0.694 15.6
Tab’e ~: STILL, Average predictive accuracy on the

test set, with background knowledge Be,
7/ = 300, K=3

Conclusion
We have experimentally demonstrated the potentiali-
ties of thc stochastic approximate learner STILL for
classification purposes.
The main interest of this work in our ~nse, is to show
how stochastic processes can be engineered to cut into
the combinatorial complexity pertaining to ILP. Note
that this sampling mechanism is combined with, rather
than replaces, induction. This is a strong difference
with the genetic side of machine learning and ILP (Ko-
vacic 1994; Wong & Leung 1995)1. More precisely,
what is sampled here is related to examples rather than
to solutions.

Another interest lies in the non-standard use of the
Version Space framework: the computational represen-
tation of the constructed theory sidesteps the intrinsic
combinatorial complexity of "version Spaces. Further,
it allows one to relax at no additional cost the con-
sistency and generality requirements~ whenever this is

1 In most (;A-based learners, solutions are sampled and
evaluated from their predictive accuracy, i.c. through de-
duction only. An exception is the system described in
(Giordaaa, Saitta, & Zini 1994), where the selectiol, process
is driven by inductive heuristics.
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required by the defects, noise and sparseness of the
data. Last. the degrees of consistency and generality
can be tuned with no need to modify the constructed
theory, and hence without restarting induction.

The main weakness of our learning approach is that
it constructs nothing like an intelligible theory2. Fur-
ther work is concerned with pruning and compacting
the inarticulate theory underlying tiw oracle; the chal-
lenge lies in providing a readable version of this theory
having same predictive accuracy. The key question is
that of the long debated trade-off between intelligibil-
ity and predictive accuracy.

This approach will also be given a learnabilit,y model,
be it based on PAC-learnability (VMiant 1984} or U-
learnability (Muggleton. 1994). In particular, in the
Probably Approximately Correct (PAC.) framework, pa-
rameter 1/used to sample the substitutions naively cor-
responds to the probability of getting the desired the-
ory, the approximation of which is given by ~.
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